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Abstract

Background: Deep sequencing of transposon mutant libraries (or TnSeq) is a powerful method for probing
essentiality of genomic loci under different environmental conditions. Various analytical methods have been
described for identifying conditionally essential genes whose tolerance for insertions varies between two conditions.
However, for large-scale experiments involving many conditions, a method is needed for identifying genes that
exhibit significant variability in insertions across multiple conditions.

Results: In this paper, we introduce a novel statistical method for identifying genes with significant variability of
insertion counts across multiple conditions based on Zero-Inflated Negative Binomial (ZINB) regression. Using
likelihood ratio tests, we show that the ZINB distribution fits TnSeq data better than either ANOVA or a Negative
Binomial (in a generalized linear model). We use ZINB regression to identify genes required for infection ofM.
tuberculosis H37Rv in C57BL/6 mice. We also use ZINB to perform a analysis of genes conditionally essential in H37Rv
cultures exposed to multiple antibiotics.

Conclusions: Our results show that, not only does ZINB generally identify most of the genes found by pairwise
resampling (and vastly out-performs ANOVA), but it also identifies additional genes where variability is detectable only
when the magnitudes of insertion counts are treated separately from local differences in saturation, as in the ZINB
model.
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Background
Deep sequencing of transposon mutant libraries (or
TnSeq) is a powerful method for probing the essentiality
of genomic loci under different environmental conditions
[1]. In a transposon (Tn) mutant library made with a
transposon in the mariner family, like Himar1, insertions
generally occur at approximately random locations
throughout the genome, restricted to TA dinucleotides
[2]. The absence of insertions in a locus is used to
infer conditional essentiality, reflecting depletion of those
clones from the population due to inability to survive
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the loss of function in such conditions. If loss of func-
tion leads to a significant growth impairment, these genes
are typically referred to as ‘growth-defect’ genes instead.
While the abundance of clones with insertions at different
sites can be profiled efficiently through deep sequenc-
ing [3], there are a number of sources of noise that
induce a high degree of variability in insertion counts at
each site, including: variations in mutant abundance dur-
ing library construction [4], stochastic differences among
replicates [5], biases due to sample preparation protocol
and sequencing technology [6], and other effects. Previous
statistical methods have been developed for quantitative
assessment of essential genes in single conditions, as well
as pairwise comparisons of conditional essentiality. Sta-
tistical methods for characterizing essential regions in a
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genome include those based on tests of sums of inser-
tion counts in genes [7], gaps [8], bimodality of empiri-
cal distributions [9], non-parametric tests of counts [10],
Poisson distributions [11], and Hidden Markov Models
[12, 13]. Statistical methods for evaluating conditional
essentiality between two conditions include: estimation of
fitness differences [14], permutation tests on distribution
of counts at individual TA sites (resampling in TRANSIT
[15]), Mann-Whitney U-test [16], and linear modeling of
condition-specific effects (i.e. log-fold-changes in inser-
tion counts) at individual sites, followed by combining
site-level confidence distributions on the parameters into
gene-level confidence distributions (TnseqDiff [17]).
Recently, more complex TnSeq experiments are being

conducted involving larger collections of conditions (such
as assessment of a library under multiple nutrient sources,
exposure to different stresses like a panel of antibiotics,
or passaging through multiple animal models with dif-
ferent genetic backgrounds) [18–21]. Yang et al. [22] has
also looked at temporal patterns of changes in insertion
counts over a time-course. A fundamental question in
such large-scale experiments is to determine which genes
exhibit statistically significant variability across the panel
of conditions. A candidate approach might be to perform
an ANOVA analysis of the insertion counts to deter-
mine whether there is a condition-dependent effect on the
means. However, ANOVA analyses rely on the assump-
tion of normality [23], and Tn insertion counts are clearly
not Normally distributed. First, read-counts are non-
negative integers; second, there are frequently sporadic
sites with high counts that influence the means; third,
most Tn libraries are sub-saturated, with a high fraction
of TA sites not being represented, even in non-essential
regions. This creates an excess of zeros in the data
(sites were no insertion was observed), and this makes it
ambiguous whether sites with a count of 0 are biologi-
cally essential (i.e. depleted during growth/selection) or
simply missing from the library. Monte Carlo simulations
show that applying ANOVA to data with non-normally
distributed residuals can result in an increased risk of
type I or type II errors, depending on degree and type
of non-normality [23]. An alternative method for assess-
ing variability might be to use a non-parametric test of
the differences between means by permuting the counts
and generating a null distribution (as in the “resampling
test” in TRANSIT [15]). However, this is limited to pair-
wise comparisons, and attempting to run resampling for
all pairwise comparisons between conditions to identify
genes that show some variation does not scale up well as
the number of conditions grows.
In this paper, we introduce a new statistical method

for identifying genes with significant variability of inser-
tion counts across multiple conditions based on Zero-
Inflated Negative Binomial (ZINB) regression. The ZINB

distribution is a mixture model of a Negative Binomial
distribution (for the magnitudes of insertion counts at
sites with insertions) combined with a “zero” component
(for representing the proportion of sites without inser-
tions). ZINB regression fits a model for each gene that can
be used to test whether there is a condition-dependent
effect on the magnitudes of insertion counts or on the
local level of saturation in each gene. Separating these
factors increases the statistical power that ZINB regres-
sion has over resampling for identifying varying genes
(since resampling just tests the differences in the means
between conditions - zeros included). Importantly, our
model includes terms to accommodate differences in sat-
uration among the datasets to prevent detecting false
positives due to differences between libraries.
Another advantage of the ZINB regression framework is

that it allows incorporation of additional factors as covari-
ates in analyzing variability across multiple conditions, to
account for effects dependent on relationships among the
conditions, such as similar treatments, time-points, host
genotypes, etc.
Using several TnSeq datasets from M. tuberculosis

H37Rv, we show that, in pairwise tests (between two
conditions), the genes detected by ZINB regression are
typically a superset of those detected by resampling and
hence is more sensitive. More importantly, ZINB regres-
sion can be used to identify varying genes across multiple
(≥ 3) conditions, which contains most of the genes identi-
fied by pairwise resampling between all pairs (and is more
convenient and scalable). Furthermore, ZINB regression
vastly out-performs ANOVA, which often identifies only
around half as many genes with significant variability in
insertion counts.

