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Purpose: To compare the ability of linear mixed models with different random effect
distributions to estimate rates of visual field loss in glaucoma patients.

Methods: Eyeswith fiveormore reliable standard automatedperimetry (SAP) testswere
identified from the Duke Glaucoma Registry. Mean deviation (MD) values from each
visual field and associated timepoints were collected. These data were modeled using
ordinary least square (OLS) regression and linear mixed models using the Gaussian,
Student’s t, or log-gamma (LG) distributions as the prior distribution for random effects.
Model fit was compared using the Watanabe–Akaike information criterion (WAIC).
Simulated eyes of varying initial disease severity and rates of progression were created
to assess the accuracy of each model in predicting the rate of change and likelihood of
declaring progression.

Results: A total of 52,900 visual fields from 6558 eyes of 3981 subjects were included.
Mean follow-up period was 8.7 ± 4.0 years, with an average of 8.1 ± 3.7 visual fields
per eye. The LG model produced the lowest WAIC, demonstrating optimal model fit. In
simulations, the LG model declared progression earlier than OLS (P < 0.001) and had
the greatest accuracy in predicted slopes (P < 0.001). The Gaussian model significantly
underestimated rates of progression among fast and catastrophic progressors.

Conclusions: Linear mixed models using the LG distribution outperformed conven-
tional approaches for estimating rates of SAP MD loss in a population with glaucoma.

Translational Relevance: Use of the LG distribution in models estimating rates of
change among glaucoma patients may improve their accuracy in rapidly identifying
progressors at high risk for vision loss.

Introduction

Detection of disease progression is essential
in caring for patients with glaucoma. Standard
automated perimetry (SAP) is the main testing
modality used to evaluate functional vision loss in
this patient population. An accurate assessment of
rates of SAP change is essential in clinical decision-
making to determine aggressiveness of therapy and
follow-up. Identifying patients who exhibit fast rates
of progression as soon as possible is paramount, as

these individuals are at greatest risk for developing
visual disability.

Estimation of rates of change has traditionally
been made with ordinary least square (OLS) regres-
sion applied to global parameters such as mean devia-
tion (MD) over time. However, OLS-derived estimates
can be very imprecise in the presence of few measure-
ments, a situation that is commonly seen in clinical
practice. Previous studies have shown that, on average,
clinicians obtain less than one visual field test per year
for glaucoma patients.1 With such low frequency of
testing, OLS-derived rates of change would take more
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than 7 years to detect eyes progressing at a moderate
rate of visual field loss.2

OLS-derived rates of change utilize only measure-
ments of the individual patient without accounting for
the overall population from which the patient comes.
Previous work has shown that estimates of rates of
change can be improved using linear mixed models,3–5
which allow data regarding the overall population to
influence these estimates; the accuracy of estimates
can be increased by “borrowing strength” from the
population when fewer data points are available for
a particular patient. Mixed model estimates include a
fixed-effect component that represents the overall rate
of a population and a random-effect component that
reflects the degree of deviation of an individual eye
from the population average. This process creates eye-
specific intercepts and slopes. Although not yet incor-
porated in routine clinical practice, estimates of rates
of change using linear mixed models have been widely
applied in research settings.3–8

A standard linear mixed model assumes that the
random effects follow a Gaussian distribution. When
applied to estimating rates of change, the assumption is
that these rates are normally distributed in the popula-
tion. However, it is known that only a relatively small
proportion of glaucoma patients exhibit moderate or
fast progression, which leads to a skewed distribution
of rates of change in the population.9–11 Prior work
has demonstrated that the assumption of normally
distributed random effects may cause biased estima-
tions of parameters when heterogeneity is present in
a population, as would be expected in the rates of
progression of glaucoma patients.12 Thus, fast progres-
sors may not be properly identified due to shrinkage to
the population mean in a Gaussian model.

Given how ubiquitous the use of mixed models
is in glaucoma research and their potential for clini-
cal applications, it is essential to determine whether
the use of a normal distribution of random effects is
appropriate in this context. In the present work, we
investigated the impact of the random effects distri-
bution on the estimates of rates of visual field loss
and we assessed whether different distributions, such as
Student’s t and log-gamma (LG), would allow for more
accurate estimation of rates of change and detection of
eyes exhibiting fast progression.

