Skip to content

Publications

Peer-Review Publications:
  1. Hong, C., Pencina, M.J., Wojdyla, D.M., Hall, J.L., Judd, S.E., Cary, M., Engelhard, M.M., Berchuck, S., Xian, Y., D’Agostino, R. and Howard, G., Henao, R. “Predictive Accuracy of Stroke Risk Prediction Models Across Black and White Race, Sex, and Age Groups”. JAMA (2023).
  2. Engelhard, M., Henao, R., Berchuck, S., Chen, J., Eichner, B., Herkert, D., Kollins, S., Olson, A., Perrin, E., Rogers, U., Sullivan, C., Zhu, J., Sapiro, G., Dawson, G. “Passive autism detection before age 1 from routine electronic health records”. JAMA Network Open (2023).
  3. Kelleher, S.K., Fisher, H.M., Hyland, K.A., Miller, S.N., Amaden, G., Diachina, A., Sweet Pittman, A., Winger, J.G., Sung, A.D., Berchuck, S., Samsa, G., Somers, T.J.. “A Hybrid-Delivered Cognitive Behavioral Symptom Management and Activity Coaching Intervention for Patients Undergoing Hematopoietic Stem Cell Transplant: Findings from Intervention Development and a Pilot Randomized Trial”. In press at Journal of Psychosocial Oncology (2022).
  4. Berchuck, S., Jammal, A., Page, D., Somers, T., Medeiros, F. “A framework for automating psychiatric distress screening in ophthalmology clinics using an EHR-derived AI algorithm”. In press at Translational Vision Science & Technology (2022).
  5. Swaminathan, S., Berchuck, S., Jammal, A., Rao, J.S., Medeiros, F. “Bayesian linear mixed models for estimating rates of change in glaucoma”. Translational Vision Science & Technology (2022).
  6. Pokorney S.D., Berchuck S., Chiswell K., Sun J-L., Thomas L., Jones W.S., Patel M.R., Piccini J.P., “Atrial Branch Coronary Artery Stenosis as a Mechanism for Atrial Fibrillation”, Heart Rhythm (2022).
  7. Jammal, A.J., Berchuck, S., Mariottoni, E., Tanna, A., Costa, V., Medeiros, F. “Blood Pressure and Glaucomatous Progression in a Large Clinical Population”. Ophthalmology (2021).
  8. Gondi, S., Berchuck, S., Brown, R., Hinderlie, M., Easton, L., Smith, L., Berchuck, J., Burden, H., Berchuck, C. “A Community Partnership to House and Care for Complex Patients”. New England Journal of Medicine Catalyst: Innovations in Care Delivery (2021).
  9. Swaminathan, S., Jammal, A., Berchuck, S., Medeiros, F. “Rapid initial OCT RNFL thinning is associated with large visual field losses during follow-up in glaucoma”. American Journal of Ophthalmology (2021). 
  10. Subramandia, V., Engelhard, M., Berchuck, S., Chen, L., Henao, R., and Carin, L. “SpanPredict: Extraction of Predictive Document Spans with Neural Attention.” 2021 Annual Conference of the North American Chapter of the Association for Computational Linguistics.
  11. Stagg, B., Mariottoni, E., Berchuck, S., Jammal, A., Elam, A., Hess, R., Kawamoto, K., Haaland, B., and Medeiros, F. “Longitudinal Visual Field Variability and the Ability to Detect Glaucoma Progression in Black and White Individuals”. British Journal of Ophthalmology (2021).
  12. Camm, J., Fox, K., Virdone, S., Bassand, J.P., Fitzmaurice, D., Berchuck, S., Gersh, B., Goldhaber, S., Goto, S., Haas, S., Misselwitz, F., Pieper, K., Turpie, A., Verheugt, F., Cappato, R., Kakkar, A., for the GARFIELD-AF Investigators. “Comparative effectiveness of oral anticoagulants in everyday practice: Results from the GARFIELD-AF prospective registry”. Heart (2021).
  13. Mariottoni, E.B., Jammal, A., Berchuck, S., Tavares, I.M., Medeiros, F.A. “An Objective Structural and Functional Reference Standard for Diagnostic Studies in Glaucoma”. Scientific Reports (2021).
  14. Berchuck, S., Janko, M., Pan, W., Medeiros, F., and Mukherjee, S. “Bayesian Non-Parametric Factor Analysis for Longitudinal Spatial Surfaces”. Bayesian Analysis (2021).
  15. Jammal, A.J., Berchuck, S., Thompson, A., Medeiros, F. “The Effect of Age on Increasing Susceptibility to Intraocular Pressure Damage in Glaucoma”. Investigative Ophthalmology and Visual Science (2021). *This paper won the Best International Paper at the Brazilian Ophthalmology Conference 2020.
  16. Engelhard, M., Berchuck, S., Garg, J., Henao, R., Olson, A., Rusincovitch, S., Dawson, G., and Collins, S. “Early Healthcare System Utilization among Children Later Diagnosed with Autism Spectrum Disorder or Attention Deficit Hyperactivity Disorder”. Scientific Reports (2020).
  17. Johnson, N., Jammal, A., Berchuck, S., and Medeiros, F.A.“Effect of diabetes control on rates of structural and functional loss in patients with glaucoma”. Ophthalmology Glaucoma (2020).