Methods
ZINBmodel
Essential genes are likely to have no insertions or very
few counts (because mutants with transposon insertions
in those regions are not viable), while non-essential genes
are likely to have counts near the global average for
the dataset. Insertion counts at TA sites in non-essential
regions are typically expected to approximate a Poisson
distribution. This expectation is based on a null model in
which the expected fraction of insertions at a site is deter-
mined by the relative abundance of those clones in the
library, and the observed counts in a sequencing exper-
iment come from a stochastic sampling process. This
process is expected to follow a multinomial distribution
[24], which is approximated by the Poisson for sufficiently
large numbers of reads (total dataset size) [25].
Let Y = {yg,c,i,j} represent the set of observed read

counts for each gene g, in condition c ∈ {c1..cn}, at TA
site i = 1..Ng , for replicate j = 1..Rc. We are inter-
ested in modeling the gene- and condition-specific effects
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on the counts, p(y|g, c, i, j). We treat the observations at
individual TA sites and in different replicates as indepen-
dent identically-distributed (i.i.d.), samples drawn from
the distribution for the gene and condition:

p(y|g, c, i, j) = p(y|g, c)
Read-count data is often modeled using the Negative

Binomial (NB) distribution [25]. The NB distribution
can be thought of as a Poisson distribution with over-
dispersion, resulting from an extra degree of freedom:

NB(y | p, r) =
(
y + r − 1

y

)
py(1 − p)r (1)

y|g, c ∼ NB(pg,c, rg,c)
where p is a success probability (i.e. of a mutant getting
a transposon insertion at a particular site), and r, often
called a size parameter, represents the dispersion. Unlike
the Poisson distribution, which has a single parameter λ =
1/p, and for which the variance is restricted to equal the
mean, the extra parameter in NB allows for fitting counts
with a variance greater or less than expected (i.e. differ-
ent from the mean). The NB distribution converges to a
Poisson as r → ∞ [26]. A common re-parameterization
of the NB distribution is to specify the distribution based
on the mean, μ, and the dispersion parameter, r, which
then determines the success probability, p, through the
following relationship:

p = μ

μ + r
In practice, TnSeq data often has an excess of empty

sites (TA sites with counts of 0), exceeding those that
would be expected under a typical NB distribution.
Because essential genes typically constitute only 10− 20%
of the genome in most organisms, a library with transpo-
son insertions at 50% of its sites (i.e. 50% saturation) would
mean that even non-essential genes will have a large por-
tion of sites missing (i.e. equal to zero). Thus, while the
NB distributionmay be sufficient tomodel counts in other
domains, TnSeq requires more careful consideration.
One way to solve this problem is to model the read-

counts for a gene g and condition c as coming from a Zero-
Inflated Negative Binomial distribution (ZINB) instead:

y|g, c ∼ ZINB(πg,c, rg,c,μg,c) (2)
where

ZINB(y | π , r,μ) =
{

π + (1 − π) × NB(0 | r,μ) y = 0
(1 − π) × NB(y | r,μ) y > 0

Here the π parameter represents the probability that a
count of zero is extraneous (i.e. does not belong to the
NB distribution), and can be interpreted as similar to the
probability that an empty site is essential (i.e. empty due
to fitness costs incurred through its disruption, rather
than stochastic absences). In this way, both read-counts

(through the r and μ parameters of the NB distribution)
and insertion density (through π ) can be used to dif-
ferentiate genes that are essential in one condition and
non-essential in another.

Generalized linear model
To capture the conditional dependence of the ZINB
parameters (μ, r, π ) on the experimental conditions, we
adopt a linear regression (GLM) approach, using a log-
link function. This is done independently for each gene g.
We use Y g to represent the subset of all observed counts
in gene g at any TA site, in any condition, in any replicate
(Y g is illustrated as a column vector in Fig. 1). The vector
of expected means μg of the ZINB distribution (non-zero
component) for each observation in gene g is expressed as:

ln μg = Xgαg (3)

where Xg is a binary design matrix (see Fig. 1), indicating
the experimental condition for each individual observa-
tion (insertion count at a TA site) in gene g, and αg is a
vector of coefficients for each condition. For m observa-
tions and n conditions, the size of Xg will bem×n and the
size of αg will be n × 1. Hence, there will be n coefficients
for each gene, one for estimating themean non-zero count
for each condition. The conditional expectations for the
non-zero means for each condition can be recovered as:
〈μg,c1 , . . . , μg,cn〉 = exp(αg).
If additional covariates distinguishing the samples are

available, such as library, timepoint, or genotype, theymay
be conveniently incorporated in the linear model with an
extra matrix of covariates,W g (m × k for k covariates), to
which a vector of k parameters βg will be fit:

ln μg = Xgαg + Wgβg (4)

For the dispersion parameter of the NB, τ (or size
parameter r = 1/τ ), we assume that each gene could have
its own dispersion, but for simplicity, we assume that it
does not differ among conditions. Hence, it is fitted by a
common intercept:

ln rg = ρg

Finally, for the zero-inflated (Bernoulli) parameter, π ,
we fit a linear model depending on condition, with a
logit link function a conventional choice for incorporating
probabilistic variables bounded between 0 and 1 as terms
in a linear model):

logit(π g) =
〈
ln

(
πg,c

1 − πg,c

)〉
c=1..n

= Xgγ g (5)

Thus each gene will have its own local estimate of inser-
tion density in each condition, πg,c = exp(γg,c)/(1 +
exp(γg,c)). In the case of covariates, logit(π g) =
Xgγ g + Wgδg , where W g are the covariates for each
observation, and δg are the coefficients for them.
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Fig. 1 Illustration of the counts vector Y g and conditions matrix Xg for 4 datasets, consisting of 2 conditions, each with 2 replicates. The insertion
counts at the Ng TA sites in gene g for all 4 replicates are concatentated into a column vector Y g . The matrix Xg encodes the condition represented
by each observation. Other covariates could be appended as columns in Xg

Putting these all together:

p(y|g, c) = ZINB(μg,c, rg ,πg,c)

= ZINB(exp(Xgαg + Wgβg), exp(ρg), logit(Xgγ g + Wgδg))

(6)

The parameters of the GLMcan be solved bymaximum-
likelihood using iteratively re-weighted least squares
(IWLS). In this work, we use the pscl package in R [27].