Methods

Data Collection

The dataset used in this study was derived from the
Duke Glaucoma Registry developed by the Vision,
Imaging and Performance Laboratory of Duke

University.13 Institutional review board approval was
obtained for this analysis, and a waiver of informed
consent was provided due to the retrospective nature
of this work. All methods adhered to the tenets of
Declaration of Helsinki for research involving human
participants.

The database contained clinical information from
baseline and follow-up visits, including patient
diagnostic and procedure codes, medical history,
and imaging and functional tests. The study included
patients previously diagnosed with primary open-angle
glaucoma or suspected of glaucoma based on Interna-
tional Classification of Diseases (ICD) codes. Patients
were excluded if they presented with other ocular
or systemic diseases that could affect the optic nerve
or visual field, including retinal detachment, retinal or
malignant choroidal tumors, non-glaucomatous disor-
ders of the optical nerve and visual pathways, atrophic
and late-stage dry age-related macular degeneration,
amblyopia, uveitis, and/or venous or arterial retinal
occlusion, according to ICD codes. Tests performed
after treatment with panretinal photocoagulation,
according to Current Procedural Terminology (CPT)
codes, were excluded. ICD and CPT codes used to
construct this database have been extensively detailed
in a previous work.13 In addition, eyes that underwent
trabeculectomy or aqueous shunt surgery were identi-
fied using CPT codes. For those eyes, only visual fields
obtained before surgery were included, given the likely
abrupt postsurgical alteration in the rate of change of
SAP MD.

Glaucomatous eyes were identified as having an
abnormal visual field at baseline (i.e., Glaucoma
Hemifield Test [GHT] “outside normal limits” or
pattern standard deviation [PSD] probability < 5%).
Eyes suspected of glaucoma were identified with a
“normal” or “borderline” GHT result or PSD proba-
bility >5% at baseline. All eligible subjects had SAP
testing completed using the Humphrey Field Analyzer
II or III (Carl Zeiss Meditec, Jena, Germany). SAP
tests included 24-2 and 30-2 Swedish Interactive
Threshold Algorithm tests with size III white stimulus.
Visual fields were excluded from this analysis if they
had greater than 15% false-positive errors, greater than
33% fixation losses, or greater than 33% false-negative
errors or if the result of the GHT was “abnormally
high sensitivity.” For this study, subjects were required
to have five or more visual fields and ≥2 years of
follow-up time.

Model Formulation

OLS regressions were completed using standard
linear regression for each eye. Bayesian linear mixed
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models were subsequently constructed. Bayesian statis-
tics provide a probabilistic framework to address
questions of uncertainty, such as the true rate of
change in a glaucomatous eye. Prior distributions,
which reflect an initial belief, are used in conjunc-
tion with available data (referred to as the likelihood)
in order to generate estimates of specified param-
eters (posterior distributions.) For these models, a
random-intercept and random-slope Bayesian hierar-
chical model was fitted for the SAP MD data:

Yit = β0 + β0i + (β1 + β1i) ∗ xit + εit

where Yit represents the SAP MD value at time t
of eye i, β0 represents the fixed intercept for the
overall population, β1 represents the fixed slope for
the overall population, and β0i and β1i represent eye-
specific random intercepts and slopes, respectively.
In all models, the prior distributions for β0, β1,
and the error term (εit) were normally distributed.
However, the prior distributions of the random effects
differed as noted below. A correlation term with
an unstructured correlation matrix was included in
the model to account for associations between inter-
cept and slope values. Of note, random effects were
placed at the eye level; a more complex model with
the eye nested within the patient did not provide
additional improvement in the model, thus the simpler
model is described here. The correlation between
intercept and slope was modeled using an unstruc-
tured covariance for the Gaussian and Student’s t-
distribution models, whereas a covariance structure
previously described was used for the log-gamma
model.14

Gaussian, Student’s t, and LG distributions were
used to model the random effects of intercepts and
slopes. The LG distribution is a left-skewed distri-
bution that is sufficiently flexible to allow for more
extreme negative values while maintaining a peak close
to zero.15 Recent work has suggested that the LG
distribution may be a more appropriate distribution
in estimating the intercepts and slopes of MD and
VFI, given the inherent left skew of these data16; the
majority of eyes have values of intercepts and slopes
near zero, but a smaller proportion of eyes have more
extreme values.

