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Highlights
Understanding host–microbe interac-
tions remains critical as growing antibi-
otic resistance, new outbreaks, and re-
emerging pathogens put lives at risk.

Microbiologists and infectious disease
researchers have leveraged and ad-
vanced the genomic technological
breakthroughs of the last decade.

Advances in clustered regularly
interspaced short palindromic repeats
Humanity’s ongoing struggle with new, re-emerging and endemic infectious
diseases serves as a frequent reminder of the need to understand host–
pathogen interactions. Recent advances in genomics have dramatically
advanced our understanding of how genetics contributes to host resistance or
susceptibility to bacterial infection. Here we discuss current trends in defining
host–bacterial interactions at the genome-wide level, including screens that har-
ness CRISPR/Cas9 genome editing, natural genetic variation, proteomics, and
transcriptomics. We report on the merits, limitations, and findings of these inno-
vative screens and discuss their complementary nature. Finally, we speculate on
future innovation as we continue to progress through the postgenomic era and
towards deeper mechanistic insight and clinical applications.
(CRISPR/Cas9)-mediated genome
editing and reduced sequencing costs
have made CRISPR screens the domi-
nant loss-of-function and gain-of-
function screening platform.

Advances in sequencing, high-
throughput technologies, and resources
for model organisms and humans have
dramatically improved natural diversity
screens. Such resources include con-
sortia with repositories for electronic
medical records and human cell lines,
and model-organism diversity panels.

Integrating pathogen diversity into host
resistance screens helps to further define
the genetic landscape of host–pathogen
interactions.
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An Expanding Toolbox for a Critical Discipline
The importance of microbiological research is constantly reaffirmed as drug resistance rejuve-
nates dangerous old foes, ancient plagues re-emerge, and novel pathogens arise and drive
world-wide pandemics. Fascination with the microscopic world stretches back to the mid-
1600s when Hooke and van Leeuwenhoek first used microscopy to observe microbes. Later
advances in germ theory by Pasteur, Henle, Koch, and others, solidified the importance of
studying microbes, while the advent of molecular biology reshaped how microbes are studied.
Now, advances in genomics are fueling significant microbiological breakthroughs. Genetic
tools, like the mouse Collaborative Cross, are being applied to microbiology even as microbiology
generates new genetic tools, like clustered regularly interspaced short palindromic repeats and
CRISPR Associated Protein 9 (CRISPR/Cas9). This interplay is redefining the microbial research
toolbox.

In this review we focus on how cutting-edge genetics and genomics screens are being
applied to identify genetic determinants of host resistance to bacterial infection. We discuss
screens that harness CRISPR/Cas9, natural diversity, proteomics, and transcriptomics to
understand host–bacterial interactions. Our goal is to demonstrate the power of these
screening approaches and to encourage continued innovation in host–bacterial interactions
research.

Harnessing CRISPR/Cas9 to Identify Host Resistance Genes
Genetic screens have fundamentally improved our understanding of biology, but, until recently,
these studies were limited in mammalian cell lines. Previous genetic screens in these cells were
restricted to siRNA knockdown systems – which can have off-target effects, variable efficacy,
batch effects, and limited throughput – or haploid cell screens, which are limited to a small num-
ber of cell lines [1]. While these studies were impactful, the sum of their limitations make it techni-
cally challenging and financially infeasible to identify geneswith small effect sizes that contribute to
polygenic and clinically relevant traits.
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By overcoming several of these weaknesses, CRISPR knockout screens have recently become
the dominant method to identify host genes and pathways involved in the host response to bac-
terial infection. CRISPR screens come in two forms, traditional arrayed screens and pooled selec-
tion experiments, and the vast majority of host–pathogen interaction CRISPR screens have used
the latter. Pooled CRISPR selection screens first deliver a pool of single guide RNAs (sgRNAs) into
a population of cells expressing Cas9, then select, based on a cellular phenotype, and finally
compare each guide’s frequency in the selected and unselected samples using sequencing
(Figure 1). By screening multiple guides within a pool and targeting multiple sgRNAs to a single
gene, this pooled approach reduces noise from off-target effects, batch effects, or failed knock-
out compared with siRNA screens or arrayed CRISPR screens. Further, because CRISPR/Cas9
technology is rapidly being adapted to a number of primary and immortalized cell lines across a
variety of species, this screening platform can be used to detect cell type- and cell line-dependent
resistance or susceptibility factors. CRISPR screens can also be performed in vivo, as multiple
studies have knocked out genes in murine immune progenitor cells, returned them to irradiated
mice, and measured the impacts on immune cell development [2,3]. Together, these strengths
make CRISPR/Cas9 screens invaluable for understanding host immunity.

While genetic knockout systems are powerful tools they do have limitations. For instance, genetic
ablation can have unintended consequences on the genetic landscape that mask phenotypes
TrendsTrends inin MicrobiologyMicrobiology

Figure 1. Interrogating the Host: Modern Screens for Identifying Host Resistance Genes. Top. Clustered regularly
interspaced short palindromic repeats (CRISPR)/CRISPR Associated Protein 9 (Cas9) screens enable high-throughpu
screening of genes by transfecting a pool of single-guide RNA (sgRNA) into cells and performing a selection for traits
associated with host–bacterial interactions. In the provided example, different colors represent cells transfected with
different sgRNAs, and the green guide knocked out a gene required for pyroptosis. As such, the guide DNA is enriched
following infection with pyroptosis-inducing bacteria and is identified for additional experimental follow-up work. Bottom
Natural Genetic Diversity Screens enable researchers to identify genetic loci that confer resistance to bacterial infection
After identifying a diverse population and phenotyping individual responses to a bacterial pathogen, phenotypic diversity
can be statistically associated to genotypic diversity. Following identification of genetic loci associated with phenotypic
diversity (quantitative trait locus, QTL), follow-up work examines which polymorphisms and/or genes contribute to hos
resistance. Further, comparison and integration of individual studies into additional screens can provide a more complete
picture of a QTL’s role in host biology. Right. Dual approach screens involve simultaneous screening of host and bacteria
genomes, transcriptomes, and proteomes to understand infection biology. These approaches essentially employ studying
the joint host–bacterial interaction to learn about the pressures that the bacteria overcome in the host and/or the systems
they manipulate to promote virulence. These approaches can be critical hypothesis-generating tools. Abbreviation
CXCL10; C-X-C motif chemokine ligand 10: GWAS, genome-wide association study.
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[4,5]. Early stop codons caused by CRISPR/Cas9 can upregulate associated genes through
compensatory processes paired to nonsense-mediated mRNA decay [6]. Further, CRISPR/
Cas9 screens cannot identify essential genes that moonlight in immunity. Notably, some work
has attempted to circumvent the latter limitation by enabling temporal control of the Cas9
machinery [7]. Despite these drawbacks, screens using and improving on CRISPR/Cas9 have
probed bacterial sensing, phagocytic uptake, bacterial manipulation of the intracellular niche,
and toxin susceptibility.