  18. Berchuck, S., Jammal, A., Mukherjee, S., Somers, T., Medeiros, F. “The Impact of Anxiety and Depression on Progression to Glaucoma Among Newly Diagnosed Glaucoma Suspects”. British Journal of Ophthalmology (2020).
  19. Estrela, T., Jammal, A.J., Mariottoni, E.B., Urata, C.N., Ogata, N.G., Berchuck, S.I., Medeiros, F.A. “The Relationship between Asymmetries of Corneal Properties and Rates of Visual Field Progression in Glaucoma Patients”. Journal of Glaucoma (2020).
  20. Engelhard, M., Berchuck, S., D’Arcy, J, Henao, R. “Neural Conditional Event Time Models”. Machine Learning for Healthcare Conference 2020.
  21. Jammal, A., Thompson, A., Mariottoni, E., Estrela, T., Shigueoka, L., Berchuck, S., Tseng H., Asrani, S., Medeiros, F. “The Impact of Intraocular Pressure Control on Rates of Retinal Nerve Fiber Layer Loss in a Large Clinical Population”. Ophthalmology (2020).
  22. Thompson, A., Jammal, A., Berchuck, S., Mariottoni, E., Wu, Z., Daga, F., Ogata, N., Urata, C., Estrela, T., and Medeiros, F. “Comparing the “Rule of 5” to Trend-based Analysis for Detecting Glaucoma Progression on Optical Coherence Tomography”. Ophthalmology Glaucoma (2020).
  23. Armstrong,S., Bihlmeyer, N., Windom, M., Li J., Shah, S., Story, M., Zucher, N., Kraus, W., Pagidpati, N., Peterson, E., Wong, C., Wiedemeier, M., Sibley, L., Berchuck, S., Merrill, P., Zizzi, A., Sarria, C., Skinner, A. “Rationale and Design of “Hearts & Parks”: A pragmatic randomized clinical trial of an integrated clinic-community intervention to treat pediatric obesity and cardiovascular risk.” BMC Pediatrics (2020).
  24. Jammal, A., Thompson, A., Mariottoni, E., Berchuck, S., Urata, C., Estrela, T., Wakil, S., Costa, V., and Medeiros, F. “Rates of Glaucomatous Structural and Functional Change from Big Data: The Duke Glaucoma Registry Study”. American Journal of Ophthalmology (2020).
  25. Mariottoni, E., Datta, S., Dov, D., Jammal, A., Berchuck, S., Tavares, I., Carin, L., and Medeiros, F. “A Deep Learning Based Mapping of Structure to Function in Glaucoma”. Translational Vision Science & Technology (2020).
  26. Mariottoni, E., Jammal, A., Urata, C., Berchuck, S., Thompson, A., Estrela, T., and Medeiros, F. “Quantification of Retinal Nerve Fibre Layer Thickness on Optical Coherence Tomography with a Deep Learning Segmentation-Free Approach”. Scientific Reports (2020).
  27. Thompson, A., Jammal, A., Berchuck, S., Mariottoni, E., and Medeiros, F. “Performance of a Segmentation-free Deep Learning Algorithm for Diagnosing Glaucoma from Optical Coherence Tomography Scans”, JAMA Ophthalmology (2020).
  28. Berchuck, S., Mukherjee, S., and Medeiros, F. “Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder”. Scientific Reports (2020).
  29. Jammal, A., Thompson, A., Mariottoni, E., Berchuck, S., Urata, C., Estrela, T., Wakil, S., Costa, V., and Medeiros, F. “Human versus Machine: Comparing the Performance of an OCT-trained Deep Learning Algorithm to Detect Perimetric Glaucoma on Fundus Photos”. American Journal of Ophthalmology (2020).
  30. Urata, C., Mariottoni, E., Jammal, A., Ogata, N., Thompson, A., Berchuck, S., and Medeiros, F. “Comparison of Short- And Long-Term Variability On Standard Perimetry and Spectral Domain Optical Coherence Tomography in Glaucoma”. American Journal of Ophthalmology (2020).
  31. Susanna, B.N., Ogata, N.G., Jammal, A.A., Susanna, C.N., Berchuck, S. and Medeiros, F.A. “Corneal Biomechanics and Visual Field Progression in Eyes with Seemingly Well-Controlled Intraocular Pressure”, Ophthalmology (2019).
  32. Berchuck, S., Mwanza, J.C., Warren, J.L. “A Spatially Varying Change Points Model for Monitoring Glaucoma Progression Using Visual Field Data”, Spatial Statistics (2019).
  33. Berchuck, S., Mwanza, J.C., Tanna, A.P., Budenz, D.L., Warren, J.L. “Improved Detection of Visual Field Progression Using a Spatiotemporal Boundary Detection Method”, Scientific Reports (2019).
  34. Berchuck, S., Mwanza, J.C., & Warren, J. “Diagnosing Glaucoma Progression with Visual Field Data Using a Spatiotemporal Boundary Detection Method”, Journal of the American Statistical Association (2019).
  35. Berchuck, S., Warren, J., Herring A.H., Evenson, K., Moore, K., Ranchod, Y., and Diez-Roux, A.V. “Spatially Modeling the Association Between Access to Recreational Facilities and Exercise: The Multi-Ethnic Study of Atherosclerosis”, Journal of the Royal Statistical Society: Series A (2016).
  36. Beamon, C., Carlson, L., Rambally, B., Berchuck, S., Gearhart, M., Hammett-Stabler, C., & Strauss, R. “Predicting neonatal respiratory morbidity by lamellar body count and gestational age”, Journal of Perinatal Medicine (2015).