In each model, the same distribution was used to
model the random effects for both the intercept and
slope. All statistical analyses were performed using R
3.6.3 (RFoundation for Statistical Computing, Vienna,
Austria). For the Gaussian and Student’s t distribu-
tions, the brms package in R was utilized. This package
computes estimates of the posterior distributions using
Stan, which is a C++ probabilistic Bayesian program-
ming interface using open-source Hamiltonian Monte

Carlo (HMC) sampling (Stan Development Team).
HMC sampling is thought to be superior to traditional
Markov chain Monte Carlo sampling, as this method
can achieve a more effective exploration of the poste-
rior probability space without inducing high rates of
autocorrelation.17 For the LG distribution, the prior
distribution was directly coded into Stan via the rstan
R package.

Data Analysis

Bayesian linear mixed models were compared using
theWatanabe–Akaike information criterion (WAIC), a
metric that reflects the overall fit of a Bayesian model.
For each model, estimates of the posterior distribu-
tions of the parameters were obtained after running
four chains with 8000 iterations (burn-in of 1000 itera-
tions) per chain (i.e., a total of 28,000 iterations).
These models were completed using high-performance
computing servers on the University of Miami Triton
supercomputer. Convergence of the generated samples
was confirmed by evaluating trace plots and autocor-
relation diagnostics. Summary measures, including
posterior estimates of the fixed effects (β0 and β1), were
calculated. Mean posterior estimated intercepts and
slopes were calculated for each eye by adding the fixed
and random effects of each draw and averaging these
values for all draws corresponding to each eye. Eyes
were defined as progressors if the one-sided Bayesian P
value was less than 0.05. OLS progressors were defined
as those with a statistically significant negative rate of
change (P < 0.05, one-sided).

For predictive modeling, OLS and Bayesian models
were constructed using different numbers of visual
fields and assessing their ability to predict future obser-
vations. For example, a model using the MD values
from the first three visual fields was constructed. This
model was then used to generate a predicted value for
the MD of the fourth, fifth, sixth, seventh, and eighth
visual field. This process was repeated using the first
four visual fields to predict the MD of the fifth, sixth,
seventh, and eighth visual field and so on, up to amodel
that used the first seven visual fields to predict the MD
of the eighth visual field. The mean squared predic-
tion error (MSPE) of all Bayesian models and the OLS
were compared at each visual field. Bootstrapped 95%
confidence intervals were calculated for the MSPE for
each model and at each visual field visit using 200
bootstrap samples. In addition to confidence inter-
vals, we used ANOVA to perform a formal statisti-
cal hypothesis test that compared the MSPE across
models. Tukey’s honest significant difference test was
used to test pairwise comparisons.
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Simulation Description

In preparation for simulations, the observed dataset
from theDukeGlaucomaRegistry was split in an 80%–
20% fashion at the patient level. The 80% portion was
used to train the Gaussian, Student’s t, and LGmodels
that were subsequently used to evaluate the simulated
eyes. The remaining 20% of the observed dataset was
used to create a distribution of residuals for use in the
simulations as detailed below.

In order to evaluate the ability of the models to
estimate a diverse range of potential rates of change
in glaucomatous and stable eyes, a set of simulated
eyes was created. A total of 15 different “settings”
were then generated from the combination of three
intercept categories (mild, moderate, and severe) and
five slope categories (non-progressor, slow, moderate,
fast, and catastrophic). An intercept corresponding
to mild, moderate, and severe disease at baseline was
defined as an eye with a baseline MD between 0 and
−6 decibels (dB), −6 and −12 dB, and −12 and −18
dB, respectively. These values were chosen to simulate
patients with mild, moderate, and severe glaucoma at
baseline using the Hodapp–Anderson–Parrish classifi-
cation system.18 Non-progressors were defined as those
with a slope of 0 dB/y. Slow, moderate, fast, and catas-
trophic progressors were defined as eyes with a slope
between 0 and −0.5 dB/y, −0.5 and −1.0 dB/y, −1.0
and −2.0 dB/y, and −2.0 and −4.0 dB/y, respectively.
These categories have been previously defined10,13 and
were chosen to simulate eyes with varying rates of
disease progression.