Several groups have harnessed CRISPR screens to examine how host immune cells respond to
bacterial pathogen-associated molecular patterns (PAMPs). Parnas et al. performed a whole-
genome screen (125 793 sgRNAs targeting 21 786 mouse genes) to untangle the response of
myeloid cells to lipopolysaccharide (LPS) stimulation [8]. The screen identified known factors in
LPS signaling, including TLR4,MYD88, and ZFP36, as well as novel positive and negative regula-
tors of tumor necrosis factor (TNF). Follow-up experiments revealed that oligosaccharyltransferase
(OST) complex regulates Toll-like receptor (TLR)4 signaling. Interestingly, an independent CRISPR
screen in a murine pro-B cell line also identified that the OST complex regulates TLR5, 7, and 9
signaling [9], suggesting that arginine glycosylation is a conserved regulator of TLR signaling.
Notably, these techniques rediscovered genes with established involvement in sensing, raising
confidence in the results of these screens.

Once a PAMP is sensed, the immune response must be regulated to avoid excessive inflamma-
tion and/or sepsis. Several groups sought to understand this regulation using CRISPR screening,
including one that identified the complement peptidase Cpb1 as a positive regulator of Caspase-
11-mediated pyroptosis in response to LPS, Salmonella, and Shigella in murine macrophages
[10]. Their experimental validation revealed that CPB1 enables the C3/C3aR signaling pathway
to amplify TLR4 and interferon-α/β receptor (IFNAR) signaling cascades, enhancing Caspase-
11 activity and sepsis severity in mice and humans. An additional series of CRISPR screens re-
vealed that autophagy genes modulate TNF signaling to counteract interferon-gamma- (IFN-γ)-
mediated cell death and sepsis in murine models [11]. These studies demonstrate the power of
CRISPR screens to identify genes involved in harmful immune responses in vitro, which could
also serve in vivo as biomarkers or druggable targets for sepsis.

Beyond sensing and signaling, many groups have used CRISPR/Cas9 screens to examine how
host genes facilitate intracellular bacterial lifestyles, particularly in phagocytic host cells. One re-
cent screen identified host genes required for Salmonella enterica uptake into PMA-differentiated
human THP-1 macrophages [12]. This study complemented a phagocytosis screen that used
magnetic sorting to identify genes required for uptake of beads or other substrates [red blood
cells (RBCs), myelin, zymosan] conjugated with ferrous nanoparticles by differentiated human
U937 macrophages [13]. Both screens identified NHLRC2 as a driver of phagocytosis, with
Yeung et al. [12] demonstrating that the protein likely plays a role in both macrophage phagocy-
tosis and differentiation. Finally, a third screen examined the later stages of phagosome develop-
ment and found that the bicarbonate transporter SLC4A7 is required by phagocytes to acidify
their vacuoles and kill bacterial pathogens [14]. Together, these screens uncovered dozens of
genes involved in phagocytosis; however, they also highlight an old screening maxim, 'You get
what you screen for'. Each group performed a screen for phagocytosis, but what they identified
varied based on cell type, phagocytic substrate, timing, and other experimental parameters.
Thus, considering these factors is critical when designing screens and interpreting results.

While the studies above focused on host genes required to resist bacterial infection, several
screens also identified host proteins that are hijacked by bacteria to aid in pathogenesis. For
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instance, a herculean series of screens identified hundreds of host factors required for Legionella
pneumophila to enter phagocytic cells, replicate, and eventually kill the host cell [15]. This study
provides a comprehensive view of how previously identified host factors and newly identified
genes work together to facilitate pathogenesis. Additional work has focused on host factors
that enable bacteria-mediated cytotoxicity. For instance, one CRISPR screen that focused on
Vibrio parahaemolyticus-induced cell death found that host cell surface sulfation allows the bac-
teria to adhere and kill cells using its type III secretion system 1, while host cell surface fucosylation
enables the type III secretion system 2 translocon to enter the host membrane and facilitate cy-
totoxicity [16]. Similar work with enterohemorrhagic Escherichia coli demonstrated that host
sphingolipid biosynthesis is critical for both type III secretion- and Shiga toxin-mediated cell
death [17]. Finally, a CRISPR screen by Tao et al. identified certain family members of the Wnt re-
ceptor Frizzled (FZD1/2/7) as the predominant colonic receptors for the Clostridium difficile toxin
TcdB [18]. These studies highlight CRISPR screen identification of disease-risk loci, which are po-
tential targets for host-directed therapeutics to reduce bacteria-induced pathology.

Altogether, this work demonstrates the impact that CRISPR screens have already had on under-
standing host resistance to bacterial infection. However, this likely represents the tip of the ice-
berg of what can be learned by harnessing this approach. Researchers across disciplines are
constantly working to advance the technology and expand the number of questions that can
be asked (Box 1). As these techniques develop, so will our understanding of host–bacterial
interactions.

As mentioned above, significant advances have been made performing CRISPR screens in vivo
[2,3]; however, loss-of-function screens in whole model organisms are still predominantly
Box 1. Moving beyond Single-Gene Knockouts in CRISPR Screens

The many advantages of CRISPR screens have inspired researchers to expand the technology to address additional
questions. Two major advances in CRISPR screens have included using Cas9 constructs designed to modulate gene ex-
pression rather than ablate it and knocking out multiple genes to understand genetic networks. While these approaches
have had limited use in host–bacterial screening, they are worth discussing as they will likely becomemore prevalent in the
immediate future.

Through engineering of Cas9 machinery, researchers have developed systems to increase (CRISPRa) or decrease
(CRISPRi) host gene expression without directly disrupting the gene [83]. In particular, CRISPRa technology represents
a major innovation as it is one of few techniques that can be used for gain-of-function screening. Further, unlike traditional
cDNA overexpression systems, CRISPRa modulates expression at the native locus and thus keeps cis-regulatory effects
intact. While no bacterial host resistance screens have been performed using CRISPRa, a recent publication used it to
identify norovirus resistance genes [84]. Interestingly, while one weakness of CRISPRa and CRISPRi is that different
sgRNAs can yield different intensities of overexpression or knockdown, some groups have actually engineered sgRNAs
that intentionally differ in efficiencies in order to study the impacts of titrated gene dosage on phenotypes [85].