Correcting for saturation differences among TnSeq
datasets
An important aspect of comparative analysis of TnSeq
data is the normalization of datasets. Typically, read-
counts are normalized such that the total number of reads
is balanced across the datasets being compared. Assuming
read-counts are distributed as amixture of a Bernoulli dis-
tribution (responsible for zeros) and another distribution,
g(x), responsible for non-zero counts i.e.,

f (x) =
{

θ × g(x) x > 0
(1 − θ) × Bern(x|p = 0) x = 0

then the expected value of this theoretical read-count
distribution (with mixture coefficient θ ) is given by:

E
[
f (x)

] = θ × E
[
g(x)

]
(7)

The expected value of such a distribution can be nor-
malized to match that of a another dataset, fr(x), (such as

reference condition, with saturation θr) by multiplying it
by a factor, w, defined in the following way:

E
[
fr(x)

] = w × E
[
f (x)

]
θr × E

[
gr(x)

] = w × (
θ × E

[
g(x)

])

w = θr × E
[
gr(x)

]
θ × E

[
g(x)

] (8)

This guarantees that the expected value in read-counts
is the same across all datasets. TTR normalization (i.e.
total trimmed read count, the default in TRANSIT [15])
estimates E

[
g(x)

]
in a robust manner (excluding the top

1% of sites with highest counts, to reduce the influence of
outliers, which can affect normalization and lead to false
positives).
While TTR works well for methods like resampling

(which only depend on the expected counts being equiv-
alent under the null-hypothesis), it does not work well
for methods designed to simultaneously detect differences
in both the local magnitudes of counts (non-zero mean)
and the saturation (fraction of non-zero sites) such as
ZINB. This is because TTR in effect inflates the counts
at non-zero sites in datasets with low saturation, in order
to compensate for the additional zeros (to make their
expected values equivalent). This would cause genes to
appear to have differences in (non-zero) mean count (μg,a
vs μg,b), while also appearing to be less saturated (πg,a vs
πg,b), resulting in false positives.
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To correct for differences in saturation, we incorporate
offsets in the linear model as follows. First, assume there
are d datasets (combining all replicates over all condi-
tions). Let the statistics of each dataset be represented by
a d × 1 vector of non-zero means,M (genome-wide aver-
ages of insertion counts at non-zero sites), and a d × 1
vector of the fraction of sites with zeros in each dataset,
Z. For them observations (insertion counts at TA sites) in
gene g, let Dg be the binary design matrix of size m × d
indicating the dataset for each observation. Then the lin-
ear equations above can be modified to incorporate these
offsets (a specific offset for each observation depending
on which dataset it comes from).

ln(μg) = Xgαg + Wgβg + ln(DgM) (9)

logit(πg) = Xgγ g + Wgδg + logit(DgZ) (10)

Note thatM and Z are just vectors of empirical constants
in the linear equation, not parameters to be fit. Hence
the fitted coefficients (αg ,βg , γ g , δg) are effectively esti-
mating the deviations in the local insertion counts in a
gene relative to the global mean and saturation for each
dataset. For example, if observation Xg,c,i,j comes from
dataset d (where i and j are indexes of TA site and repli-
cate), and the global non-zero mean of that dataset isMd,
then exp(Xgαg) estimates the ratio of the expected mean
insertion count for gene g in condition c to the global
mean for dataset d (ignoring covariates):

μg,c

Md
= exp(αg,c)

Statistical significance
Once the ZINB model is fit to the counts for a gene, it
is necessary to evaluate the significance of the fit. T-tests
could be used to evaluate the significance of individual
coefficients (i.e. whether they are significantly different
from 0). However, for assessing whether there is an overall
effect as a function of condition, we compare the fit of the
data Yg (a set of observed counts for gene g) to a simpler
model - ZINBwithout conditional dependence - and com-
pute the difference of log-likelihoods (or log-likelihood
ratio):

−2{L0(Yg |	0) − L1(Yg |	1)} = −2 ln
(L0(Yg |	0)

L1(Yg |	1)

)

(11)

where the two models are given by:

M1 : L1(Yg |Xg ,	1) = ZINB(Yg |Xg ,μg , rg ,π g)
ln μg = Xgαg , ln rg = ρg , logit(πg) = Xgγ g

M0 : L1(Yg |	0) = ZINB(Yg |μg , rg ,πg)
ln μg = α0

g , ln rg = ρg , logit(πg) = γ 0
g

(12)

where 	1 =
〈
αg , ρg , γ g

〉
and 	0 =

〈
α0
g , ρg , γ 0

g

〉
are the

collections of parameters for the two models, and where
α0
g and γ 0

g in M0 are just scalars fitted to the grand mean
and saturation of the gene over all conditions.
The likelihood ratio statistic above is expected to be

distributed as χ2 with degrees of freedom equal to the dif-
ference in the number of parameters (Wilks’ Theorem):

−2 ln
(
L0

(
Yg |	0

)
L1

(
Yg |	1

)
)

∼ χ2
df=df (M1)−df (M0)

(13)

For the condition-dependent ZINB model (M1), the
number of parameters is 2n + 1 (for length of αg and
γ g plus ρg). For the condition-independent ZINB model
(M0), there are only 3 scalar parameters

(
α0
g , ρg , γ 0

g

)
used

to model the counts pooled across all conditions. Hence
df = 2n + 1 − 3 = 2(n − 1). The point of the test is
to determine whether the additional parameters, which
should naturally improve the fit to the data, are justi-
fied by the extent of increase in the likelihood of the fit.
The cumulative of the χ2 distribution is used to calcu-
late p-values from the log-likelihood ratio, which are then
adjusted by the Benjamini-Hochberg procedure [28] to
correct for multiple tests (to limit the false-discovery rate
to 5% over all genes in the genome being tested in parallel).
Importantly, if a gene is detected to be conditionally-

essential (or have a conditional growth defect), it could be
due to either a difference in the mean counts (at non-zero
sites), or saturation, or both. Thus the ZINB regression
method is capable of detecting genes that have insertions
in approximately the same fraction of sites but with a
systematically lower count (e.g. reduction by X%), possi-
bly reflecting a fitness defect. Similarly, genes where most
sites become depleted (exhibiting reduced saturation) but
where the mean at the remaining sites (perhaps at the ter-
mini) remains about the same would also be detectable as
conditional-essentials.

