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Abstract 

Characterization of gene essentiality across different conditions is a useful approach for predicting gene              

function. Transposon sequencing (TnSeq) is a powerful means of generating genome-wide profiles of             

essentiality and has been used extensively in Mycobacterium tuberculosis (Mtb) genetic research. Over             

the past two decades, dozens of TnSeq screens have been published, yielding valuable insights into the                

biology of Mtb in vitro, inside macrophages, and in model host organisms. However, these Mtb TnSeq                

profiles are distributed across dozens of research papers within supplementary materials, which makes             

querying them cumbersome and assembling a complete and consistent synthesis of existing data             

challenging. Here, we address this problem by building a central repository of publicly available TnSeq               

screens performed in M. tuberculosis , which we call the Mtb transposon sequencing database             

(MtbTnDB). The MtbTnDB encompasses 64 published and unpublished TnSeq screens, and is            

standardized, open-access, and allows users easy access to data, visualizations, and functional predictions             

through an interactive web-app (www.mtbtndb.app). We also present evidence that (i) genes in the same               

genomic neighborhood tend to have similar TnSeq profiles, and (ii) clusters of genes with similar TnSeq                

profiles tend to be enriched for genes belonging to the same functional categories. Finally, we test and                 

evaluate machine learning models trained on TnSeq profiles to guide functional annotation of orphan              

genes in Mtb. In addition to facilitating the exploration of conditional genetic essentiality in this important                
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human pathogen via a centralized TnSeq data repository, the MtbTnDB will enable hypothesis generation              

and the extraction of meaningful patterns by facilitating the comparison of datasets across conditions.              

This will provide a basis for insights into the functional organization of Mtb genes as well as gene                  

function prediction. 

Introduction 

Assessing the essentiality profile of a gene across different conditions is often a useful first step towards                 

determining its function. When determined for all genes in an organism, similar patterns of essentiality               

across a set of conditions can indicate a shared or common function, as in the case of enzymes in a                    

metabolic pathway [1]. Evidence of such shared or related functions can be further informed by               

constructing gene-gene interaction networks consisting of genes that are essential on background mutant             

strains that harbor single or multiple gene deletions [2,3]. In the context of pathogenic bacteria, genes that                 

are essential for virulence in clinically relevant conditions represent potential high priority targets for drug               

development [4,5].  

For many bacterial organisms, including the human pathogen Mycobacterium tuberculosis (Mtb ),           

one of the main approaches to investigate the effect of gene knockouts on fitness at genome scale is to                   

generate pooled transposon insertion mutant libraries and measure the relative growth or survival via              

transposon sequencing (TnSeq) [3,6,7]. In TnSeq, a saturated transposon insertion library is generated and              

cultured in a defined experimental condition. Amplification and sequencing of the output and control              

libraries yields, for each genomic region, a ratio of experiment-to-control library insertion counts. These              

insertion ratios are analyzed statistically in order to categorize genes as conditionally essential or              

non-essential [2,8,9].  

Two decades ago, Rubin et al. [10] adapted transposon mutagenesis, coupled to microarray-based             

genome-wide fitness measurements, to Mtb . This method was subsequently modified using           

next-generation sequencing to allow single base-pair mapping of insertions [1,11]. Since then, TnSeq has              

been used to identify Mtb conditionally essential genes using in vitro cultures, in vivo mouse models as                 

well as macrophage infection assays, and in a wide variety of conditions, such as different carbon sources,                 

stress conditions, and a diverse array of Mtb clinical and mutant strains (Table 1) [1,2,11–23].               

Unfortunately, these valuable genetic datasets remain scattered in supplementary tables throughout           

literature, making rapid analysis of the conditional essentiality profiles of genes of interest time              

consuming. Additionally, a lack of analytical standardization makes comparison difficult even when            
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studies are identified, as it is often not clear how to properly compare essentiality calls that are made with                   

different statistical approaches. 