A total of 100 simulated eyes were generated for
each setting, with the individual intercept and slope
values randomly selected from the respective range
of values. For each eye, a longitudinal sequence of
visual field tests was simulated. Simulated timepoints
of visual field testingwere 0, 0.5, 1.5, 2.5, 3.5, 4.5, 5, and
5.5 years. Given that clinicians typically obtain visual
fields every 6 to 12 months,1,19 timepoints with inter-
vals of 6 or 12 months were chosen. At each timepoint,
the “true”MD value was based on the simulated inter-
cept and slope. For example, assuming a “true” inter-
cept of −4 dB and a “true” slope of −1 dB/y, “true”
MD values would be−4,−4.5,−5.5,−6.5,−7.5,−8.5,
−9, and −9.5 dB at the simulated timepoints. As visual
field data are affected by noise, we added a residual
value to each “true” MD value, according to a previ-
ously described methodology.2,20,21

As noted above, 20% of the observed dataset was set
aside and not used to train the models but rather was
used to create a distribution of residuals binned to each
decibel value. The only exceptions were MD values ≤
−23 dB; in order to create a sufficiently large sampling

distribution, residuals binned to these extreme values
were pooled. Each bin contained at least 45 residu-
als. This process constructed multiple distributions of
residuals that reflect the heterogeneity in test variabil-
ity that exists across the spectrum of disease sever-
ity.22 For each test in the sequence of visual fields, a
residual value was randomly sampled from the distri-
bution corresponding to the “true” MD. This noise
component was then added to the “true” value. For
example, for a “true” MD of −4 dB, the distribu-
tion of residuals corresponding to −4 dB would be
randomly sampled and a residual of +0.5 dB might be
selected. This sampling would result in a simulatedMD
value of −3.5 dB. Using randomly selected residuals
for the example above, a simulated set of values might
be −3.5, −3, −4.7, −7, −7.8, −9, −8.3, and −11 dB.
This simulated eye with these data points mimicking
“real-world” observations and their inherent variabil-
ity was then evaluated by OLS and Bayesian models as
described below.

Evaluating the Simulated Data

These 1500 simulated eyes were then independently
evaluated by the OLS, Gaussian, Student’s t, and LG
models (which had been trained on 80% of the dataset)
to obtain estimates of the eye-specific intercepts and
slopes. Performance of the models was assessed within
each simulation setting using bias and by calculat-
ing the rates of declared glaucomatous progression.
Bias was defined as the difference between the true
and estimated posterior slope; negative values of
bias indicate underestimation of slope, positive values
indicate overestimation of slope, and values closer to
zero reflect more optimal prediction. Bias values were
pooled across the intercept groups and were compared
at each timepoint and for each progressor group using
the Kruskal–Wallis test with the Dunn test for pairwise
comparisons with Šidák correction. Given multiple
comparisons, Bonferroni correction was applied, and
an alpha value of 0.05/24 = 0.0021 was used to deter-
mine statistical significance. The 95% credible intervals
of bias for each model at each setting were also calcu-
lated. These intervals reflect that there is a 95% proba-
bility that the true value of bias lies within the calcu-
lated range. The 95% credible intervals that exclude
zero indicate significant underestimation of the slope
(e.g., a 95% credible interval of −2.5 to −0.5 indicates
that the model significantly underestimates the slope).

Rates of declaring progression were presented using
cumulative event curves to compare the percentage
of eyes that were declared to be progressing at each
timepoint by the different models. To make these rates
comparable, the P value cutoff used for declaring
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progression in these simulated eyes was set to only
allow 2.5% of non-progressor eyes to be erroneously
identified as progressors (i.e., a false-positive rate of
2.5%). P value cutoffs were specified uniquely for each
intercept range and timepoint. For each setting, the
log-rank test was used to determine if the curves were
significantly different. Finally, hazard ratios were calcu-
lated to determine if the Bayesian models differed
in time to declaring progression, using Cox propor-
tional hazards regression. Median time to declared
progression was calculated for the different settings as
the timepoint at which ≥50% of simulated eyes were
declared as progressors.

Results

The study included 6558 eyes of 3981 subjects with
a mean age of 58.7 ± 16.0 years at the time of the
baseline visual field. A total of 52,900 visual fields
were deemed reliable and evaluated. Mean follow-
up period was 8.7 ± 4.0 years, with an average of
8.1 ± 3.7 visual fields per eye (range, 5–34). Table
1 contains additional patient characteristics. Female
subjects comprised 58.2% of the cohort, and 31.5%
identified as black. A total of 4615 eyes (70.4%)
had glaucomatous disease at baseline, and 1943 eyes
(29.6%) were suspected of glaucoma. Mean MD at
baseline was −4.23 ± 5.29 dB in the overall cohort.