In addition to advances in modulating expression, some studies seek to examine how perturbing multiple genes in a single
cell impacts host phenotypes (Figure I). Approaches using standard CRISPR/Cas9, CRISPRa, and CRISPRi technologies
have all attempted to cotransfect sgRNAs into cells, determine which sgRNAs were expressed, and measure the impacts
of those coexpressed sgRNAs on the host. There are several different approaches to examine combinatorial effects, pri-
marily differing in how to determine which sgRNAs were transfected into a cell. One technique, called CRISP-Seq, pairs
CRISPR screening, fluorescent sorting, and single-cell RNA sequencing [2]. By placing genes for fluorescent markers
and unique guide indexes on the sgRNA plasmids, the authors were able to use cell sorting and single-cell sequencing
to connect the sgRNA(s) expressed in each cell to the resulting changes in the transcriptome. While CRISP-Seq has great
promise, the number of sgRNA combinations tested is limited by single-cell RNA sequencing throughput as well as the
number of available fluorescent markers. Further, techniques that depend on guide indexes are subject to spontaneous
recombination during lentiviral preparation than can decouple the unique guide indexes and sgRNA [86]. An alternative ap-
proach, called direct-capture perturb-seq, leverages single-cell RNA sequencing paired to amodified library preparation to
directly identify expressed sgRNAs during sequencing [87]. By directly sequencing guides, this method lacks some of the
limitations associated with CRISP-Seq, though it is still bound by single-cell RNA sequencing throughput.
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Figure I. Approaches for Multigene Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)
Knockout Screens. Two approaches to assay the impacts of multigene deletions include CRISP-seq [2] and Direct-
capture perturb-seq [87]. In CRISP-seq (top), single-guide RNA (sgRNA) plasmids include a unique fluorescent marker
and unique guide index (UGI). This allows two unique ways of determining which sgRNA(s) were transfected into each
cell assayed by single-cell RNA-seq. First, during the library generation, flow cytometry can be used in order to
determine which fluorescent markers are expressed in the cell. Second, the UGI can be detected directly during RNA
sequencing and mapped back to the sgRNA plasmid. Together, these features enable indirect identification of the
sgRNA expressed in the cell as well as the resulting transcriptome changes in each. By contrast, direct-capture
perturb-seq (bottom) simply uses a modified single-cell RNA-seq library preparation that enables sgRNA to directly
sequence each expressed sgRNA alongside the transcriptome. Abbreviation: FACS, fluorescence-activated cell sorting.
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performed using random mutagenesis [e.g., N-ethyl-N-nitrosourea (ENU) mutagenesis]. These
tried-and-true techniques have been thoroughly reviewed elsewhere [19,20], but we want to
draw special attention to the role these systems have played in understanding host–bacterial in-
teractions in zebrafish. This is perhaps best illustrated by a pair of landmark papers by Tobin et al.
who used an ENU mutagenesis screen to identify a critical role for lta4h in modulating zebrafish
susceptibility toMycobacteriummarinum infection [21]. Interestingly, they found that lta4h activity
must be carefully balanced as excessive activity results in accumulation of the proinflammatory
LTB4 eicosanoid, while reduced activity leads to accumulation of the anti-inflammatory lipoxin A4

[22]. Tobin et al. confirmed this optimal immune balance in humans as human SNPs associated
with LTA4H gene expression confer heterozygous advantage [21], and the LTA4H genotype ap-
pears to serve as a predictive biomarker for the efficacy of the anti-inflammatory drug dexametha-
sone [22]. This marriage of zebrafish and human genetics, leading to clinical translation,
demonstrates the power of random mutagenesis screens. However, the future of loss-of-function
screening in zebrafish is unclear as impressive work has been done to develop zebrafish CRISPR
screens [23–26], though these techniques have not yet been applied to host–pathogen biology.

Leveraging Natural Genetic Diversity to Identify Host Resistance Genes
An additional limitation of genetic knockout systems is that they cannot reveal which genes con-
tribute to ‘natural’ interindividual differences. This is because the majority of interindividual differ-
ences are not large genetic ablations but rather SNPs [27]. Therefore, complimentary techniques
that harness natural diversity are necessary to identify naturally occurring host resistance and
susceptibility genes (Figure 1).
Trends in Microbiology, Month 2020, Vol. xx, No. xx 5
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The technical and statistical frameworks that leverage natural variation to identify host resistance
genes differ but are broadly categorized into linkage analysis and association analysis [28]. For
many years, linkage analysis has been the predominant method for studying Mendelian traits,
where highly penetrant variants of large effects are mapped using genotyped family pedigrees.
This kind of analysis is still very powerful, especially in finding rare variant 'inborn errors of immunity'
[29], such as mutations in interleukin (IL)-12 and IFN-γ signaling that predispose to mycobacterial
and Salmonella infection [30]. However, for identifying more common resistance alleles for poly-
genic traits, genome-wide associations studies (GWAS) are the predominant discovery method.
In GWAS, members of a genetically diverse population are assessed for a phenotype (e.g., infec-
tion status, disease severity, cytokine response during infection, leukocyte counts, etc.). Then,
markers across the genome are tested for association with the trait, asking how well each marker
explains the observed phenotypic variation when accounting for genetic relatedness and other co-
variates (usually through principal components analysis) [31]. These studies depend on linkage dis-
equilibriummaps [32,33] which are used to select tag SNPs (to reduce the number of markers that
need to be genotyped) and to understand individual association signals using the patterns of genetic
inheritance along chromosomes. These techniques have identified loci associated with genetic resis-
tance, susceptibility, and quantitative host–bacterial interactions [quantitative trait loci (QTL)]. We dis-
cuss three applications of natural variation in host–bacterial studies: (i) leveraging natural variation in
model organisms through association mapping, (ii) leveraging natural genetic variation in humans
using GWAS, and (iii) examining natural genetic variation in vitro using cellular GWAS.