To address this gap, we compiled a wide array of publicly available M. tuberculosis TnSeq               

datasets into a single standardized, open-access database, which we call the Mtb transposon sequencing              

database (MtbTnDB) (Fig 1). The MtbTnDB contains 76 unique screens from 19 different publications              

and from the Functionalizing Lists of Unknown TB Entities (FLUTE) database (orca2.tamu.edu/U19),            

covering a range of experimental and physiological conditions (Table 1). To help facilitate access to the                

database for the TB research community, we developed an online tool that allows querying the database                

by either TnSeq screen or gene of interest and provides informative analyses and visualizations of the                

compiled data. We illustrate the potential value of the MtbTnDB for TB research through example               

applications, such as easily identifying orphan (i.e unannotated) genes that are conditionally essential in a               

given TnSeq screen. Finally, we apply unsupervised and supervised machine learning techniques to             

extract insights into the function of genes from their TnSeq profiles.  

Results 

Compiling and standardizing M. tuberculosis TnSeq datasets. 

We set out to build a database that compiles all publicly available M. tuberculosis TnSeq datasets in a                  

standardized, open-source format (Fig. 1) We assembled data for Mtb TnSeq screens encompassing a total               

of 76 comparisons between experimental and control conditions from two main sources. A first set of 55                 

comparisons were compiled from 19 publications [1,2,11–27]. The remaining 15 were obtained from the              

Functionalizing Lists of Unknown TB Entities (FLUTE) database [28]. 

 

 

Fig. 1: Schematic diagram of compilation and standardization of M. tuberculosis TnSeq screens. (A)              
Raw sequencing reads were collected from publicly available TnSeq screens in the literature and in the                
FLUTE database. (B) Using a standardized statistical processing framework with TRANSIT [9], each set              
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of raw reads was converted into an essentiality table, with genes in the Mtb genome assigned log2                 
fold-change values (relative to specified control conditions) and p-values corrected for multiple            
hypothesis testing. (C) The set of TnSeq data can be queried in the MtbTnDB online portal, either by                  
screen or by gene of interest. (D) The database is amenable to both supervised and unsupervised machine                 
learning approaches to generate hypotheses about gene function.  
 

The set of unique TnSeq screens in the MtbTnDB cover a wide range of different experimental conditions                 

(Table 1). Out of 76 comparisons, the majority (47) were performed as in vitro bacterial culture                

experiments, while 27 were in vivo experiments using mouse infection models, and 2 used cell culture                

(macrophage and dendritic cell) infection models. The in vitro set of TnSeq screens covers many different                

culture media (carbon sources and limiting nutrients) and stress conditions (antibiotics, low oxygen             

tensions, acidic pH, nitrosative stress, iron limitation, and amino acid starvation). Although the large              

majority of the experiments were performed using the standard laboratory Mtb strain (H37Rv), one              

publication [20] performed comparative screens on eight different clinical isolates. A significant number             

of the TnSeq comparisons (34) were performed on knockout Mtb background strains, yielding             

information on genetic interaction networks underlying observed conditional essentiality profiles. Finally,           

for completion we also included data for 5 screens from the literature that were performed using                

microarray-based transposon site hybridization (TraSH) [24–27].  

 

Table 1 : The space of experimental conditions covered by the Mtb  TnSeq Database.

 

4 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.03.05.434127doi: bioRxiv preprint 

https://paperpile.com/c/h3bUP1/PzrKK
https://paperpile.com/c/h3bUP1/ZXP4+oGpAR+TWRiH+ftjhM
https://doi.org/10.1101/2021.03.05.434127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Standardized statistical analysis of TnSeq screens using TRANSIT 

In order to facilitate comparative analyses across different TnSeq screens, we set out to re-process               

the raw data for as many screens as possible using a single standardized statistical method based on                 

TRANSIT, a Python-based TnSeq analysis tool (see Methods for details). Although TRANSIT            

accommodates a variety of statistical approaches for making essentiality calls, we utilized the resampling              

method to compare every experimental condition to an appropriate reference or control condition. Briefly,              

resampling compares read-counts between two different conditions utilizing a permutation test to identify             

significant differences in the mean read-counts [9]. Resulting hits are labelled as conditionally essential              

genes: genes that are essential in one background condition (experiment) but not another (reference or               

control). By comparing against a suitable reference or control condition, we sought to reduce potential               

biases that can exist due to differences in mutant libraries. Whenever possible, the reference condition               

was chosen to be the one described in the original TnSeq screen. When no suitable reference or control                  

condition was specified or included in the screen, we utilized a fully saturated in-vitro dataset [29] as the                  

control condition. 