Covariates and interactions
If the data include additional covariates, then theW terms
will be included in the regressions for both models M1
andM0:

M1 : L1(Yg |Xg ,Wg ,	1) = ZINB(Yg |μg , rg ,π g)

ln μg = Xgαg+Wgβg , ln rg = ρg , logit(π g) = Xgγ g+Wgδg

M0 : L1(Yg |W g ,	0) = ZINB(Yg |Xg ,Wg ,μg , rg ,πg)

ln μg = α0
g+Wgβg , ln rg = ρg , logit(πg) = γ 0

g +Wgδg

(14)

In this way, the covariates W will increase the like-
lihoods of both models similarly, and the LRT will be
evaluating only the improvement of the fits due to
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the conditions of interest, X, i.e. the residual variance
explained byX after taking known factorsW into account.
Although the number of parameters in both models will
increase, the difference in degrees of freedom will remain
the same.
If the covariates represent attributes of the samples that

could be considered to interact with the main condition,
then one can account for interactions by including an
additional term in the regression. An interaction between
variables occurs when the dependence of the parame-
ter estimates (mean counts or saturation) on the main
condition variable is influenced by the value of another
attribute (e.g. treatment of the samples), which can cause
the coefficients for a condition to differ as a function of the
interacting variable. For example, suppose we have sam-
ples of two strains (e.g. knockout vs wildtype) that have
been cultured over several time points (e.g. 1–3 weeks).
Then we might naturally expect that there will be vari-
ability across all 6 conditions (considered independently),
e.g. due to differences between time points. In fact, some
genes might exhibit a gradual increase or decrease in
counts over time, which could expressed as a slope (i.e.
as a regression coefficient for time, treated as a contin-
uous attribute). For the purpose of addressing the main
question, which is whether there is a systematic differ-
ence in insertion counts between the strains, we want
to discount (or adjust for) the effects of time. However,
the difference between the strains could manifest itself as
a difference in the slopes (time-dependent effect on the
counts), which might be different for each strain. Treat-
ing covariates as interactions allows us to capture and test
for these effects by incorporating separate coefficients for
each combination of values (i.e. independent slopes for
each strain).
Interactions can be incorporated in the ZINB regression

model by including the product of the conditions with the
interacting covariates in the regression forM1.

M1 : ln μg = Xgαg + Wgβg + Xg ⊗ Wgλg
logit

(
π g

) = Xgγ g + Wgδg + Xg ⊗ Wgηg
M0 : ln μg = α0

g + Wgβg
logit

(
π g

) = γ 0
g + Wgδg

(15)

where Xg ⊗ Wg represents column-wise products for
each pair of columns in Xg and W g (resulting in a matrix
of dimensions m × (n · k) for n conditions and k inter-
action variables). Thus, if there is a general trend in the
counts for a gene over time, it will be captured by the
coefficients of W g (vectors βg and δg), included in both
models. However, if the variables Xg and W g interact,
then the coefficients of the product term

(
λg and ηg

)
will be non-zero, allowing the slopes to differ between
the strains. Importantly, because the objective is to test

for the significance of the interaction, in the likelihood-
ratio test, the additive term for the covariate is retained
in the null model but not the product, thus assessing the
specific impact of the interaction on reducing the like-
lihood, while factoring out the information (i.e. general
trend) attributable to the interaction variable on its own
(independent of the main condition).

Treatment of mice
Mice were anesthetized with 5% isoflurane and sacrificed
by cervical dislocation.

Results
Likelihood ratio tests for suitability of ZINB as a model for
TnSeq data
To establish the suitability of ZINB as a model for TnSeq
data, we compared it to ANOVA and Negative Binomial
(without special treatment of zeros) using likelihood ratio
tests. The data we used for these tests consisted of 2 repli-
cates of an M. tuberculosis H37Rv TnSeq library grown
on glycerol compared to 3 replicates grown on choles-
terol [29]. This data was originally used to identity genes
in the H37Rv genome that are necessary to catabolize
cholesterol, a unique carbon source available within the
restricted intracellular environment of macrophages, on
which growth and survival of the bacilli depends [30]. The
data (insertion counts at TA sites) were normalized by the
TTR method [15].
First, we compared ZINB regression to simple ANOVA

(based on a generalized linear model using Gaussian
likelihood functions). Both models were used to fit the
insertion-count observations at the TA sites in each gene,
conditioned on the carbon source (glycerol vs. choles-
terol). ZINB had higher likelihood than ANOVA for all
genes (except five, for which they were nearly equal).
Because ZINB and ANOVA are not nested models, we
used the Vuong test [31] to evaluate statistical significance
of the difference in likelihoods. Furthermore, we applied
the Benjamini-Hochberg procedure to adjust the p-values
for an overall false-discovery rate (FDR) of 5%. ZINB was
found to produce a significantly better fit than ANOVA
for 3185 out of 3282 genes (97%, using padj < 0.05 as a
criterion).
Next, we performed a likelihood ratio test (LRT) of

ZINB regression compared to regular NB (as a general-
ized linear model). Because ZINB has more parameters
(and these are nested models), the likelihood for ZINB
was again higher than NB for nearly every gene. To eval-
uate which differences were significant, correcting for the
different number of parameters, we computed p-values
of the log-likelihood ratio using the χ2 distribution, with
degrees of freedom equal to the difference in number of
model parameters (df = 5−3 = 2). After FDR-correction,
ZINB fit the data significantly better than NB for 2796



Subramaniyam et al. BMC Bioinformatics          (2019) 20:603 Page 7 of 15

genes out of 3282 (85%) genes evaluated. For the rest of
the genes, the likelihoods of the two models were indis-
tinguishable. This supports the hypothesis that modeling
the fraction of sites with no insertions (“zeros”) separately
from the magnitudes of counts at sites with insertions
enables ZINB to fit TnSeq data better.

Pairwise comparisons of conditional essentiality using ZINB
We evaluated ZINB, resampling, and ANOVA on data
from an M. tuberculosis TnSeq library grown in-vitro
compared to infections in a mouse model. A high-
saturation Himar1 Tn library generated in H37Rv was
inoculated into six C57BL/6 mice (8–12 week old males,
obtained from Jackson Laboratory, Bar Harbor, ME) via
the intravenous route at a dose that deposits a represen-
tative sample of the library (>100,000 CFU) in the spleen.
After four weeks, the bacteria present in the spleen of
each animal were recovered by plating on 7H10 agar (with
kanamycin). As a control, the original library was replated
in parallel. A total of 0.4-1.5 million reads was mapped
to TA sites for each sample, and all samples had ∼ 50%
saturation (all but one were in the 42–58% range; see
Table 1; raw insertion counts provided in Additional file
3). The data was normalized using TTR (Trimmed Total
Read-count) normalization [15], and the mean count of all
datasets after normalization was uniform, around 100.
When ZINB regression method was run on the two

conditions (in vitro vs. in mice), 237 conditional essen-
tials were identified (Additional file 1). This included
genes well-known to be essential in vivo [32], including
the Mce4 cluster, biotin biosynthesis (bioABDF1), ESX-
1, the NRPS (non-ribosomal peptide synthase) cluster
(Rv0096-Rv0101), and cholesterol catabolism genes (e.g.
FadE5, bpoC, hsaD). Some genes involved in mycobactin-
dependent iron acquisition (irtAB, mmpL4/S4) were