Identifying Host Bacterial Resistance Genes by Using Natural Diversity in Mouse
Models
Many studies have paired the strengths of invertebrate (Box 2) and vertebrate models of infec-
tions with the natural diversity present within these species to study host–pathogen interactions.
Box 2. Natural Diversity Screens Using Animal Models

Caenorhabditis elegans and Drosophila melanogaster have frequently been used in natural diversity screens aimed at un-
derstanding host–pathogen interactions, as researchers have collected, laboratory-adapted, phenotyped, and se-
quenced wild isolates of these species. A classic example used natural diversity to identify that a single amino acid
substitution in the C. elegans neuropeptide Y receptor homolog (NPR-1) drives a differential response to bacterial prey
in wild isolates [88]. More recent work has sought to understand how themicrobivorous worms ‘avoid’ pathogen exposure
in the wild. One group leveraged a diversity panel to identify two separate single amino acid substitutions in a neuronal
ubiquitin E3 ligase (HECW-1) that affect Pseudomonas aeruginosa avoidance [89]. Later work has also leveraged diversity
to identify QTLs for P. aeruginosa [90] and Serratia marcescens [91] avoidance, though no causal genes were identified.

Early work harnessingDrosophila diversity to study bacterial susceptibility performed candidate diversity screens targeting
immune genes on the second [92,93] and X [94] D. melanogaster chromosomes. Following these studies, a novel re-
source containing hundreds of genotyped strains was devised for genome-wide D. melanogaster association mapping:
the Drosophila melanogasterGenetic Reference Panel (DGRP) [95]. One study using the panel found that genetic variation
in the kri, S6k, mad2 locus, and the BomBc1 antimicrobial peptide locus associated with resistance to Enterococcus
faecalis [96]. Another expanded our understanding of fly gut immune defense by pairing the DGRP with Pseudomonas
entomophila [97]. Researchers found that animals that showed higher survival cleared the infection faster, launched a
more controlled reactive oxygen species response, maintained protein synthesis, and preserved gut stem cell activity.
Additionally, 27 survival QTLs were mapped, including several SNPs in the Nrk and Gyc76C genes, which the authors
confirmed play key roles in immunity.

By using the standardized DGRP, it becomes easier to compare results across studies. For instance, one impressive
screen infected the DGRP with Metarhizium anisopliae or P. aeruginosa and identified a number of sex-dependent QTLs
associated with survival, including in the kri, S6k, mad2 locus that associated with the E. faecalis survival above [98]. Fur-
ther, by mining DGRP studies, they found that geotaxis, oxidative stress, blood glucose, starvation, and sleep patterns all
correlate with postinfection survival.

Curiously, despite significant amounts of genetic diversity in laboratory zebrafish strains [99], we are unaware of any work
that has leveraged this diversity to study infectious disease. This may represent an exciting future direction for the field.
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Here we focus on host genetic screens of bacterial systems that use the Collaborative
Cross (CC) mouse model, which consists of ~100 recombinant inbred lines derived from
eight diverse founder strains (C57BL6/J, 129S1/SvlmJ, A/J, NOD/ShILtJ, NZO/HiLtJ, CAST/
EiJ, PWK/PhJ, and WSB/EiJ) [34]. These diverse yet inbred strains allow nearly genetically
identical replicates and mechanistic follow-up. While QTLs revealed by the CC lines are quite
large (the average recombination distance is ~10 Mb), individual CC strains that are outliers
for a trait of interest can be crossed to produce F1 and F2 progeny for more sensitive QTL map-
ping. This section will complement recent reviews on the impact of CC mice on host–pathogen
biology [35,36] as we unpack a number of recent host–bacterial papers with exciting
implications.

Several studies have identified natural variation in responses and susceptibilities of CC mice to
Klebsiella pneumoniae [37], S. enterica serovar Typhimurium (S. Typhimurium) [38], Pseudomo-
nas aeruginosa [39], and the periodontitis-associated bacteria Porphyromonas gingivalis and
Fusobacterium nucleatum [40]. Even with relatively small cohorts (35–48 CC lines), the S.
Typhimurium and K. pneumoniae studies identified putative QTLs underlying susceptibility
[37,38]. Additional work by one of the authors of this review demonstrated that the CC mice en-
compass a broad phenotypic spectrum after Mycobacterium tuberculosis infection and further
showed that host genetic background modified the BCG (bacillus Calmette–Guérin) vaccine’s
protective efficacy against tuberculosis [41]. Intrinsic host resistance to M. tuberculosis and the
response to the BCG vaccine were not correlated, demonstrating the genetic complexity of
M. tuberculosis protection.

As noted above, an advantage of the CC is the ability to follow-up phenotypes with mechanistic
experiments. For instance, in the original M. tuberculosis study [41], the mouse line CC042 had
unusual susceptibility to infection. Further work, using F2 progeny to map the QTL, revealed
that CC042 mice have a 15-base deletion in the Itgal gene that resulted in impaired lymphocyte
trafficking and M. tuberculosis susceptibility [42]. Interestingly, work by a separate group on
CC042 identified that the same deletion drives susceptibility to S. Typhimurium [43], highlighting
a conserved role for the protein in pathogenesis. Unexpectedly, the CC042 Itgal deletion is ab-
sent in the original CC parental strains and instead arose de novo during inbreeding. The high fre-
quency of these de novo mutations during the inbreeding process may have ramifications on
reproducibility across CC generations [44]. Importantly, these studies demonstrate that experi-
mental follow-up can surmount the large QTLs obtained from CC studies and reveal very specific
genetic mechanisms for differences in susceptibility.

There have been two notable attempts to connect CC bacterial pathogenesis studies to human
GWAS cohorts. The first studied periodontal models, using P. gingivalis and F. nucleatum infec-
tion [45]. Unfortunately, even with F2 progeny, the identified QTLs were massive – the two signif-
icant QTLs contained 80 genes, while the eight suggestive QTLs contained 1309 genes. Thus,
while the authors note some overlap of their QTLs to loci identified in aggressive periodontitis
and chronic periodontitis human GWAS cohorts, the implications are unclear. Additionally,
work from Lorè et al. examined P. aeruginosa susceptibility using the CC system and identified
a QTL containing 31-protein-coding genes [46]. By examining the associations between their
QTL and SNPs in the human syntenic region from a cystic fibrosis GWAS, the authors identified
two SNPs in DPYD, rs10875080 and rs11582736, which associated with a modest delay in the
age of first P. aeruginosa infection in the human cohort. Follow-up work has yet to connect Dpyd
to resistance in the CC lines. Together, these data demonstrate both the promise of the CCmice
to identify possible human resistance genes and the challenge of going from QTL intervals to
causal variants.
Trends in Microbiology, Month 2020, Vol. xx, No. xx 7
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The CC mapping power problem has been highlighted throughout this section and is due in part
to the number of strains available. Recent power analyses in the CC indicate that, for studies of
polygenic traits explained by many loci of small effect, more CC strains are required than may
be currently available [47]. In lieu of more CC strains, another approach may be to leverage
more refined phenotypes ('endophenotypes') that explain a larger proportion of the variance.
While the broader genetics field has taken an expression (e)QTL approach, the infectious disease
field has the opportunity to move away from polygenic traits, such as survival or burden, and in-
stead leverage bacterial expression as a novel refined intermediate phenotype that is likely to be
caused by very specific host variants. The advent of diverse but reproducible model populations,
such as the CC, in combination with next-generation bacterial technologies, make these dual
host–pathogen mapping approaches possible.