There was large variation in the baseline MD of the
eyes, ranging from −31.72 to 2.58 dB.

Distributions of OLS slopes and the posterior
estimated slopes of Bayesian models varied greatly
(Fig. 1, Table 2). The Gaussian model demonstrated
a substantial shrinkage of estimates with a smaller
range of slopes. In contrast, the range of slopes of
the Student’s t model included both extreme negative
and positive values, whereas the range of slopes of the
LG model captured extreme negative values without
extreme positive slopes (Fig. 2; “eye-specific slopes”
in Table 2). The LG model produced the lowest WAIC
value, indicating that the LG model provided the
optimal fit for the data compared with the Gaussian
and Student’s t models (Table 2). When comparing
the results of predictive modeling using a limited
number of visual fields, Bayesian models consistently
performed better comparedwithOLS, producing lower
MSPE values for each predicted visual field MD value
(Fig. 2). Overall mean MSPE values of the OLS,
Gaussian, Student’s t, and LG predictions were 232.6
± 91.3, 5.2 ± 0.3, 24.2 ± 9.6, and 7.9 ± 0.7, respec-
tively, with significant differences noted between each
Bayesian model and OLS (P < 0.01 for pairwise
comparisons) at each timepoint until five visual fields
were utilized in the models. At this point, the Student’s
t predictions were no longer significantly different
compared with those of OLS (P = 0.84), but MSPE
from the Gaussian and LG models remained signif-

Table 1. Demographics and Clinical Characteristics at Baseline of the Subjects Included in the Study (N = 6558
Eyes of 3981 Patients)

Characteristic

Baseline age (y), mean ± SD 58.7 ± 16.0
Sex, female, n (%) 2356 (59.2)
Race, Black or African American, n (%) 1254 (31.5)
SAP tests, n 52,900
Follow-up time (y) 8.7 ± 4.0
Mean ± SD
Median (IQR) 8.1 (5.6–11.2)

Number of tests per eye, n (%)
Mean ± SD 8.1 ± 3.7
Median (IQR) 7.0 (6.0–9.0)

Baseline SAP MD (dB)
Mean ± SD –4.23 ± 5.29
Median (IQR) –2.47 (–5.84 to –0.71)

Baseline Hodapp–Anderson–Parrish glaucoma severity, n (%)
Mild 1390 (21.2)
Moderate 1801 (27.5)
Severe 1424 (21.7)
Glaucoma suspect 1943 (29.6)
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Figure 1. Quantile–quantile plots describing the distributions of the estimated slopes from (A) OLS regression and posterior estimated
slopes from the (B) Gaussian, (C) Student’s t, and (D) log-gamma Bayesian linear mixed models. Deviations from the line indicate that the
distributions are non-normal. OLS and Student’s tmodels demonstrated a wider range of slopes with more positive and negative extreme
values, whereas the Gaussianmodel demonstrated amore normal distribution of slopeswith shrinkage to themean. The log-gammamodel
demonstrated more extreme negative values, indicating a left-skewed distribution.

icantly lower than those of OLS (P = 0.01 and P
= 0.02, respectively). When seven visual fields had
been utilized, all Bayesian model predictions were non-
significant compared with OLS. Of note, differences
in the MSPE of the Gaussian, Student’s t, and LG
predictions were not statistically significant at any
timepoint.

The distributions of slopes of all eyes and progres-
sors from the various models are presented in Tables
3 and 4, respectively. Compared with the Gaussian
model, the LG and Student’s t models identified a
greater number of eyes with faster rates of MD loss
among all eyes and progressors. For example, the
Gaussian model identified only 8.0% of all progres-
sors as having fast progression and only 0.5% as having
catastrophic progression. The LG model identified
almost 2 times more progressor eyes as having fast

progression (15.2%) and over 5 times more as having
catastrophic progression (2.7%) (Table 4).