Submitted Manuscripts:

*Indicates student first-author

  1. *Shi, A., Berchuck, S., Jammal, A., Singh, G., Hunt, S., Roche, K., Mukherjee, S., Medeiros, F. “Identifying risk factors for blindness from glaucoma at first presentation to a tertiary clinic”. Submitted to American Journal of Ophthalmology.
  2. Hyland, K., Amaden, G., Diachina, A., Miller, S., Dorfman, C., Berchuck, S., Winger, J., Somers, T., Keefe., Uronis, H., Kelleher, S. “mHealth Coping Skills Training for Symptom Management (mCOPE) for Colorectal Cancer Patients in Early to Mid-Adulthood: Study Protocol for a Randomized Controlled Trial”. Submitted to Contemporary Clinical Trials Communications.
  3. Chen, J., Engelhard, M., Henao, R., Berchuck, S.,, Eichner, B., Perrin, E., Sapiro, G., Dawson, G. “Enhancing early autism prediction based on electronic records using clinical narratives”. Submitted to Journal of Biomedical Informatics.
  4. DeLaura, I., Sharib, J., Creasy, J., Berchuck, S., Allen, P., Blazer, D., Lidsky, M., Shah, K., Zani Jr., S. “Defining the learning curve for robotic pancreaticoduodenectomy at a single center with an established laparoscopic pancreaticoduodenectomy program”.  Submitted to HPB.
  5. Ahmed, A., Jammal, A., Estrela, T., Berchuck, S., Medeiros, F. “Intraocular Pressure and Rates of Macular Thinning in Glaucoma”. Submitted to Ophthalmology Glaucoma.

Working Manuscripts:

  1. Berchuck, S., Agazzi, A., Mukherjee, S. “Scalable generalized linear mixed model using stochastic gradient Markov chain Monte Carlo”. In preparation to be submitted to Journal of the American Statistical Association.
  2. Berchuck, S., Jammal, A., Page, D., Somers, T., Medeiros, F. “A framework for automating psychiatric distress screening in glaucoma clinics using an EHR-derived AI algorithm”. In preparation to be submitted to Ophthalmology.
  3. *Baek, Y., Berchuck, S., Jammal, A., Mukherjee, S., Medeiros, F. “Bayesian hierarchical regression for non-overlapping spatial surfaces”. In preparation to be submitted to Journal of the American Statistical Association.
  4. Berchuck, S., Medeiros, F., and Mukherjee, S. “Scalable Modeling of Spatiotemporal Data using the Variational Autoencoder: an Application in Glaucoma”.
Policy Brief and Invited Blog Posts
  1. Berchuck, S., and Warren, J.L. “Statistics in Glaucoma: Part III,” R Views: An R community blog edited by RStudio, (December 2018).
  2. Berchuck, S., and Warren, J.L. “Statistics in Glaucoma: Part II,” R Views: An R community blog edited by RStudio, (December 2018).
  3. Berchuck, S., and Warren, J.L. “Statistics in Glaucoma: Part I,” R Views: An R community blog edited by RStudio, (November 2018).
  4. Pathman, D., Holmes, G, Berchuck, S., and Terry, J. “Assessing Shifts in Outpatient Visits to Physicians of Other Specialties in Rural Areas with Shortages of Cardiologists and Gastroenterologists: A Preliminary Analysis,” Policy Brief for the Health Resources and Services Administration, (May 2015). 
For a complete list of publications, talks, and abstracts please see my CV.