Identifying Host Resistance Genes Using Natural Human Diversity
GWAS of human infectious diseases present several unique challenges. First, even with covari-
ates (i.e., age, sex, comorbidities, and unknown factors with principal components analysis), a
successful GWAS requires large population sizes, generally in the thousands. Second, obtaining
exposed controls is challenging, so many infectious disease GWAS simply use population con-
trols (e.g., blood donor banks [48–50]). This approach has a significantly lower logistical and fi-
nancial cost compared with obtaining carefully matched controls who were exposed to the
pathogen and resisted infection without a protective memory response, but it results in signifi-
cantly lower power. Third, integrating individual GWAS into the broader scientific literature is dif-
ficult as differences in populations, sample sizes, disease definition, and study design can
severely impair reproducibility across cohorts. Despite these challenges, GWAS can reshape
medicine by informing drug design and providing possible clinical biomarkers. For example, an
early GWAS of hepatitis C virus (HCV) infection [51] led to the development of a genetic biomarker
that helped direct recombinant IFN treatment [52].

Researchers have boosted sample size by assembling massive databases of genotyped individ-
uals with clinical information from electronicmedical records (e.g.,UK biobank [53], eMERGE net-
work [54]) and self-reporting (23andMe [55]), and performing simultaneous GWAS across many
phenotypes. For example, a study by 23andMe recruited a cohort of >200 000 European-de-
scent participants to fill out a survey about their experiences with common infectious diseases
[56]. The group identified 59 genome-wide significant SNPs associated with 17 different infec-
tious diseases. They also identified pleiotropic SNPs that affect multiple diseases. For example,
rs1978060, in TBX1, is associated with tonsillectomies, childhood ear infections, and
myringotomy, which implicates the gene broadly in bacterial susceptibility. Further, they found
that SNPs in HLA class I genes tended to correlate with viral disease susceptibility, while bacterial
diseases were more likely to have significant SNPs in HLA class II genes, in line with each
protein’s canonical role in immunity. Notably, they also found associations in autoimmunity-
associated genes, highlighting potential tradeoffs between infection protective alleles and inflam-
mation homeostasis alleles.

Even without massive databases, dozens of bacterial susceptibility GWAS papers have been
published over the last decade (Table 1). The specific loci identified for each disease have been
reviewed elsewhere [57,58], so we will focus on how GWAS results are validated and used to en-
hance our understanding of host–pathogen biology and/or genomics.

Validation
One of themost critical questions following GWAS is whether the identified SNPs are true hits or a
consequence of sampling bias. The gold standard for validating SNPs is to replicate the
8 Trends in Microbiology, Month 2020, Vol. xx, No. xx



Table 1. Human Genome-wide Association Studies for Bacterial Infection

Pathogen(s) and/or Disease(s) Refs

Mycobacterium tuberculosis and/or tuberculosis [48–50,60,106–113]

Mycobacterium leprae/leprosy [114–118]

Staphylococcus aureus, S. aureus bacteremia, and/or S. aureus infective endocarditis [119–123]

Streptococcus pneumoniae, Neisseria meningitidis, pneumococcal or meningococcal
bacteremia/sepsis/meningitis, and/or pneumonia- associated sepsis

[102,124–127]

General bacteremia and/or non-typhoidal Salmonella (NTS) bacteremia [77,128]

Oral bacterial pathogen burden (in periodontal disease patients) [129–131]

Enteric fever/typhoid fever [132]

Helicobacter pylori [133]

Pseudomonas aeruginosa (in cystic fibrosis patients) [134]

Common infectious disease (23 pathologies tested) [56]
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association in additional, unrelated cohorts. Unlike the original GWAS, which requires genome-wide
significance (traditionally P < 5 × 10–8) to overcome the large number of multiple comparisons,
targeted replication of the association can have weaker statistical significance as the correction bur-
den is lower. Examples of successful replication are discussed throughout this section.

Importantly, failure to replicate GWAS can occur for a number of reasons. For example, the
23andMe study replicated known associations with shingles and tonsillectomy but failed to rep-
licate several other reported genome-wide associations [56]. This may be due to differences in
populations or criteria for patient inclusion, as well as false positives. Population differences are
particularly difficult to overcome as differences in allele frequencies and in linkage disequilibrium
among populations can result in insufficient power for SNPs that are rare in the replication popu-
lation or evenmake replication impossible if the SNP is not present. Further, complex gene × gene
and gene × environment interactions may prevent certain alleles from having an impact in certain
populations. Alternatively, differences in disease definition across studies can have dramatic im-
pacts on patient inclusion, leading to profound differences in the actual phenotype being mea-
sured. Determining whether a replication failure is due to the heterogeneity of infectious disease
studies or false positives can be difficult and is most adequately addressed by carefully consider-
ing the differences between the specific cohorts in question.

Finally, the 'winner’s curse', in which the observed effect sizes of GWAS hits are often larger than
their true biological effects, can substantially contribute to lack of replication. Analysis of the results
of 100 quantitative trait GWAS papers that attempted replication by Palmer and Pe’er [59] revealed
that 31% replicated at Bonferroni-corrected P-value thresholds, compared with 75% predicted by
the effect sizes in the discovery cohorts. Winner’s curse accounted for most of this difference,
resulting in a predicted replication rate of 37%. When analysis was restricted to only the 39 papers
that attempted replication within the same continental ancestry, and reported numbers of the rep-
lication cohort for each locus being tested, the replication rate increased to 43%, consistent with
the predicted replication rate considering winner’s curse (45%). Thus, as with all science, interpre-
tation of GWAS findings is a continual process, and as replication, functional, and clinical follow-up
studies are conducted, the most robust findings will stand the test of time.

Biological Insight
Understanding the mechanistic underpinnings of GWAS findings can take different forms. Some
researchers focus on how implicated gene(s) affect infection. Such experiments involve knocking
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down or knocking out the gene and assessing how cells or mice change their response to the
pathogen. Other studies focus on uncovering (i) which genetic variant out of the many in linkage
disequilibrium causes a locus to associate with pathogen resistance, and (ii) how that variant reg-
ulates the associated gene(s) to induce resistance (e.g., coding mutation, enhancer mutation,
splicing variant, etc.).