Table 1 Statistics of TnSeq datasets

Dataset Condition Mapped reads Densitya NZmeanb

A1 in vitro 989413 0.55 23.9

A2 in vitro 1376613 0.58 31.9

A3 in vitro 1531598 0.58 35.3

A4 in vitro 547902 0.47 15.5

A5 in vitro 1450383 0.57 33.9

A6 in vitro 475126 0.55 11.6

B1 in vivo 1500646 0.47 42.5

B2 in vivo 601683 0.45 17.7

B3 in vivo 1245065 0.51 32.5

B4 in vivo 1472365 0.49 39.9

B5 in vivo 909394 0.42 29.3

B6 in vivo 409018 0.34 16.2

aFraction of TA sites with insertions
bMean count at TA sites with insertions before normalization

essential in vivo, though none of the 14 subunits of
mycobactin synthase (Mbt) were. A possible explanation
is that mutants with disruptions in Mbt genes are import-
ing extracellular mycobactin produced by other mutants
at the site of infection with insertions in genes other than
Mbt synthase. In contrast to infections with a homoge-
neous knockout mutant of genes like MbtD, mycobactin
synthase transposon mutants in the Tn library can survive
in vivo because it is a heterogeneous pool. However, indi-
vidual clones with defects in mycobactin secretion/uptake
(e.g. Tn insertions in irtAB and mmpL4/S4) cannot sur-
vive, despite the availablility of mycobactin in the environ-
ment.
The results of ZINB can be compared to the permu-

tation test (’resampling’ in TRANSIT), which is a non-
parameteric comparison of the difference in mean counts
for each gene between the two conditions. Resampling
yielded 186 genes with significant differences between in-
vitro and in-vivo. (P-values for all tests were corrected
for a false-discovery rate of < 5% using the Benjamini-
Hochberg procedure [28]). Almost all of these (160, 86%)
were contained in the hits from ZINB (see Fig. 2). Only 26
genes identified by resampling were not detected by ZINB.
Many of these were marginal cases; 21 of 26 had ZINB
adjusted p-values between 0.05 and 0.2.
ANOVA was also applied to the same data, and it only

detected 167 genes with significant variability between
the two conditions. The genes detected by ANOVA were
almost entirely contained in the set of genes detected by
resampling (166 out of 167), but resampling found 20
more varying genes. In comparison, ANOVA only finds
63% of the varying genes detected by ZINB (150 out of
237). We speculate that the lower sensitivity of ANOVA is
due to the non-normality of insertion-count data, which is

Fig. 2 Venn diagram of conditional essentials (qval < 0.05) for three
different methods: resampling, ANOVA, and ZINB
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supported by simulation studies [23], whereas resampling,
being a non-parametric test, does not require normality.
The advantage of ZINB is that it is capable of detect-

ing more conditional essentials because it can take into
account changes in either the local magnitude of counts
or local insertion density. It detects 76 more condi-
tional essentials and growth-defect genes than resam-
pling, and 88 more than ANOVA. Among these are
genes in the Mce1 cluster (specifically mce1B, mce1C,
and mce1F, see Fig. 3). Mce1 (Mammalian Cell Entry
1) is a membrane transporter complex that has been
shown to be essential for growth in vivo (e.g. knockout
mutants are attenuated for survival in mice [32, 33]). The
Mce1 locus spans Rv0166-Rv0178 (as an operon), con-
taining mce1A-mce1F, which are 5 subunits that form
a membrane complex [34]; the rest of the proteins in
the locus (yrb1AB, mam1ABCD) are also membrane-
associated [35]. TheMce1 genes show a modest reduction
in counts (∼ 25% reduction; mean log2-fold-change=-
0.2, range=-0.87..0.21), which was not sufficient to meet
the adjusted p-value cutoff for resampling. However, the
genes also exhibit a noticable reduction in local saturation
in this locus (from ∼ 88% saturation in-vitro to ∼ 61%
in-vivo on average), and the combination of these two
depletion effects is sufficient to make them significant
in the ZINB model. This is consistent with our under-
standing of the biological role of Mce1, which acts as a
transporter to enhance uptake of fatty acids as a carbon
source from the host environment [36, 37].
Similar examples include esxB, a secreted virulence

factor, fcoT (thioesterase for non-ribosomal peptide
synthase NRPS), lysX (lysinylation of cell-wall glycolipids

[38]), pitA (involved in phosphate transport [39]), and
fadE33, hsaB and kshB, which are involved in cholesterol
catabolism [29]. All of these genes have been previously
shown to be essential for infection in an animal model,
but did not meet the threshold for significance based
on resampling. The reason that several of these genes
(like fadE33 and esxB, shown in Fig. 4) are detected by
ZINB but not resampling is due primarily to changes in
saturation; the non-zero mean (NZmean) changes only
slightly, but the saturation drops significantly in each case;
greater depletion of insertion mutants indicates reduced
fitness. This highlights the value of treating the satura-
tion parameter separately in the ZINB model. Another
gene that exhibits this effect is SecA2. SecA2 is an alter-
native ATPase component of the Sec secretion pathway
and is thought to help secrete other virulence factors
inside the macophage [40]. SecA2 mutants have a weak
phenotype in vitro (“growth defect” gene; [41]), so that
the mean counts and saturation are low compared to
other genes in-vitro (e.g. only 20% saturation, compared
to ∼50% globally); however, it becomes almost completely
devoid of insertions in-vivo (Fig. 4). While SecA2 was not
detected as significant by either resampling or ANOVA, it
was identified as conditionally essential by ZINB.
Although ZINB identifies more genes (76) to be sta-

tistically significant than resampling on this dataset, it is
unlikely that this excess is attributable to a large number
of false positives. To evaluate the susceptibility of ZINB
to generate false positives, we performed a comparison
between replicates from the same condition by dividing
the 6 in-vitro datasets into 2 groups (3+3). In this case,
we expect to find no hits because there are (presumably)

Fig. 3 Reduction in mean insertion counts in-vivo (mice) for genes in the Mce1 locus. Genes that are detected as significant (q-value< 0.05) by ZINB
regression are marked with ‘*’. Genes with marginal q-values of 0.05-0.11 are marked with ’+’
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Fig. 4 Statistics for three genes detected to vary significantly in mice compared to in-vitro based on ZINB regression, but not by resampling. The
upper panels are the Non-Zero Mean (among insertion counts at TA sites with counts > 0), and the lower panels show the Saturation (percent of TA
sites with counts > 0). Each box represents a distribution over 6 replicates

no biological differences. ZINB analysis identified only 15
genes as significantly different (padj < 0.05), which sug-
gests that the overall false positive rate for ZINB is quite
low and probably reflects noise inherent in the data itself.
Even resampling, when run on the same data (3 in-vitro
vs. 3 in-vitro) for comparison, yielded 9 significant genes,
which are presumably false positives.