Simulations demonstrated that the LG model was
optimal in terms of accuracy as evidenced by the lowest
degree of bias. Bias from the LG model was signifi-
cantly lower than that of the Gaussian and Student’s
t models in all settings, most notably among fast and
catastrophic progressors (Fig. 3). Among fast and
catastrophic progressors, mean bias values from the
LG, Student’s t, and Gaussian models were −0.51 ±
0.49, −0.62 ± 0.51, and −1.20 ± 0.67 dB/y, respec-
tively (P = 0.008, Kruskal–Wallis). When evaluating
95% credible intervals of bias, Gaussian models persis-
tently underestimated the true slope. Gaussian credible
intervals excluded zero when using the first three visual
fields amongmoderate progressors; when using the first
three, four, or five visual fields among fast progres-
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Table 2. Bayesian Linear Mixed Model Characteristics Using Varied Random Effect Distributions

Population
Intercept (β0)

(dB), Mean ± SE

Eye-Specific Intercepts
(dB), Median (IQR)

[Range]
Population Slope (β1)
(dB/y), Mean ± SE

Eye-Specific Slope
(dB/y), Median (IQR)

[Range] WAIC

Gaussian –3.93 ± 0.06 –2.24 (–5.37 to –0.66)
[–26.38 to 5.07]

–0.15 ± 0.01 –0.09 (–0.26 to 0.01)
[–2.89 to 1.55]

218,562

Student’s t –1.87 ± 0.04 −2.15 (–5.15 to –0.79)
[–27.75 to 5.87]

–0.07 ± 0.01 –0.07 (–0.19 to –0.01)
[–6.93 to 6.01]

215,711

Log-gamma –3.80 ± 0.06 –2.10 (–5.19 to –0.66)
[–27.47 to 3.40]

–0.29 ± 0.01 –0.07 (–0.29 to 0.07)
[–6.35 to 1.86]

214,188

Eye-specific intercepts and slopes are estimates derived from the posterior distributions and include both fixed and random
effect components. Boldface indicates lowest WAIC, demonstrating best model fit.

Figure 2. MSPE of OLS regression and Bayesian linear mixed models in predicting the mean deviation of subsequent visual fields. MSPE
values for the models constructed using the first (A) three visual fields, (B) four visual fields, (C) five visual fields, (D) six visual fields, and
(E) seven visual fields of an eye are shown. The x-axis represents the predicted visual field. Error bars represent bootstrapped 95% confidence
intervals.

sors; and when using the first three, four, five, six, or
seven visual fields among catastrophic progressors. In
contrast, all 95% credible intervals of the Student’s t
and LG models contained zero, indicating that these
models did not severely underestimate the slope.

Cumulative event curves demonstrated a signifi-
cant difference among the regression models (P <

0.01, log-rank) (Fig. 4). Although all three Bayesian
models performed similarly in terms of time to
declaring progression (P > 0.05, Cox hazard ratio),

they were significantly quicker to identify progression
compared to OLS among moderate, fast, and catas-
trophic progressors (P < 0.001, Cox hazard ratio).
Median times to progression in the moderate, fast,
and catastrophic progressors were consistently lower
among Bayesian models compared with OLS (Table 5).
The average median time to progression was lower in
the LG model (2.8 years) compared with the Student’s
t (3.0 years), Gaussian (3.2 years), and OLS (4 years)
models.
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Table 3. Distribution of Slopes Estimated by OLS Regression and Bayesian Linear Mixed Models of All Eyes

dB/y, n (%)

<0 to <–0.5 <–0.5 to –1 <–1 to –2 <–2

OLS 3046 (46.4) 678 (10.3) 266 (4.1) 60 (0.9)
Gaussian 3960 (60.4) 552 (8.4) 117 (1.8) 8 (0.1)
Student’s t 4553 (69.4) 419 (6.4) 164 (2.5) 38 (0.6)
Log-gamma 3181 (48.5) 642 (9.8) 222 (3.4) 39 (0.6)

Slopes of the Bayesian models are estimates derived from the posterior distributions.

Table 4. Distribution of Slopes Estimated by OLS Regression and Bayesian Linear MixedModels of Eyes Identified
as Progressors

dB/y, n (%)
Mean Slope (dB/y),

Progressors, n Mean ± SD <0 to <–0.5 <–0.5 to –1 <–1 to –2 <–2

OLS 1679 –0.62 ± 0.55 907 (54.0) 510 (30.4) 212 (12.6) 50 (3.0)
Gaussian 1466 –0.55 ± 0.32 792 (54.0) 549 (37.5) 117 (8.0) 8 (0.5)
Student’s t 1452 –0.58 ± 0.54 850 (58.5) 400 (27.5) 164 (11.3) 38 (2.6)
Log-gamma 1463 –0.69 ± 0.51 639 (43.7) 563 (38.4) 222 (15.2) 39 (2.7)

Slopes of the Bayesian models are estimates derived from the posterior distributions.