We discuss Curtis et al. as an example of how GWAS can generate insight into infection biology.
In their work, they identified ASAP1 as a novel human resistance factor against M. tuberculosis
[50]. After identifying several SNPs in ASAP1 as putative hits in their original GWAS (~11 000
Russian individuals), the group validated these SNPs in an additional Russian dataset and in a
previously published cohort from Ghana and The Gambia. To connect the variation to ASAP1
function, the group examined how host genotype andMycobacterium infection affect expression
in immune cells. They found that the rs4733781 risk allele associates with reduced baseline and
postinfection expression of ASAP1 in dendritic cells. Finally, they demonstrated that knockdown
of ASAP1 in patient-derived dendritic cells reduced dendritic cell matrix digestion and motility.
These data suggest that ASAP1 helps to activate the adaptive immune system, as suppression
hinders migration of dendritic cells to lymphatic tissues.

By contrast, work by Zheng et al. exemplifies how GWAS can provide insights into genetic regu-
lation as well as host–pathogen interactions [60]. In their work, they performed an initial GWAS
(~2100 Han Chinese individuals), followed by two smaller replication studies to identify two
SNPs associated with tuberculosis. Following up on rs6114027, located in an TGM6 intron,
they revealed that the risk allele associates with reduced TGM6 expression in patient immune
cells. Based on luciferase assays, they demonstrated that the intronic risk allele suppressed ex-
pression relative to the protective allele. Further work with patients and mouse models confirmed
the importance of TGM6 in M. tuberculosis resistance. Together, these data both identified an
allele-specific and causal role for the rs6114027-containing intron in regulating TGM6 expression,
as well as demonstrated the importance of the gene during M. tuberculosis infection.

Identifying Host Resistance Genes Using Cellular GWAS
While the previous section demonstrates the wealth of knowledge obtained through traditional
GWAS, challenges of heterogeneity still hinder these studies. Further, there are inherent limita-
tions to what phenotypes can be measured in humans, making it difficult to understand how
the SNPs contribute to specific molecular and cellular changes that impact pathophysiology.
Several groups have utilized complementary cellular GWAS methods to identify SNPs that
alter host cell–pathogen interactions following stimulation or infection of primary immune cells
[61–66], differentiated induced pluripotent stem cells (iPSCs) [67], or lymphoblastoid cell lines
(human B cells immortalized ex vivo through Epstein–Barr virus infection) [68–71]. Shared advan-
tages of these systems are (i) consistent dose and timing across cell lines, (ii) controlled bacterial
genetics and/or PAMP sources, (iii) same donors across technical and biological replicates, and
(iv) a greater number of testable phenotypes. Collectively, these systems have identified a
plethora of novel SNPs and genes that contribute to host resistance to infection.

One form of cellular GWAS attempts to uncover the genetic factors that contribute to variable
transcriptional responses to pathogenic stimuli. Similar to studies that identify QTL associated
with gene expression (eQTL), these studies seek to understand response eQTL (reQTL), or
eQTL that emerge in response to stimulation. For instance, work on patient-derived monocytes
stimulated with IFN-γ or LPS [61], or patient-derived dendritic cells stimulated with LPS, influenza
virus, or IFN-β [62], revealed a number of reQTLs. Similar work found reQTLs and response chro-
matin accessibility QTLs (response cQTLs) in iPSC-derived macrophages following stimulation
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with IFN-γ and/or S. Typhimurium [67]. Interestingly, these studies found overlap between their
reQTLs and SNPs identified in bacterial, inflammatory, and/or autoimmune disease GWAS.
More recent work has identified QTL associated with miRNA regulation during monocyte stimu-
lation [72]. These studies demonstrate that understanding response QTLs provides mechanistic
information that complements traditional GWAS.

Other work has examined how variation affects the host immune response. Specifically, the
Human Functional Genomics Project has identified genetic variation that affects pathogen sens-
ing and cytokine production by immune cells ex vivo. Li et al. exposed peripheral blood mononu-
clear cells from over 100 European donors to LPS, heat-killed M. tuberculosis, or heat-killed
Candida albicans [64]. Following stimulation, the authors measured six cytokines and identified
six novel QTLs, including two QTLs involved in M. tuberculosis-induced IL-8 and one QTL in-
volved in LPS-induced IL-10. They found high levels of pleiotropy, with all genome-wide hits
also associating with additional pathogen-induced cytokine responses. Following integration of
their data in the National Human Genome Research Institute (NHGRI) GWAS catalog, their
SNPs also associated with infectious disease susceptibility, autoimmunity, and curiously, heart
disease. Later work by the same group expanded the concept to measure cytokines from mac-
rophages, peripheral blood mononuclear cells, and whole blood from over 400 individuals in re-
sponse to 18 different killed pathogens, TLR-ligands, or metabolic stimuli [65]. The group found
18 genome-wide associated SNPs in 17 independent loci with a high degree of replication using
their previous study [64] as a replication cohort. One of the top hits from this study was located in
the TLR1, TLR6, and TLR10 locus, and affected IL-6 production following peripheral blood
mononuclear cell (PBMC) stimulation with polyinosinic:polycytidylic acid (poly I:C). This locus is
under positive selection, suggesting its importance in host resistance. Interestingly, an earlier
study also found a number of SNPs that correlate with IL-6 production at this locus following stim-
ulation of whole blood with Pam3CSK4 [66]. This convergence highlights the importance of TLR
1/6/10 signaling in cytokine production and demonstrates the ability of even highly divergent cel-
lular GWAS to identify common loci.

One of our laboratories carries out cellular GWAS screening with a system called Hi-HOST (High-
throughput Human in vitrO Susceptibility Testing) using live pathogens. The original Hi-HOST
screen was performed using 352 lymphoblastoid cell lines (from donors of western European
or Nigerian descent) infected with S. Typhimurium or Salmonella Typhi [68]. We screened for
QTLs involved in host cell invasion, pyroptosis, bacterial replication, and intracellular bacterial sur-
vival. We found that rs514182, an eQTL for themethionine salvage enzymeAPIP, associated with
pyroptosis during S. Typhimurium invasion [69]. Follow-up work revealed that APIP negatively
regulates pyroptosis by reducing the abundance of the methionine-derived metabolite
methylthioadenosine. The same locus is associated with systemic inflammatory response syn-
drome, as well as nontyphoidal Salmonella (NTS) bacteremia and sepsis [73]. Finally, metabolites
in the salvage pathway regulated by APIP, in particular methylthioadenosine and S-adenosyl ho-
mocysteine, are reliable sepsis biomarkers [73] that also directly regulate S. Typhimurium viru-
lence [74,75]. Another hit from the Hi-HOST screen was rs8060947, an eQTL for VAC14,
which correlated with S. Typhi invasion [70]. VAC14 reduces cholesterol levels in the plasma
membrane, leading to reduced S. Typhi docking and invasion. This SNP also associated with ty-
phoid fever susceptibility, malarial risk [76], and modestly with NTS, S. pneumoniae, E. coli, and
Acinetobacter bacteremia [77].

