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Human Versus Machine: Comparing a Deep
Learning Algorithm to Human Gradings for
Detecting Glaucoma on Fundus Photographs
ALESSANDRO A. JAMMAL, ATALIE C. THOMPSON, EDUARDO B. MARIOTTONI, SAMUEL I. BERCHUCK,
CARLA N. URATA, TAIS ESTRELA, SUSAN M. WAKIL, VITAL P. COSTA, AND FELIPE A. MEDEIROS
� PURPOSE: To compare the diagnostic performance of
human gradings vs predictions provided by a machine-
to-machine (M2M) deep learning (DL) algorithm trained
to quantify retinal nerve fiber layer (RNFL) damage on
fundus photographs.
� DESIGN: Evaluation of a machine learning algorithm.
� METHODS: An M2M DL algorithm trained with RNFL
thickness parameters from spectral-domain optical coher-
ence tomography was applied to a subset of 490 fundus
photos of 490 eyes of 370 subjects graded by 2 glaucoma
specialists for the probability of glaucomatous optical
neuropathy (GON), and estimates of cup-to-disc (C/D)
ratios. Spearman correlations with standard automated
perimetry (SAP) global indices were compared between
the human gradings vs the M2M DL–predicted RNFL
thickness values. The area under the receiver operating
characteristic curves (AUC) and partial AUC for the re-
gion of clinically meaningful specificity (85%-100%)
were used to compare the ability of each output to
discriminate eyes with repeatable glaucomatous SAP de-
fects vs eyes with normal fields.
� RESULTS: The M2M DL–predicted RNFL thickness
had a significantly stronger absolute correlation with
SAP mean deviation (rho[0.54) than the probability of
GON given by human graders (rho[0.48; P < .001).
The partial AUC for the M2M DL algorithm was signifi-
cantly higher than that for the probability of GON by hu-
man graders (partial AUC [ 0.529 vs 0.411,
respectively; P [ .016).
� CONCLUSION: An M2M DL algorithm performed as
well as, if not better than, human graders at detecting
eyes with repeatable glaucomatous visual field loss. This
DL algorithm could potentially replace human graders
in population screening efforts for glaucoma. (Am J
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G
LAUCOMA IS A PROGRESSIVE OPTIC NEUROPATHY

that is the leading cause of irreversible blindness
worldwide.1 The number of people with glaucoma

is predicted to increase by 74% from 2013 to 2040, and will
disproportionately impact the underserved regions of the
world, such as Africa and Asia.2 Moreover, it is estimated
that in developing countries, up to 90% of glaucoma pa-
tients do not know they have the disease.3 Therefore, there
is a pressing need for developing effective screening strate-
gies that can be used for early detection of glaucoma.
The development of imaging technologies such as

spectral-domain optical coherence tomography (SD
OCT) has enabled accurate and reproducible quantifica-
tion of early glaucomatous damage on optic nerve im-
ages.4,5 However, although routinely used in clinical
practice, SD OCT is too expensive to be used for wide-
spread screening and requires experienced operators for
image acquisition. Fundus photography is a low-cost and
easy-to-acquire method to identify signs of glaucomatous
damage to the optic nerve.6 However, detection of glau-
coma on fundus photographs requires subjective grading
by human experts, which can be laborious and costly.
More importantly, previous studies have shown that hu-
man graders, even those with extensive clinical experience,
tend to over- or underestimate glaucomatous damage when
assessing fundus photographs.7 The requirement for subjec-
tive human grading of photos has thus resulted in poor
reproducibility and accuracy, greatly limiting the use of
fundus photos for glaucoma screening.8–12

Artificial intelligence, by the use of deep learning (DL)
convolutional neural networks (CNN), has recently
become the state-of-the-art method for computer vision
tasks, such as image classification, with performance
that can sometimes even surpass those of humans.13–15

In ophthalmology, DL algorithms have been successfully
used to detect signs of diabetic retinopathy and age-
related macular degeneration on fundus photographs.16,17

DL algorithms also have been developed to detect signs of
glaucomatous damage on photographs.18,19 To provide
the ground-truth or reference standard to train the
deep-learning network, these previous approaches have
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used human labeling of the same photographs. However,
when a DL classifier is trained to replicate subjective hu-
man gradings, it is bound to make the same mistakes that
humans do when attempting to detect glaucoma on
fundus photos.