Table 5. Median Time to Declared Progression (in
Years) Among Different Progressor Groups With OLS
Regression and Bayesian Linear Mixed Models

Slow Moderate Fast Catastrophic

OLS N/A 5.0 4.2 3.2
Gaussian N/A 4.5 2.8 2.2
Student’s t N/A 4.8 2.5 1.8
Log-gamma N/A 4.3 2.5 1.8

None of the models reached 50% in declared progression
after 5.5 years for slow progressors. The third, fourth, fifth,
sixth, and seventh visual fields occurredat 1.5, 2.5, 3.5, 4.5, and
5.0 years, respectively.

Discussion

In this study, we compared the effect of various
random effect distributions on estimating rates of
visual field change using Bayesian linear mixed models
with a large dataset of over 6000 eyes. Bayesian models
provided significantly improved predictions compared
with conventional OLS regression when only a limited
number of visual fields were available. Among the
distributions tested for Bayesian models, the LG was
optimal in terms of overall model fit with the lowest
WAIC value. In addition, simulations showed that the
LGmodel had the lowest bias and was sufficiently flexi-
ble to rapidly identify fast progressors. These findings

suggest that Bayesianmodels using the LG distribution
may offer significant advantages compared with more
traditional approaches in modeling rates of change in
glaucoma.

Our results showed the value of the Bayesianmodels
compared with OLS regression when estimating rates
of change in the presence of relatively few observa-
tions. Bayesian models consistently outperformed OLS
in quickly declaring progression, especially among fast
and catastrophic progressors. For example, after only
1.5 years (three visual fields) in the “mild/catastrophic”
setting (Fig. 4), the LG and Gaussian models declared
progression in over 80% of true progressors, whereas
OLS detected only 18%of progressors.Wu et al.2 previ-
ously demonstrated that with the use of OLS 80% of
eyes progressing at −2 dB/y would be identified as
progressors only after 2.1 years if three visual fields
were performed per year (i.e., after six visual fields
were completed). Although the benefit of Bayesian
linear mixed models over OLS appeared to decline
when seven tests were available (Fig. 2), obtain-
ing visual fields at a sufficiently high frequency to
procure such a large number of tests is often challeng-
ing in clinical practice. The reduction in time to
progression using a minimal number of visual fields
with Bayesian modeling may be of great value to
the clinician. Median time to progression was lower
among Bayesian models, especially for the LG model
(Table 5).
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Figure 3. Comparison of bias in posterior estimated slopes of all Bayesian linear mixed models by number of visual fields used in the
model to assess simulated eyes. Different progressor groups are shown: (A) slow, (B) moderate, (C) fast, and (D) catastrophic progressors. The
asterisk (*) indicates a statistically significant difference between the LGmodel and the respectivemodel using the Kruskal–Wallis and Dunn
tests.

The LG model demonstrated the greatest accuracy
with the lowest amount of bias among different
progressor groups (Fig. 3). Zhang et al.16 previously
demonstrated the value of the LGmodel, as it provided
a better fit for SAP data derived from 203 patients
in a prospective study compared with a Gaussian
model. The authors also constructed a joint longitudi-
nal model using functional SAP and structural optical
coherence tomography data, which demonstrated a
stronger correlation between functional and structural
rates of change when the LG model was utilized. Our
work confirms the better fit of the LGmodel in a much
larger dataset.

We found it interesting that the Bayesian models
identified fewer eyes as progressors compared with
OLS. Prior studies had indicated that OLS identi-

fied fewer progressors compared with Bayesianmodels,
although these studies evaluated smaller datasets of
eyes with fewer numbers of tests.3,4 We believe that
this discrepancy is due to the greater number of tests
that were available in the current dataset (mean of 8.1
visual fields per eye).When evaluating those eyes identi-
fied as progressors by OLS but not by the Gaussian,
Student’s t, and LG models, the average OLS rates of
change were −0.30 ± 0.25 dB/y (interquartile range
[IQR], −0.35 to −0.14), −0.31 ± 0.26 dB/y (IQR,
−0.38 to −0.14), and −0.28 ± 0.21 dB/y (IQR, −0.34
to −0.14), respectively. These values are reflective of
slow rates of change, which would not be as worrisome
to the clinician and would be unlikely to lead to severe
vision loss. In contrast, when evaluating eyes identi-
fied as progressors by the Gaussian, Student’s t, and
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Figure 4. Cumulative event curves demonstrating cumulative probability of declaring glaucomatous progression in various simulation
settings. The first term of each setting refers to the baseline disease severity, and the second refers to the rate of change. The curves of the
three Bayesian linear mixedmodels and OLS regression were compared with the log-rank test, and the respective P values are presented for
each setting. Of note, the third visual field occurred at 1.5 years and the fifth visual field occurred at 3.5 years in these simulations.