In order to analyze the effect of our standardized processing of the underlying TnSeq sequencing               

data, we compared the number of conditionally essential genes detected in each screen (using fixed               

threshold values for the corrected p-value<=0.05, and a log(2)-fold change>=1) against those reported in              

the corresponding original, individual datasets (Table S1). Across all screens analyzed, we find that the               

standardized data and the original analyses differ in around 2% of the conditional essentiality calls.               

Approximately half of these are cases where the standardized dataset suggests that a gene is conditionally                

essential in a particular screen, whereas the original analysis did not, and the other half of the cases                  

correspond to the opposite situation. A few individual screens have a relatively high number of               

non-consensus essentiality calls between the standardized and original datasets. In particular, one TnSeq             

screen in an in vivo mouse model [13] has 403 genes that were called essential in the original datasets, but                    

not in the standardized analysis. One possible reason behind this large inconsistency is the different               

statistical methods used to analyze the sequencing data. We note that both the original and the                

standardized data sets are included in the MtbTnDB (see section on online database).  

In addition, we inspected the standardized TnSeq screens in search of batch effects, i.e. variations               

in the datasets that occur independently of biological signal and noise. Dimensionality reduction of data               

vectors representing each TnSeq screen (Methods) revealed that, of the 64 screens included in the               

database, a set of eight TnSeq screens formed a distinctly separate cluster (Fig. S1). This cluster consists                 
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of screens where essentiality counts in eight clinical strains are compared relative to a control strain                

(H37Rv), which could either be indicative of experimental batch effects or true biological differences              

between domesticated laboratory strains and clinical isolates. 

The statistics of conditional essentiality across the MtbTnDB 

Fig. 2A shows the distribution of conditional essentiality calls across all genes in the Mtb               

genome. We find that 2453 genes are not labelled as conditionally essential in any of our standardized                 

screens. We note that a significant subset of these (425) are genes that are essential or have a significant                   

growth defect in the fully saturated in-vitro screen [29] that we used as a control (reference) condition for                  

a large number of comparisons. Thus, despite being essential for growth in standard in-vitro culture               

conditions, these genes are not detected as conditionally essential in any screen in the MtbTnDB: i.e there                 

is no significant difference in their degree of essentiality in standard in-vitro culture in comparison to the                 

experimental conditions covered in the database. The rest of the genes with zero conditionally essential               

calls likely represent a mixture of putatively dispensable genes and (i) genes with essential roles in                

experimental conditions that are outside the coverage of our database, (ii) false negatives, i.e. genes that                

do not meet the threshold of statistical significance due to experimental factors like low coverage.  

At the tail of the distribution, we find approximately 120 genes that are conditionally essential in                

10 or more comparative TnSeq screens (SI Table 2). Among these (Fig. 2B) we find a strong enrichment                  

for phthiocerol synthesis polyketide synthase type I genes (ppsA-E ), with all members of these PDIM               

biosynthetic pathway genes having at least 24 conditional essentiality counts. One possible explanation             

for this is the fact that loss of PDIM biosynthesis genes in vitro confers a fitness advantage to Mtb [30].                    