Adjustment for differences in saturation among datasets
In real TnSeq experiments, it frequently happens that
some datasets are less saturated than others. For example,
there is often loss of diversity when passaging a Tn library
through an animal model, possibly due to bottlenecking
during infection or dissemination to target organs. TTR
normalization was developed to reduce the sensitivity of
the resampling method to differences in saturation lev-
els of datasets. However, this type of normalization would
be expected to exacerbate the detection of differences by
ZINB. To compensate for this, we include offsets in the
models that take into account the global level of saturation
and non-zero mean for each dataset.
To evaluate the effect of the correction for saturation

of datasets, we created artificially-depleted versions of
some of the replicates analyzed in the previous Section
(see Table 1). Specifically, for A1, A2, B1, and B2, we
created “half-saturated” versions of each by randomly (and

independently) setting 50% of the sites to 0. Since each
of the original datasets had around 50% saturation to
begin with, the half-saturated version have a saturation of
approximately 25%.
Initially, we compared the original versions of A1 and

A2 to B1 and B2 (scenario 1), with their observed level
of saturation. The number of hits detected by ZINB (73)
is similar to resampling (64). Recall that resampling with
all 12 datasets yielded 186 significant genes; the number
of hits is lower overall in this experiment because only
2 replicates of each were used, instead of 6. Then we
compared fully-saturated versions of A1 and A2 to half-
saturated B1 and B2 (scenario 2). ZINB-SA+ (with adjust-
ment for saturation) identified nearly the same number
of conditional essentials as resampling: 121 vs. 108. (see
Table 2). The results are similar when half-saturated ver-
sion of datasets A1 and A2 are used (scenario 3). However,
when saturation adjustment is turned off, ZINB-SA− pro-
duces dramatically more hits in case of wide saturation
differences (2668 and 1139, boldfaced in Table 2). The rea-
son for this is that, by artificially reducing the saturation
of either datasets A1 and A2 or B1 and B2, it amplifies the
apparent differences in local saturation for many genes, to
which ZINB is sensitive. The number of significant hits
(conditional essentials) detected when half-saturated ver-
sions of all four datasets are used (scenario 4) is naturally
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Table 2 Comparison of ZINB regression with and without saturation adjustment, for artificially-depleted samples

Scenario Datasets compared Resampling ZINB (SA+) ZINB (SA−)

1 (A1,A2) vs (B1,B2) 64 73 162

2 (A1,A2) vs (B1[50%],B2[50%]) 108 121 2668

3 (A1[50%],A2[50%]) vs (B1,B2) 17 112 1139

4 (A1[50%],A2[50%]) vs (B1[50%],B2[50%]) 8 30 37

lower (8 and 30), because there is much less information
(fewer observations) available, making it more challenging
for many genes to achieve statistical significance. Inter-
estingly, when half-saturated versions of all four datasets
are used, ZINB-SA− works as expected, finding 37 hits
(scenario 4), similar to resampling.

Application to datasets with multiple conditions
In a prior study [21], a Himar1 transposon-insertion
library in H37Rv was treated with sub-inhibitory con-
centrations of 5 different drugs: rifampicin (RIF), iso-
niazid (INH), ethambutol (EMB), meropenem (MERO),
and vancomycin (VAN), all grown in 7H9 liquid medium.
Combined with the untreated control, this makes 6 con-
ditions, for which there were 3 replicate TnSeq datasets
each (except INH; see Table 3). The TnSeq datasets had a
high saturation of 60–65% (percent of TA sites with inser-
tions). In the original analysis, each drug-treated sample
was compared to the control using resampling [21]. Sev-
eral conditionally essential genes were identified for each
drug. Some genes were uniquely associated with certain
drugs (for example, blaC, the beta-lactamase, was only
required in the presence of meropenem), and other genes
were shared hits (i.e. conditionally essential for more than
one drug). Only one gene, fecB, was essential for all drugs,
and its requirement for antibiotic stress tolerance was
validated through phenotyping of a knock-out mutant.
The raw datasets in this experiment have a number

of sporadic outliers, consisting of isolated TA sites with
observed insertion counts in one sample that are > 10
times higher than the others (even in other replicates of
the same condition). Outliers can cause the appearance

Table 3 TnSeq datasets in different antibiotic treatments

Drug Concentration
(μg/ml)

MIC50
(μg/ml)

Number of
replicates

Number of
essentials vs.
untreateda

Untreated 3

Isoniazid (INH) 0.027 0.04 2 50

Rifampicin (RIF) 0.004 0.02 3 68

ethambutol (EMB) 0.5 0.6 3 58

Meropenem (MER) 1.2 30 3 106

Vancomycin (VAN) 16 11 3 93

MICs for H37Rv were obtained from [43]
aNumber of conditional essentials by comparison to the untreated condition using
resampling

of artificial variability among conditions (inflating the
mean count in one condition over the others in the ZINB
model). Therefore, the raw datasets were normalized
using the Beta-Geometric Correction (BGC) option in
Transit, which is a non-linear transformation that reduces
skew (extreme counts) in read-count distributions [42].
As a preliminary assessment, we did resampling of each

drug condition against the untreated control, recapitu-
lating the results in [21]. The number of conditional
essentials is shown in Table 3. fecB was again observed
to be the only hit in the intersection of all tests. We also
observe other hits that can be rationalized, such as condi-
tional essentiality of blaC (beta-lactamase) in presence of
meropenem.
Next, variability among all 6 conditions was analyzed

using several different methods. First, a simplistic but
practical approach was taken by performing pairwise
analyses of conditional essentiality using resampling (the
permutation test for significant differences per gene in
TRANSIT). For six conditions, there are 15 pairwise com-
parisons. Resampling was run independently on each pair
of conditions, and the p-values were adjusted indepen-
dently each time. By taking the union of conditionally-
essential genes over all 15 pairwise comparisons, a total of
276 distinct genes was identified to have varying counts
between at least one pair of conditions (Table 4).
However, this straightforward approach is unfair

because the p-values were adjusted independently. Amore
rigorous approach would be to perform resampling on all
∼ 4000 genes for all 15 pairs of conditions, and then apply
the p-value adjustment once on the pool of all ∼ 60, 000
p-values. When this is done, there are 267 significantly
varying genes (using the lowest adjusted p-value for each
gene). Thus, proper use of FDR correction results in a
slightly more conservative list of hits.