Hi-HOST recently evolved into the Hi-HOST Phenome Project (H2P2), which screened an addi-
tional 528 lymphoblastoid cell lines from four populations, with eight different stimuli (seven live
bacterial and fungal pathogens and one bacterial toxin), for 79 phenotypes [71]. Several of the
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17 genome-wide significant hits demonstrated pleiotropy, including rs953897, located in the
transcriptional repressor ZBTB20. rs953897 associated with Chlamydia trachomatis burden
and 20 additional H2P2 phenotypes at P < 0.05. ZBTB20 knockdown validated three of the
strongest associations: C. trachomatis burden and induced IL-6 production, and S.
Typhimurium-induced pyroptosis. Further, integration of the H2P2 data into the eMERGE
PheWAS and other clinical datasets revealed that a number of the top H2P2 SNPs associate
with human disease, including the ZBTB20 SNP (rs953897) with HCV susceptibility, and an
SNP in CXCL10 (rs2869462) with inflammatory bowel disease. Future work is exploring the biol-
ogy behind the H2P2-identified SNPs and further adapting the Hi-HOST screening platform.

While this review has focused on methods that interrogate the host to identify genes that contrib-
ute to resistance, there is a major caveat in studying host–pathogen interactions in this way: these
approaches generally require treating pathogens as static, homogeneous stimuli, rather than dy-
namic and diverse components of the host–pathogen interaction. There is substantial value in in-
corporating pathogen biology into approaches to identify host resistance genes, including
through bacterial diversity-informed GWAS, as described in Box 3.

Interrogating the Host–Pathogen Interface through Dual RNA-seq
In this last section we discuss techniques that use the bacteria as a biological sensor to under-
stand the pressures inflicted by the host (Figure 1). This can takemany forms, including examining
the bacterial–host protein interactome or tracking bacterial transcriptional and genomic adapta-
tion to the host (Box 4), or by simultaneously measuring how the bacteria and host respond to
one another during infection. We discuss the latter by examining the impact of dual RNA se-
quencing (Dual RNA-seq) on understanding host–pathogen interactions. Notably, while this
method does not directly implicate host genes as being important for resistance, these screens
do identify host processes that appear to place significant selective pressures on the bacteria
and therefore represent an important hypothesis-generating tool.

Improvements in RNA-sequencing technology has enabled capturing and sequencing of host
and pathogen RNA during in vitro and in vivo infection. This technology, called dual RNA-seq
or dual-seq, directly examines correlations between host and bacterial transcripts, providing pre-
liminary evidence of how the two entities respond to each other. Dual-seq has been reviewed
elsewhere [78], so here we briefly discuss how the technology can identify host processes that
restrict bacterial virulence. In contrast to traditional dual-seq studies that measure the host and
pathogen transcriptional profiles during infection, measuring restriction requires comparing the
transcriptional profiles of resistant and susceptible hosts. Work by Thänert et al. used dual-seq
to understand differential Staphylococcus aureus susceptibility in C57BL/6 and A/J mice [79]. In-
fected tissues from susceptible A/J mice showed evidence of elevated inflammation and hypoxia,
correlating with bacterial upregulation of genes involved in anaerobic metabolism and acid resis-
tance. This likely drives the sepsis-related mortality in these mice. By contrast, S. aureus in resis-
tant C57BL/6 mice increased expression of de novo amino acid synthesis pathways,
antimicrobial peptide resistance genes, and stress response genes, implying that nutritional
and innate immunity restrict bacterial virulence.

Beyond interanimal variation, other work has probed heterogeneity across cells within a single
animal. One study examined M. tuberculosis permissibility in alveolar (permissive) and interstitial
(restrictive) lung macrophages and revealed a link between host metabolism and bacterial fitness
[80]. The transcriptional differences followed traditional M1/M2 polarization schema, with permis-
sive alveolar macrophages displaying high fatty acid metabolism and M2-like gene expression,
which triggers fatty acid metabolism, growth, and iron storage in the invading M. tuberculosis.
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Box 3. Using Bacterial Diversity Informed GWAS to Identify Host Resistance Genes

In our discussion of animal models of natural diversity, single genetically identical strains of pathogen were used to identify
loci associated with pathogen outcome. However, in human cohorts, participants can have dramatically different bacterial
strains, serovars, or even species pooled into the same experimental group. This can make it difficult to identify associated
loci as pathogen diversity can confound the host response. An alternative approach to traditional GWAS incorporates
pathogen diversity by genotyping both host and pathogen DNA from participants to stratify results by bacterial lineage
(Figure I). This approach has been applied to M. tuberculosis, where one study ran GWAS on their entire patient cohort,
as well as separate GWAS on patients infected with the Beijing lineage or those infected with a non-Beijing lineage [49].
While no significant associations were noted in the pooled GWAS, the researchers were able to find a statistically signifi-
cant association with susceptibility to the non-Beijing lineages (rs1418425, intergenic between CD53 and LRIF1, odds ra-
tio 1.62). This association was found in their primary and replication cohorts; however, it is interesting to note that the
association was only significant among older individuals.

Beyond this approach of stratifying GWAS by bacterial taxonomy, a second approach involves using hypothesis-free
genome-to-genome analyses to identify interactions between host and pathogen genetics by measuring associations be-
tween human and pathogen SNPs (Figure I). This information can then be used to stratify GWAS results using interacting
genes. The genome-to-genome approach has proved fruitful for viral humanGWASwith HIV [100] and HCV [101]. In these
viral studies multiple associations were found between HLA genes and viral proteins, as well as an association between
rs12979860 (an intronic SNP in IFNL4) and the HCV protein NS5A. However, the increased multiple comparison burden
from the larger size of bacterial genomes has thus far made this approach recalcitrant for bacterial humanGWAS, though it
has been attempted in a small pneumococcal disease cohort [102]. Future work with large bacterial GWAS cohorts should
consider sequencing host and bacterial DNA, as identifying host–bacterial interacting genes could provide important in-
sight into both host resistance alleles and host–pathogen interactions.