The fully saturated in-vitro dataset [34] that was used as the control condition for a large number of                  

comparisons contains PDIM biosynthesis genes, but some of these genes could have been lost in several                

of the experimental conditions, leading to few or no detectable transcription insertion counts and resulting               

in false positive conditionally essential call. A second set of genes with a high number of conditionally                 

essential calls are the members of the mycobactin siderophore biosynthetic pathway (mbtA, mbtB, mtbD,              

mbtE, mbtF ) [31] (Fig. 2B). Interestingly, in more than half of these instances the mycobactin               

biosynthesis genes are detected as a significant hit because they are less essential (i.e. p-val (adjusted) <=                 

0.05 and log2FC >= 1) implying their loss provides a fitness advantage across a range of different                 

conditions. One might expect that iron-scavenging would not be required across several in-vitro             

conditions, as most media used in TnSeq experiments is replete with iron. 
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Fig. 2: Distribution of conditional essentiality calls in the MtbTnDB across all genes. (A) Distribution               
of the number of conditionally essential calls across all genes in the Mtb genomes (B) Number of                 
conditional essentiality calls vs. position in the genome across the MtbTnDB for all H37Rv Mtb genes.                
The mycobactin and PDIM biosynthetic operons, which tend to have a large number of conditionally               
essential calls, are highlighted.  

MtbTnDB, an online database of standardized Mtb TnSeq screens  

To allow efficient querying of the standardized data, we developed an MtbTnDB web interface              

(www.mtbtndb.app). The interface allows two methods of querying the database - by screen (Fig. 3) and                

by gene. Each screen is a pairwise comparison between an experimental and control condition. The               

“Analyze datasets” tab provides an information-rich and interactive overview of the selected comparison.             

An “About this dataset” section includes a description of the screen, links to the original publication, and                 

the number of replicates used for both the experimental and control conditions. A volcano plot and                

accompanying table allow interrogation into differentially represented mutants. Sliders for significant           

log2FC and qval cut-offs allow interactive coloring of data points on the volcano plot. Mutants of interest                 

can also be highlighted on the volcano plot by selection in the accompanying table. We also provide two                  

plots depicting broader analyses of the data. First, a bar plot depicts the enrichment of COG functional                 

categories in over/under-represented mutants. Second, a bubble plot allows identification of the subset of              
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genes that are both conditionally essential in this analysis and the least annotated subset, providing useful                

pointers for follow-up experiments. An example case using this type of plot is provided in the next                 

section. 

The second functionality provided in the web interface is to query genes of interest and list the set                  

of TnSeq screens in which mutants for this gene are differentially represented. In addition to log2FC and                 

q-values we also provide track-views, which are visual depictions of the magnitude and location of               

insertions within the selected gene.  

The data used in MtbTnDB is provided in the “About” tab, and users can also choose to                 

download individual screens from the “Analyse datasets” tab. We also note the modularity of the database                

and its ability to accommodate additional datasets in the future, potentially including conditional             

essentiality screens using CRISPRi. 
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Fig. 3: An online explorer of TnSeq datasets. A screenshot of the “Analyze datasets” modality is                
shown. Users can select which TnSeq screen to explore, whether to display either the standardized or the                 
original publication’s dataset, as well as significance thresholds for log2 fold-changes and q-values. A              
brief summary of the TnSeq screen is shown in the left panel, alongside a link to the original publication                   
and the number of replicates for both control and experimental conditions. An interactive volcano plot               
highlights conditionally essential genes, which can also be accessed and selected through the table on the                
right.  

Example usage: selecting experimental conditions to study unannotated genes. 

A large fraction of genes in the Mtb genome remains unannotated, and the MtbTnDB could help                

annotate such “orphan” genes by guiding the design of experimental conditions in which to assay their                

function. This is motivated by the notion that experimental conditions in which a mutant strain displays a                 

growth or survival defect are more likely to reveal the orphan gene’s physiological role. For instance, if                 

an enzyme of unknown function participates in cholesterol catabolism, the probability of discovering its              

function will be highest if the mutant strain’s metabolic profile is obtained when grown with cholesterol                

as its primary carbon source.  