Table 4 Identification of genes with significant variability across
six conditions in antibiotic treatment data

Method Number of varying genes

Union of hits from 15 pairwise resampling
tests

276

Genes significant in any pairwise resampling
after pooled adjustment p-values

267

ANOVA 234

ZINB 307
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The main problem with this approach is that it requires
resampling to be run separately for all pairs of conditions,
which does not scale up well as the number of condi-
tions increases. As an alternative, ANOVA can be used
to compare the counts across all six conditions simul-
taneously. When ANOVA is run (and the p-values are
adjusted using the Benjamini-Hochberg procedure), only
234 significantly varying genes are identified. The 234
genes identified by ANOVA are almost completely con-
tained in the set of those identified by pairwise resampling
(267) (Fig. 5). Thus, ANOVA has lower sensitivity and
under-reports genes with significant variability.
Finally, to identify genes that exhibit variability across

all 6 conditions, we used ZINB regression (Additional
file 2). 307 genes were found to exhibit significant vari-
ation by ZINB, including genes identified in the original
study, such as fecB, blaC, pimE (mannosyltransferase), and
secA2 (protein translocase) [21]. Another example of a
gene found by both ZINB and pairwise resampling is cinA
(Rv1901), which was specifically required for cultures
exposed to sub-MIC concentrations of INH (Fig. 6a). cinA
is thought to be an NAD-dependent enzyme that plays a
role in nucleoside recycling [44, 45], and thus it could con-
fer tolerance to INH, e.g. through a mechanism involving
maintaining the intracellular NADH/NAD+ ratio [46].
Compared to ANOVA, ZINB finds significantly more

varying genes (307 compared to 234, 31% more) (see
Fig. 5). Put another way, ANOVA only identifies 76%
of the genes with variability identified by ZINB. ZINB
identified slightly more varying genes than pairwise
resampling (71 additional genes). Many of these genes are
on themargin and have adjusted p-values just slightly over
the cutoff for resampling; 50% (36 out of 71 genes) have
0.05 < padj < 0.2 for resampling. Among the remaining

Fig. 5 Venn diagram of genes with significant variability in different
antibioitic treatments of transposon insertion counts evaluated by
three different methods

genes, one interesting case detected uniquely by ZINB is
sigE (Fig. 6b).While themean insertion counts do not vary
much for this gene (ranging between 17 and 27), the sat-
uration level varies significantly among drug exposures,
from nearly fully saturated in the control and INH con-
ditions (88–97%), to highly depleted of insertions for RIF,
MER and EMB (29–52%). This reduction suggests that
sigE is required for tolerance of certain drugs. Indeed,
this recapitulates the growth defects observed in a �sigE
mutant when exposed to various drugs [47]. sigE is an
alternative sigma factor that is thought to play a regula-
tory role in response to various stresses. This effect was
only observable with a model that treats variations in
saturation separately from magnitiudes of insertions.

Discussion
TnSeq has proven to be an effective tool for genome-wide
assessment of functional requirements and genetic inter-
actions in a wide range of prokaryotes. It is now being
expanded to larger-scale experiments, such as profiling
growth in media supplemented with an array of carbon
sources or nutrients, or exposure to a variety of antibi-
otics/inhibitors, growth in a panel of different cell types,
or infections in a collection of model-animals with dif-
ferent genetic backgrounds. Indeed, recent methods like
BarSeq make such experiments efficient through barcod-
ing of libraries, enabling highly multiplexed sequencing
[48]. ZINB regression offers a convenient way of assessing
variability of insertion counts across multiple conditions.
It is more efficient than pairwise resampling (or permu-
tation tests). Resampling is designed for two-way com-
parisons. Attempting to perform resampling between all
pairs of conditions does not scale-up well, as the num-
ber of comparisons increases quadratically with number
of conditions (for example, n = 20 conditions requires
n(n − 1)/2 = 190 pairwise comparisons). In addition to
the computational cost, there is a risk of loss of signifi-
cance due to the p-value adjustment at the end, to control
the overall false discovery rate.
ZINB regression also performs better than ANOVA, a

classic statistical test for conditional-dependence among
observations from multiple groups. Our experimental
results show that ANOVA is generally less sensitive than
ZINB, detecting only a subset of varying genes, possibly
because ANOVA relies on an assumption of normality
[23]. Because most datasets are not fully saturated (due to
lack of diversity of the library, bottlenecking, etc), TnSeq
data usually has an over-abundance of zeros that can-
not be approximated well with simpler distributions like
Poisson or Binomial. The ZINB distribution, being a mix-
ture model of a Negative Binomial and a zero component,
allows the variance of the read-counts to be independent
of the mean (unlike the Poisson) and allows sites with a
count of zero to be treated separately (not all zeros are



Subramaniyam et al. BMC Bioinformatics          (2019) 20:603 Page 12 of 15

Fig. 6 Significantly varying genes in cultures exposed to antibiotics. aMean insertion counts in CinA. b Saturation in SigE (percent of TA sites with
one or more insertions)

counted toward the mean). We showed with a likelihood
ratio test that ZINB is a much more suitable model for
TnSeq data (insertion counts) than ANOVA or NB (even
when taking into account differences in the number of
parameters).
To capture the conditional dependence of the param-

eters, the ZINB model is implemented as a regres-
sion model (with a log-link function), with vectors of
coefficients to represent how the insertion counts vary
across conditions. Thus the zero-component captures the
changes in the level of saturation of a gene across con-
ditions, and the NB component captures how the mag-
nitudes of counts vary across conditions. Because of the
zero-component included in the ZINB model, there is a
risk that comparisons among datasets with different lev-
els of saturation could result in a systematic inflation of
the number of false positives (i.e. genes that look like they
vary because of differences in the fraction of TA sites hit
in different libraries). In fact, depending on the normal-
ization procedure used, there can be a similar bias in the
magnitudes of read counts that also causes more false
positives when comparing datasets with widely-varying
saturation. To compensate for this, we include “offsets”
in the regression for the overall saturation and non-zero
mean count for each dataset. Thus the coefficients learned
in the model actually represent deviations in count mag-
nitudes and saturation (local to each gene) relative to the
genome-wide averages for each dataset. We showed in a
synthetic experiment that failing to adjust for saturation
differences leads to a large increase in the false-positive
rate when comparing datasets with unbalanced levels of
saturation. Moreover, when comparing replicates of the
same condition against each other (which should not
have any biological differences), we showed that ZINB
detects almost no significantly varying genes, as expected,
suggesting that it does not have a propensity to generate
false positives. A potential limitation of ZINB, is that it can

be sensitive to outliers. However, the impact of spurious
high counts can be ameliorated by non-linear normaliza-
tion methods like the Beta-Geometric correction [42], or
other techniques like winsorization [49].
An important theoretical assumption made in the ZINB