TrendsTrends inin MicrobiologyMicrobiology

Figure I. Pathogen-Informed Genome-wide Associations Studies (GWAS). Infections occur in the context of
both host and pathogen diversity. Simultaneous sequencing of host and pathogen DNA enables pathogen diversity to
be captured during GWAS studies. This can take two forms. First, GWAS can be stratified by bacterial strain, so that
the heterogeneity of the infected state is significantly reduced and biological differences between individuals are more
likely driven by host genetic diversity. Second, hypothesis-free genome-to-genome analysis looks for statistical
associations between the bacterial and host genomic diversity. These statistical associations may mark sites of host–
pathogen evolutionary conflict and implicate host genes in the host–bacterial interaction.

Trends in Microbiology
By contrast, the restrictive interstitial macrophages are more M1-like, sequester iron, reduce po-
tassium and chloride transport, and drive expression of stress-response, iron-salvaging, and dor-
mancy genes in their associated bacteria. Similar results were found in a dual-seq study
examining S. Typhimurium growth dynamics, as they found that Salmonella uses the effector
SarA to drive macrophages into a permissive M2-like state and enable rapid intracellular bacterial
growth [81]. This suggests that clinical manipulation of host metabolism or macrophage polariza-
tion could impact bacterial virulence and disease progression.
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Outstanding Questions
Do CRISPR screen results replicate
under different conditions? What are
the implications of the concordance
or discordance?

Do results from Collaborative Cross
mice translate to human cohorts, and
how can such results be efficiently
integrated?

How do loci from Collaborative Cross
or human GWAS studies influence
host–pathogen interaction outcomes
on the molecular and cellular levels?

How can targeted genetic engineering
be paired with natural host diversity to
identify genetic modifiers of genes?

How do loci that impact host
susceptibility to bacterial infection
impact other aspects of host biology?
Are there consequences for chronic
disease in humans?

What impact does microbial genetics
have on the results from screens?

How can microbial diversity be screened
simultaneously with standard host
screens to expand the clinical relevance
of the results?

Box 4. Identifying Important Host Processes by Studying the Bacteria

Many bacteria manipulate host processes to thrive within an intracellular space. Understanding which host proteins bac-
teria have evolved to interact with can shed light on which host genes are necessary for virulence. Two techniques can be
used to uncover interactions between bacterial and host proteins: coimmunoprecipitation approaches or BioID-based
screens. A recent preprint used the former by generating 15 S. Typhimurium mutants containing chromosomally tagged
effector proteins and infecting HeLa cells (a human epithelial cell line) and RAW264.7 cells (a murine macrophage cell line)
[103]. Following infection, secreted effectors were immunoprecipitated, and host-interacting proteins were identified using
mass spectrometry. A similar BioID screen ectopically overexpressed five BirA-tagged S. Typhimurium effectors in human
epithelial cells to identify effector-interacting proteins [104]. Notably, there were considerable differences in the results from
these studies, with some of the interactions from the infection experiment failing to replicate in the BioID paper. The lack of
replication may be the result of effector overexpression failing to model infection conditions. Thus, the strengths and weak-
nesses of these systems must be considered when designing protein interactome screens.

The above examples rely on the fact that bacterial proteins have evolved over countless generations to manipulate host
proteins. However, genomic approaches can also be used to study adaptation in real time. For example, recent work
by Crofts et al. used a human infection model of Campylobacter jejuni to understand how the pathogen’s biology changes
during infection [105]. The authors infected volunteers with a genetically diverse population of C. jejuni and collected feces
from participants in order to (i) compare theC. jejuni transcriptome within humans to the transcriptome in other conditions,
and (ii) track how selective pressures in humans influenced C. jejuni evolution. The authors noted that genes involved in
hydrogen peroxide detoxification, iron acquisition, and antimicrobial peptide resistance were upregulated, suggesting that
the bacteria were responding to host innate and nutritional immunity. By studying the pathogen’s genomic adaptation, the
authors found that a number of mutants showed consistent selection patterns across patients. Notably, mutations in
seven out of eight flagellin modifier genes in theC. jejuni genomewere under selection in humans, suggesting an important
role for flagellin modifications and/or host flagellar sensing during C. jejuni infection. Together, these experiments uncov-
ered clues from the bacterial response to humans that reveal host selective pressures.

Trends in Microbiology
Improving single-cell RNA-sequencing technology will have dramatic impacts on the ability for
these studies to uncover cellular heterogeneity in bacterial susceptibility. Previous work has vali-
dated this tool for dual-seq [82], though it remains underutilized. Future work could apply single-
cell dual-seq to dissect why neighboring cells within a single tissue have drastically different out-
comes to bacterial infection.

Concluding Remarks
While this review focused on host–bacterial interactions, these screening approaches have also
been adopted and advanced by virologists, mycologists, and parasitologists to study host–path-
ogen biology. The work presented here demonstrates that screens can dramatically advance the
field. However, it is important to note that simply compiling lists of associations does not, by itself,
illuminate how genes confer resistance to infection. Rather, following-up screens with additional
studies provides key mechanistic insight into host–pathogen biology (see Outstanding Questions).

We discussed how innovative technology has advanced the field; however, new approaches are
constantly on the horizon. For example, as discussed in Box 1, advances in CRISPR/Cas9 tech-
nology will likely expand the breadth of questions answered by CRISPR screens. Additionally,
while many screens above treat the invading pathogen as a biological constant and/or a signaling
PAMP, significant insight can be obtained by simultaneously screening host and pathogen diver-
sity. As discussed in Box 3, this concept has already been acknowledged in human GWAS stud-
ies; however, future in vitro and animal model screens should also consider inclusion of pathogen
diversity (whether natural diversity or bacterial knockout pools) to significantly improve modeling
of complex host–pathogen interactions. In particular, we think that including bacterial diversity in
approaches such as the Collaborative Cross model, Hi-HOST, or dual-seq studies could yield
fascinating results. Similarly, expanding the unique phenotypes measured in natural diversity
screens will improve our understanding of host susceptibility, particularly enabling pleiotropic
loci identification via screen integration. Finally, improvements on methods such as single-cell
RNA sequencing, epigenetic modification detection, iPSC differentiation, high-throughput
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microscopy, flow cytometry, and computational toolkits will revolutionize the screens listed in this
review as they expand the number of quantifiable phenotypes, provide single-cell resolution, and
increase throughput and statistical power. Thus, more than 350 years after the birth of the field, it
remains an exciting time to be a microbiologist.
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