LG models but not by OLS, the average OLS rates of
change were−0.64± 0.57 dB/y (IQR,−0.78 to−0.30),
−0.62 ± 0.57 dB/y (IQR, −0.76 to −0.26), and −0.68
± 0.58 dB/y (IQR, −0.86 to −0.31) respectively. OLS
was unable to confirm progression among these eyes
displaying a faster rate of change, which would be of
greater concern and clinical importance. Although the
Bayesianmodels may have identified fewer progressors,
the clinical relevance of the progressors identified by
these models appears to be greater.

Given the higher percentage of eyes with faster rates
of change in the LG model (Table 4), one might also

be concerned about overestimation of slopes. However,
bias data from the simulations demonstrated that 95%
credible intervals of the LG model never included 0,
indicating that this model did not significantly overes-
timate rates of change. Although MSPE values were
comparable between LG and Gaussian models (Fig.
2), the LG model was able to estimate the rate of
fast and catastrophic progressors more accurately. In
contrast, the Gaussian model underestimated these
rates, with bias values twice as large on average. In the
observed data, the Gaussian model was more likely
to shrink estimates closer to the population mean

Downloaded from tvst.arvojournals.org on 03/02/2022



LMMs With Varied Random Effect Distributions TVST | February 2022 | Vol. 11 | No. 2 | Article 16 | 11

(Tables 3 and 4). These findings serve as a warning
that linear mixed models using the Gaussian distribu-
tion to describe visual field data will likely underesti-
mate the rates of change among this subset of patients.
These individuals are arguably the most important to
identify because they are at high risk for visual disabil-
ity. Although most glaucoma patients will progress
if followed for a sufficient amount of time, rates of
change vary greatly.3 The magnitudes of these rates
are crucial to clinical care; whereas slow progressors
may be carefully observed, fast progressorsmay need to
be treated more aggressively in order to prevent vision
loss. Therefore, accurate estimation of rates of change
is essential to characterizing the nature of a patient’s
disease. The LG model was able to accurately identify
fast progressors while still characterizing the majority
of eyes as slow or non-progressors.

Limitations of this study include the assumption
that eyes exhibit a linear rate of change over time.
In particular, fast progressors may demonstrate some
degree of nonlinear change. These nonlinear rates of
change might have affected the magnitude of residu-
als in the sampling distribution utilized in the simula-
tion portion of this study. Although it is likely that
visual field losses are nonlinear over the full course
of the disease,23–25 a linear approximation is likely a
reasonable approximationwithin the limited timeframe
used to make most clinical decisions. We also assumed
a constant correlation between intercept and slope
regardless of disease severity. In clinical practice, severe
glaucoma patients are often aggressively monitored
and treated, leading to a reduction in correlation
between baseline disease (i.e., the intercept) and rate of
change (the slope). In addition, the retrospective data
collection does not provide insight into augmentation
of medical therapy, which could affect rate of progres-
sion. It is possible that additional medical or laser
therapies may have occurred between visual field tests.
The censoring protocol described above only pertained
to surgical glaucoma cases. Finally, other potential
distributions exist to model random effects which were
not evaluated in the present study.We empirically chose
the Gaussian, Student’s t, and LG models for compar-
ison given clinical knowledge regarding the distribu-
tion of SAP MD in large populations. Further studies
should investigate whether other distributions may
provide advantages compared with the ones assessed
in our work.

In summary, we have demonstrated that a Bayesian
hierarchical model using the LG distribution provides
the optimal model fit for a large SAP dataset compared
with Gaussian and Student’s t distributions. The LG
model is sufficiently flexible to accurately character-
ize non-progressors, slow progressors, and fast progres-

sors. Although Gaussian and LG models are compa-
rable in predicting future SAP MD values, Gaussian
models tend to underestimate fast progressors. The
LG model was optimal in predicting the rates of
change with greatest accuracy while rapidly identifying
progressors. These findings may have significant impli-
cations for estimation of rates of visual field progres-
sion in research and clinical practice.
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