To help select experimental conditions in which to study orphan genes, we used experimental              

annotation scores from Uniprot, consisting of 5 categories ranging from least to most well characterized               

(see Methods), to classify genes. For every TnSeq screen in the MtbTnDB, we then obtain the unknown                 

essentials: the set of genes that are both conditionally essential (in that experimental screen) and fall in the                  

category of least well characterized genes (Fig. 4, top-left corner). The number of unknown conditional               

essentials varies across each TnSeq screen in the MtbTnDB, with 10 screens having more than 30                

conditionally essential genes with the lowest annotation score. In particular, two mouse in vivo screens               

have more than 65 genes that fall in the most poorly annotated category, underscoring the fact that the                  

function of many potential drug targets remains to be discovered. This also illustrates how the MtbTnDB                

can be used to systematically select experimental conditions that result in measurable growth phenotypes              

for orphan genes of interest for further study.  
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Fig. 4: Mapping out conditionally essential genes of unknown function. Data shown corresponds to a               
single TnSeq screen in the MtbTnDB: an H37Rv in vivo (mouse) screen [2]). Genes are represented as                 
circles, and are binned along the x-axis into five distinct categories according to their annotation level and                 
along the y-axis according to their conditional essentiality (the exact position within each bin/category is               
not meaningful). The least well characterized genes (i.e orphans) that are conditionally essential in this               
particular TnSeq screen are shown in orange (the gene identifiers for five example genes are shown).  

Predicting functional categories with the MtbTnDB 

We asked whether similar TnSeq conditional essentiality profiles are indicative of similar            

biological function, where a conditional essentiality profile is defined as the set of (conditional)              

essentiality calls across all standardized TnSeq screens; i.e. a 64-dimensional vector for each gene in the                

Mtb genome. To explore this, we applied a uniform manifold approximation and projection (UMAP), a               

non-linear dimensional reduction tool [32], to the standardized TnSeq data. We hypothesized that, since              

genes belonging to the same operons are functionally related, neighboring genes in the genome are likely                

to have more similar TnSeq conditional essentiality profiles than random pairs of genes on average (Fig.                

5A). To test this, we compared the distribution of Euclidean distances in the UMAP projection between                

(i) pairs of genes that are in the same genomic neighborhood (i.e. apart from each other in the genome by                    

a fixed cutoff genomic distance) and (ii) pairs of genes chosen at random from the full Mtb genome. We                   
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indeed find that neighboring genes tend to have more similar TnSeq profiles than expected by chance                

(p=10-14, Kolmogorov-Smirnov test). 

Next, using k-means clustering, we grouped genes by the similarity of their TnSeq profiles as               

captured by their coordinates in the UMAP projection. An example UMAP projection with 19 different               

clusters is shown in (Fig. 5B). Using the COG [33] and Tuberculist [34] Mtb genome annotations, we find                  

that several clusters are significantly enriched for a number of different functional categories, including,              

“nucleotide transport and metabolism”, “intermediary metabolism and respiration”, and “secondary          

metabolites and biosynthesis”, among others. Importantly, our observation of clusters enriched for            

functional categories is statistically significant (p<0.05, permutation test), and on average, zero categories             

were enriched when annotations were shuffled and re-analyzed for overlap with the UMAP clusters (Fig.               

S2). Taken together, these analyses serve as evidence that the TnSeq profiles capture functional              

relationships between genes, and encode information about the underlying operonic structure of the Mtb              

genome. 

 

 

Fig. 5: Genes with similar TnSeq profiles tend to have similar functions. Neighboring genes in the                
genome have more similar TnSeq profiles, and clusters of genes with similar TnSeq profiles are enriched                
for annotated genes belonging to the same functional categories. (A) Distribution of Euclidean distances              
(in UMAP projection) for pairs of random genes (orange) and neighboring genes (i.e. less than 3 genes                 
away from each other in the genome). The two distributions are significantly different (p<10-6,              
Kolmogorov-Smirnov test). (B) Uniform manifold approximation and projection (UMAP) of TnSeq           
profiles. Genes with at least one conditional essentiality call in the MtbTnDB were clustered using               
k-means according to their UMAP coordinates and color-coded. Four clusters enriched for gene             
functional categories are shown. 
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Fig. 6: Prediction of gene function with machine learning. Confusion matrix showing the fraction of               

observations predicted to be classified in each functional category. Predictions were generated using an              

ensemble machine learning model consisting of a logistic regression and random forest classifier. The              

number of genes in each functional category are: PE/PPE (166); cell wall and cell processes (771);                

information pathways (242); insertions sequences and phages (146); intermediary metabolism and           

respiration (934); lipid metabolism (271); regulatory proteins (198); virulence, detoxification, adaptation           

(220). 