In a previous study, we proposed a new machine-to-
machine (M2M) approach to train DL algorithms to detect
glaucomatous damage on fundus photographs.20 Rather
than using subjective human gradings as the reference la-
bel, we used objective SD OCT-derived measurements of
retinal nerve fiber layer (RNFL) thickness for training
the networks. We showed that the M2M algorithm was
able to successfully predict RNFL thickness measurements
from SD OCT by using simple color fundus photographs.
Training a network with objective SD OCT data could
eliminate the need to rely on subjective, error-prone photo
labels by human graders.

In the present work, we compared the ability of theM2M
DL algorithm to that of human graders in detecting eyes
with glaucomatous visual field loss. We hypothesized that
the SDOCT–trainedM2M predictions would have a stron-
ger correlation with visual field metrics than subjective
gradings by human experts, thus providing an additional
required validation of this approach as a method to screen
for glaucomatous damage.
METHODS

THIS WAS A CROSS-SECTIONAL STUDY WITH DATA DRAWN

from the Duke Glaucoma Repository, a database of elec-
tronic medical and research records developed by the
Vision, Imaging and Performance (VIP) Laboratory from
the Duke Eye Center. The Duke Institutional Review
Board approved this study. A waiver of informed consent
was granted because of the retrospective nature of this
work. All methods adhered to the tenets of the Declaration
of Helsinki for research involving human subjects and were
conducted in accordance with regulations of the Health In-
surance Portability and Accountability Act.

The database contained information on comprehensive
ophthalmologic examinations during follow-up, diagnoses,
medical history, visual acuity, slit-lamp biomicroscopy,
intraocular pressure measurements, results of gonioscopy,
and dilated slit-lamp funduscopic examinations. In addi-
tion, the repository contained optic disc photographs
(Nidek 3DX, Nidek, Japan), Spectralis SDOCT (Software
version 5.4.7.0, Heidelberg Engineering, GmbH, Dossen-
heim, Germany) scans, and standard automated perimetry
(SAP) acquired with the 24-2 Swedish interactive
threshold algorithm (Humphrey Field Analyzer II and III,
Carl Zeiss Meditec, Inc, Dublin, CA). Visual fields were
excluded if they had more than 33% fixation losses or
more than 15% false-positive errors.
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� SPECTRAL-DOMAIN OPTICAL COHERENCE TOMOGRA-
PHY: Images of the peripapillary RNFL were acquired using
the Spectralis SD OCT. The device has been previously
described in detail5 and employs a dual-beam SD OCT
and a confocal laser-scanning ophthalmoscope with a super
luminescent diode light (center wavelength of 870 nm) as
well as an infrared scan to provide simultaneous images of
ocular microstructures. The global RNFL thickness mea-
surement from a peripapillary 12-degree circular optic
nerve head (ONH) scan with 100 averaged consecutive
circular B-scans (diameter of 3.45 mm, 1536 A-scans)
was used for this study. The center of rotation for the B-
scans was the center of the ONH as it appeared within
the infrared fundus image acquired at the time of SD
OCT B-scan relative to the angle between the fovea and
the center of Bruch’s membrane opening. Corneal curva-
ture and axial length measurements were entered into the
instrument’s software to ensure accurate scaling of all mea-
surements. In addition, the device’s eye-tracking capability
was used during image acquisition to adjust for eye move-
ments. All images that had a quality score lower than 15
or that were inverted or clipped were excluded.