approach is that we model effects on the mean insertion
counts at the gene-level, and treat differences among indi-
vidual TA sites as random. Thus we pool counts at differ-
ent TA sites within a gene, treating them as independent
identically distributed (i.i.d.) samples. It is possible that
different TA sites might have different propensities for
insertion, for example, due to sequence-dependent biases.
However, most Himar1 TnSeq studies to date have viewed
the presence/abundance of insertions at TA sites as effec-
tively random, resulting from stochastic processes dur-
ing library construction (i.e. transfection), and no strong
sequence biases have yet been identified. Early work on
Himar1 transposon libraries in E. coli suggested that inser-
tions were weakly influenced by local DNA bendability
[50]. Subsequently, a small subset (< 9%) of TA sites in
non-essential regions was found to be non-permissive for
insertion, having the consensus (GC)GnTAnC(GC) [51].
But aside from these, no sequence bias has been found to
explain differences in Himar1 insertions at different TA
sites. In the future, if a sequence-dependent insertion bias
were discovered, it is conceivable that the ZINB model
could be modified to include conditional dependence on
individual sites (or perhaps local sequence features). How-
ever, estimating counts at individual sites is subject to
noise and likely to have high uncertainty, because, in many
experiments, there are only one or two replicates of each
condition, and hence only 1-2 observations per site. In the
current approach, we pool counts from different TA sites
in a gene when estimating the non-zero mean for each
gene. An advantage of this simplification is that larger
genes with more TA sites benefit from higher statistical
confidence due to larger numbers of observations.
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The significance of variability in each gene is deter-
mined by a likelihood ratio test, which identifies signifi-
cantly variable genes based on the ability of using distinct
parameters for each condition to increase the likelihood
of the model, compared to a condition-independent null
model (based on fitting parameters to the pooled counts,
regardless of condition). A disadvantage of this approach
is that the likelihood ratio test does not take into account
certainty of the model parameter estimates. Therefore,
Transit automatically filters out genes with insertions at
only a single TA site (i.e. refuse to call them condition-
ally variable), because the coefficients of the model are
too easily fit in a way that makes the likelihood look arti-
ficially high. By default our implementation requires at
least 2 non-zero observations per condition to determine
whether a gene exhibits significant variability across con-
ditions. As with RNAseq, however, inclusion of multiple
replicates increases the number of observations per gene,
and this is a strongly recommended practice [25]. A more
rigorous approach in Transit might be to apply a Wald
test on the significance of the coefficients, which would
also reveal cases where there are too few observations to
be confident in the parameter estimates. More generally, a
Bayesian approach might be better able to adjust (shrink)
parameter estimates in cases of sparse data by combining
them with prior distributions.
One advantage of the ZINB regression framework is that

it can take into account additional information about sam-
ples in the form of covariates and interactions. This is
commonly done in RNA-seq for experiments with more
complex design matrices [52]. Examples include rela-
tionships among the conditions or treatments, such as
class of drug, concentration, time of treatment/exposure,
medium or nutrient supplementation, or genotype (for
animal infections). By incorporating these in the model
(with their own coefficients), it allows the model to factor
out known (or anticipated) effects and focus on identify-
ing genes with residual (or unexplained) variability. It can
also be useful for eliminating nuisances like batch effects.
In theory, the ZINB regression method should work

on TnSeq data from libraries generated with other trans-
posons, such as Tn5 [1]. Tn5 insertions occurmore-or-less
randomly throughout the genome (like Himar1), but are
not restricted to TA dinucleotides, though Tn5 appears
to have a slight preference for insertions in A/T-rich
regions [53]). Thus ZINB regression could be used to
capture condition-dependent differences inmagnitudes of
counts or density of insertions in each gene. However,
Tn5 datasets generally have much lower saturation (typ-
ically < 10%), since every coordinate in the genome is a
potential insertion site, and thus the assumptions under-
lying the normalization procedure we use for Himar1
datasets (TTR) might not be satisfied for Tn5 datasets,
requiring different normalization.

Of course, as with ANOVA, identifying genes that vary
significantly across conditions is often just the first step
and requires follow-up analyses to determine specific
condition-dependent effects. For example, we observed
that the NAD-dependent, nucleoside-recycling gene cinA
was not just variable, but specifically required for toler-
ance of isoniazid. One could employ methods such as
Tukey’s range test [54] to drill down and identify signif-
icantly different pairs of conditions. Another approach
would be to use principle-component analysis (PCA)
to uncover trends/patterns among TnSeq profiles and
identify clusters of conditions producing similar effects
genome-wide [55].
Our results establish the suitability of ZINB as a model

for TnSeq data (insertion counts). Examples of genes
where the phenotype is primarily observed in the satura-
tion of the read-counts, such as SecA2 and SigE, highlight
the advantage of modeling condition-dependent effects
on both the magnitudes of counts in a gene and local level
of saturation independently. Thus, ZINB regression is an
effective tool for identifying genes whose insertion counts
vary across multiple conditions in a statistically significant
way.

Conclusions
We have presented a novel statistical method for identi-
fying genes with significant variability of insertion counts
across multiple conditions based on Zero-Inflated Nega-
tive Binomial (ZINB) regression. The ZINB distribution
was demonstrated to be appropriate for modeling trans-
poson insertion counts because it captures differences
in both the magnitudes of insertion counts (through a
Negative Binomial) and the local saturation of each gene
(through the proportion of TA sites with counts of 0). The
method is implemented in the framework of a General-
ized Linear Model, which allows multiple conditions to be
compared simultaneously, and can incorporate additional
covariates in the analysis. Thus it should make it a useful
tool for screening for genes that exhibit significant vari-
ation of insertion counts (and hence essentiality) across
multiple experimental conditions.
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https://doi.org/10.1186/s12859-019-3156-z.

Additional file 1: Supplemental Table 1 - ZINB output file (spreadsheet,
tab-separated format) containing results from Section 3.2 on comparison
of a TnSeq library forM. tuberculosis H37Rv grown in-vitro versus in
C57BL/6 mice. For each ORF in the genome, an analysis of the mean,
NZ-mean, and saturation in each condition is given, along with p-value and
adjusted p-value. Significantly varying genes are those with padj < 0.05.

Additional file 2: Supplemental Table 2 - ZINB output file containing
results for Section 3.4 on comparison of a TnSeq library forM. tuberculosis
H37Rv grown in presence of five antibiotics, isoniazid (INH), rifampicin (RIF),
ethambutol (EMB), meropenem (MER), and vancomycin (VAN).
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Additional file 3: Data from Mouse Infections, and ZINB Test Example (zip
file) - Experimental data for the mouse experiment in Section 3.2 (.wig files
with transposon insertion counts at TA sites), along with Instructions
(README.docx) on how to do the ZINB analysis in TRANSIT (commands
and output files).
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