 

Building on the unsupervised analysis described above, we reasoned that since genes with similar              

physiological functions have similar essentiality profiles, the information encoded in the Mtb TnSeq             

Matrix could be used to help computationally annotate orphan genes. Towards this end, we trained a                

supervised classification model which takes as input a gene’s log2FC values from the 64 screens in the                 

database and predicts the functional category from the Tuberculist genome annotation that the gene              

belongs to. Our model (see Methods), a stacked meta-learner that combines predictions from logistic              

regression and random forest sub-models, achieved an accuracy of 45-60% (3-fold cross-validation) for             

three Tuberculist categories: ‘PE/PPE’, ‘information pathways’, and ‘insertion sequences and phages’, as            
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assessed by cross-validation (Fig. 6). We note that (i) our prediction is completely blind to the coding                 

sequence, and that (ii) as a comparative baseline, the accuracy of an unbiased random classifier would be                 

12.5% for each of the 8 categories. Thus, while improvements in predictive accuracy can be achieved by                 

incorporating other sources of data, TnSeq essentiality profiles can potentially help guide the functional              

annotation of unknown genes in Mtb. In addition, the predictive power of machine learning models               

trained on TnSeq data will likely improve as the database is populated with more conditional essentiality                

screens. 

Discussion 

To facilitate access to and the ability to gain insight from the vast amount of information stored in M.                   

tuberculosis genetic essentiality screens, we compiled a large set of publicly available TnSeq screens into               

a single, standardized, and open-access database, the Mtb transposon sequencing database (MtbTnDB).            

While other TnSeq databases exist [35], these contain significantly fewer Mtb specific screens and do not                

address the issue of standardization of raw sequencing data. We envision periodically updating the              

MtbTnDB by adding publicly available TnSeq screens as they become available in the literature:              

researchers wishing to contribute their screen to the database would simply need to provide the sequence                

files along with a basic description of the screening conditions. 

Although we aimed to maximize the degree of standardization, we note that there are upstream               

experimental factors that introduce variability into the screens, placing inherent limits in our ability to               

standardize the data. For instance, the transposon libraries differ in saturation (the number of unique               

insertion sites with one or more mutants present in the library), or in protocol details, such as whether                  

barcoding was utilized, or the specific sequencing technology used to obtain the reads. These differences               

may introduce artifacts, such as PCR over-amplification, or simply reduce the amount of data that is                

available (in the case of libraries with low coverage) which ultimately will affect the statistical power of                 

downstream analyses.  

One limitation of the current set of TnSeq screens included in the MtbTnDB is a bias towards a                  

subspace of experimental conditions. Future efforts should therefore be directed towards covering a wider              

and diverse region of experimental condition space. Towards this end, a recent TnSeq screen assaying               

iron uptake in M. tuberculosis [36], as well as recent technical developments that couple TnSeq with                

random DNA barcoding (RB-TnSeq) allowing parallel screening across dozens of conditions [37] are             

very encouraging.  
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It is worthwhile to point out that the information afforded by TnSeq experiments is quite different                

and complementary from that of RNAseq (transcriptomics). Transcriptomics identifies sets of genes            

whose expression changes in response to changes in conditions, which can be clustered into sets of                

co-regulated genes (or regulons) and sometimes correlated with transcription factors [2,38]. There is a              

large amount of transcriptomic data (DNA microarrays and RNAseq) that has been collected for Mtb in                