� THE M2M DL ALGORITHM: A previously described SD
OCT–trained DL algorithm was used to predict RNFL
global thickness from fundus photos.20 In brief, the data
set consisted of 32,820 pairs of fundus photos and SD
OCT scans from 2,312 eyes of 1,198 subjects. As multiple
pairs of SD OCT and disc photos were available for each
subject, the whole data set was randomly split at the patient
level into a training plus validation (80%) and test (20%)
sample. This was important to ensure that no data for a
given patient was present in both the training and the
test samples to prevent leakage and biased estimates of
test performance.
All of the available optic disc photographs were matched

to the closest SD OCT RNFL scan acquired within
6 months from the photo date. The optic disc photographs
were initially downsampled to 256 3 256 pixels and pixel
values were scaled to range from 0 to 1. To increase the het-
erogeneity of the photographs and reduce overfitting, data
augmentation (random lighting, random rotation, and
random flips) was performed.
The Residual deep neural Network architecture

(ResNet34), pretrained on the ImageNet data set,21 was
further tuned with the pairs of fundus photos and SD
OCT scans from the training sample, where the average
RNFL thickness value given by the SD OCT was used as
a label (target) for each photo. As the task of the present
work largely differs from that of ImageNet, further training
was performed by initially unfreezing the last 2 layers. Sub-
sequently, all layers were unfrozen, and the network was
fine-tuned with training performed using differential
learning rates, so that a lower rate is used in the earlier
layers and the rate is gradually increased in later layers.
Minibatches of size 64 and Adam optimizer were used to
MARCH 2020OPHTHALMOLOGY



TABLE 1. Demographics and Clinical Characteristics of Eyes Included in the Grading Sample

Grading Sample

P ValueOverall

Presence of Repeatable Visual Field Loss

No Yes

Number of eyes 490 280 210 —

Number of subjects 370 233 262 —

Age, y 60.5 6 13.9 58.4 6 14.3 63.4 6 13.1 .146a

Female gender, % 52.7 57.5 46.2 .014b

Race, % .078b

Caucasian 58.6 62.1 53.8

African American 41.4 37.9 46.2

SAP MD, dBc –4.32 6 6.07

–2.05 (–5.53, –0.52)

–1.12 6 1.69

–0.81 (–1.93, –0.05)

–8.59 6 7.10

–6.21 (–11.77, –3.75)

<.001a

Probability of GON by human graders, % 52.3 6 27.5 40.3 6 22.0 69.4 6 25.9 <.001a

Vertical C/D by human graders 0.63 6 0.20 0.57 6 0.18 0.72 6 0.19 <.001a

Horizontal C/D by human graders 0.60 6 0.18 0.56 6 0.18 0.68 6 0.18 <.001a

M2M DL–predicted global RNFL thickness, mm 85.1 6 14.0 91.6 6 9.7 76.4 6 15.0 <.001a

C/D ¼ cup-to-disc ratio, GON ¼ glaucomatous optical neuropathy, MD ¼ mean deviation, M2M DL ¼ machine-to-machine deep learning,

SAP ¼ standard automated perimetry, RNFL ¼ retinal nerve fiber layer.

Values are given as mean 6 standard deviation, unless otherwise noted.
aGeneralized estimating equations.
bFisher exact test.
cMean 6 standard deviation, median (interquartile range)
train the network,22,23 and the best learning rate was found
using the cyclical learning method with stochastic gradient
descent with restarts.24 Further details on the development
and validation of the algorithm can be found elsewhere.20

� HUMANGRADINGOF FUNDUS PHOTOS: For the present
study, a subset of 490 monoscopic fundus photographs was
randomly drawn from the test sample to form the ‘‘grading
sample.’’ These images were presented to two independent
glaucoma specialists. Both graders were masked to all pa-
tient clinical information and to the grades assigned by
the other evaluator. Human graders were asked to assign
an integer from 0 to 10 to each fundus photograph accord-
ing to an ascending probability of glaucomatous optic neu-
ropathy (GON), that is, 0 if an optic disc was unlikely to
have GON and 10 if GONwas likely. The scores were later
transformed to a percentage scale for analysis. Features such
as enlarged cup-to-disc ratio (C/D), localized RNFL defects
or rim thinning, and the presence of disc hemorrhages in
the fundus photos were used as indicators of glaucomatous
damage. Graders were also asked to estimate the vertical
and horizontal C/D. For each metric, the scores from the
2 graders were averaged to give the final score for each eye.