different conditions over the years, including stress conditions like hypoxia and antibiotic exposure, in              

macrophages and mouse models, knockout strains, among others [39]. TnSeq identifies the essentiality of              

genes in a given condition. In the extreme, essential genes are those which are indispensable for growth in                  

the condition and hence cannot tolerate transposon insertions. Additionally, there might be some genes              

that exhibit a quantitative reduction in transposon insertion counts, which is interpreted to indicate a               

fitness defect (growth impairment) caused by the disruption of the ORF [24]. Hence, TnSeq reveals               

information about which genes play functional roles in pathways required for survival in the condition.               

While both technologies can be efficiently scaled up to profile genome-wide cellular responses to changes               

in environmental conditions, the assays assess different information about genes (essentiality versus            

expression), and the lists of hits (conditionally essential genes vs. differentially regulated genes) often              

exhibit little overlap [40]. A gene can be differentially expressed without being conditionally essential              

and, conversely, a gene can become conditionally essential without a significant change in expression in               

the new condition. Efforts to combine TnSeq and RNAseq to enhance function prediction are on-going. 

The prospect of combining high-throughput phenotypic screening with machine learning to           

illuminate orphan gene function is promising. In this work, we tested how well the MtbTnDB could                

functionally classify unannotated Mtb genes using supervised machine learning models and found limited             

prediction accuracy. One possible explanation for this could be the quality of the functional annotations               

themselves, and future directions would include combining the MtbTnDB with complementary sources of             

data, such gene expression datasets, in order to improve the prediction of orphan gene function. We                

envision that the essentiality patterns encoded in the collected and standardized TnSeq screens will help               

researchers unravel the higher-order, physiological function of genes in the Mtb genome.  

Methods 

Standardization of TnSeq datasets 

To analytically standardize and process available TnSeq raw sequencing data, we selected            

TRANSIT, a Python-based TnSeq analysis tool, and TPP, a software tool for processing raw reads [9].                
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We were able to obtain either the original raw sequencing data or read-counts in a format suitable for                  

analysis, such Wiggle Track Format (.wig), for 64 TnSeq screens. For conditions where raw reads were                

available, we first used Tn-Seq Pre-Processor (TPP), a preprocessing tool included with TRANSIT, to              

map them all to the genome sequence of the standard H37Rv reference strain and obtain .wig formatted                 

files. 

 

Those datasets for which we could not obtain raw sequencing data were not included for analysis                

but are referenced in the MtbTnDB website to allow users to look at their results. As an additional quality                   

control step, we only included screens for which the transposon insertion density was higher than 25%.                

Raw reads were mapped with TPP to the H37Rv genome using default settings. We note that for screens                  

that did not use H37Rv, genes that are deleted in the experimental strain but not in the control strain - or                     

vice versa - may cause false positive conditional essentiality calls. The resulting .wig files produced by                

TPP were analyzed using the resampling in TRANSIT, which compares two experimental conditions to              

find significantly different read-counts in a gene. We also included pseudocounts in the resampling              

pipeline, using the default of PC=1 in TRANSIT. Whenever possible, a condition (experiment) was              

compared to the reference dataset (control) specified in a TnSeq screen’s source publication. For              

publications that did not specify a reference or control condition, a highly-saturated in-vitro dataset [29]               

was used. Resampling was run using default settings, using TTR normalization and 10,000 permutations.              

P-values were automatically adjusted for multiple hypothesis testing by TRANSIT using the            

Benjamini-Hochberg procedure. The resulting adjusted p-values and log2 fold-changes estimated by           

resampling were compiled together for all comparisons (SI Tables 3 and 4).   

We labelled genes as conditionally essential in a given TnSeq screen the following two conditions               

are satisfied: p-val (adjusted) <= 0.05 and abs(log2FC)>=1, where ,        og2F C log ( )l =  2 control + pseudocounts
experiment+pseudocounts  

i.e. the logarithm base 2 of the ratio of insertion counts (adding the fixed so-called pseudocounts                

parameter), and abs is the absolute value. We note that the use of the absolute value in the threshold                   

condition results in some selected genes having positive log2FC values, meaning they are detected as               

significantly less essential than expected by chance in that particular condition, with their loss providing a                

fitness advantage .  

To inspect the TnSeq screens for potential batch effects, each TnSeq screen was represented by               

an N-dimensional vector of log2FC (where N is the number of genes in the Mtb genome) and we                  

performed dimensionality reduction of these vectors using the uniform manifold approximation and            

projection (UMAP) algorithm.  
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MtbTnDB website and open-source code 

The MtbTnDB online portal was built using Dash, a tool for web-based analytical apps in Python.                

All source code used to build the online portal as well as all analyses mentioned in this work are available                    

at https://github.com/ajinich/mtb_tn_db_demo.  

Classification of genes into annotation categories 

We classified genes in the H37Rv genome into a set of five categories ranging from least to most                  

well characterized using annotations scores from the UniProt Knowledgebase (UniProtKB) [41], which            

evaluates available experimental evidence for each gene at the protein level.  

Clustering of genes with UMAP 

To perform the unsupervised learning analysis of the standardized TnSeq profiles using UMAP,             

we first removed all genes (2453) that have zero conditional essentiality calls across all 64 standardized                

screens. We then used the standardized binary TnSeq profiles for the remaining number of genes input                

into UMAP (with 3 components), as implemented in Python. Having obtained the UMAP components,              

we performed K-means clustering in the 2-dimensional projection, selecting the optimal number of             

clusters that maximizes the Silhouette Coefficient [42]. We used Fischer’s (hypergeometric) enrichment            

test to look for potential enrichments of COG or Tuberculist annotation functional categories within each               

cluster. Finally, to further evaluate the statistical significance of the observed enrichments within clusters,              

we generated randomized versions of the UMAP dataset by fixing the UMAP coordinates and cluster               

identities, shuffling the gene identifiers and annotation information associated to each point in the UMAP               

projection, and repeating the statistical enrichment test.  

Prediction of gene function: 

To fit a supervised machine learning model to the standardized TnSeq profiles, we used the log2FC                

values from the standardized matrix as inputs. Genes containing missing values in some screens were               

dropped (n=84). We used Tuberculist annotation functional categories as classification labels and dropped             

genes belonging to the ‘unknown’ (n=14) or ‘conserved hypothetical’ (n=1020) categories. The resulting             

matrix containing 2937 genes was used for prediction. 
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We used two sub-models to predict functional categories: a logistic regression classifier with             

lasso regularization and a random forest classifier [43]. Both methods were used as implemented in the                

scikit-learn library in Python. We used SMOTE [44] to correct for class imbalance along with 3-fold                

cross-validation. The outputs of each of the sub-models were subsequently fit to a logistic regression               

classifier to create an ensemble model for final predictions.  
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Supplementary Figures 

 

 
Fig S1: Unsupervised clustering of standardized TnSeq data by screen reveals a subset of screens               
with potential batch effects. Two-dimensional projection of TnSeq screens was performed using the             
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Uniform Manifold Approximation and Projection (UMAP) algorithm. Each point corresponds to a single             
TnSeq screen in the MtbTnDB, and screens are color-coded according to the reference publication or               
data-source.  
 
 

 
Fig S2: Lack of enrichment of gene functional categories in randomized versions of gene essentiality               
data. To evaluate the statistical significance of the observed enrichments of COG and Tuberculist gene               
functional categories in UMAP projection of TnSeq essentiality profiles, we generated 200 randomized             
versions of the UMAP dataset. Specifically, the positions of genes in the 2-dimensional UMAP projection               
were fixed, while the gene information (Rv-ID, name, annotation) were randomly shuffled. The             
normalized histogram shows that in more than 95% of the shuffled datasets, no enrichment of functional                
categories was detected in any cluster.  
 
Table S1: Consensus of conditional essentiality calls between standardized datasets and original            
published datasets.  
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