� REPEATABLE GLAUCOMATOUS VISUAL FIELD LOSS: To
compare the discriminatory ability of human graders and
the M2M DL algorithm to detect perimetric glaucoma,
we defined the presence of reproducible glaucomatous de-
fects using SAP as the reference outcome. An additional
VOL. 211 HUMAN VS MACHINE FOR G
4 reliable SAP tests (2 preceding and 2 following the
photo-matched SAP) were extracted from the repository
for each eye and manually reviewed by 2 graders who
reached a consensus agreement when there were disagree-
ments. Eyes with clear patterns of glaucomatous visual field
loss (eg, arcuate scotomas, nasal steps) consistently present
throughout the visual field series were marked as eyes with
repeatable glaucomatous field defects. Functional loss on
SAP was used as the sole reference for a glaucoma diagnosis
since definitions of the disease based on assessment of struc-
tural losses (eg, presence of GON or loss of RNFL) would
potentially favor predictions from the human graders or
DL algorithm, respectively. Therefore, this classification
targeted primarily to discriminate between eyes with and
without repeatable glaucomatous visual field loss. Because
of the lack of a perfect independent reference in diagnosing
glaucoma, it is possible, however, that some eyes with pre-
perimetric glaucomamay have been included in the normal
visual field group (see Discussion).

� STATISTICAL ANALYSES: We evaluated the ability of
the human graders vs the DL algorithm to detect GON
on fundus photos by comparing their outputs (ie, probabil-
ity of GON and C/D ratios by human graders vs DL-
predicted RNFL thickness) with visual field loss. The
Spearman correlation coefficient was used to evaluate the
correlations of human gradings and DL-predictions with
both SAP mean deviation (MD) and pattern standard de-
viation (PSD). The SAP date was matched to within
125LAUCOMA DIAGNOSIS



FIGURE 1. Scatterplot and histograms illustrating the relation-
ship between predictions obtained by the machine-to-machine
(M2M) deep learning (DL) algorithm evaluating optic disc pho-
tographs and the mean probability of glaucomatous optic neu-
ropathy (GON) assessed by human graders.

TABLE 2. Absolute Spearman Correlations of the Mean
Gradings by Humans and the Machine-to-machine (M2M)

Deep Learning (DL) Retinal Nerve Fiber Layer (RNFL)

Thickness Predictions With Standard Automated Perimetry
(SAP) Mean Deviation (MD)

Measure

SAP MD SAP PSD

Correlation P Value Correlation P Value

M2M DL RNFL thickness 0.540 <.001 0.521 <.001

Probability of GON 0.479 <.001 0.445 <.001

Vertical C/D 0.431 <.001 0.379 <.001

Horizontal C/D 0.332 <.001 0.281 <.001

C/D¼ cup-to-disc ratio, GON¼ glaucomatous optical neurop-

athy, MD ¼ mean deviation, M2M DL ¼ machine-to-machine

deep learning algorithm, PSD ¼ pattern standard deviation,

RNFL ¼ retinal nerve fiber layer, SAP ¼ standard automated

perimetry.
6 months of the date of the fundus photograph acquisition.
A test of hypothesis was conducted for the equality of cor-
relation coefficients.25 Generalized estimating equations
were used to account for the fact that both eyes from the
same patient could be included in the sample.

The area under the receiver operating characteristic
(ROC) curve (AUC) was used to evaluate the performance
of the human graders and the M2M DL algorithm to
discriminate eyes with perimetric glaucoma vs eyes with
normal fields. ROC curves were plotted to demonstrate
the tradeoff between the sensitivity and 1 – specificity.
The AUC was used to assess the diagnostic accuracy of
each parameter, with 1.0 representing perfect discrimina-
tion and 0.5 representing chance discrimination. In addi-
tion, the partial AUC (pAUC) of the DL algorithm and
human gradings were calculated to evaluate performance
of human and machine outputs in the region of 85%-
100% specificity,26,27 which would be clinically relevant
for screening. As the data set included several images
from the same eye and, in some cases, both eyes of the
same subject, a bootstrap resampling procedure was used
to derive 95% confidence intervals (CI) and P values,
where the patient level was considered as the unit of resam-
pling to account for the presence of multiple correlated
measurements within the same subject.28 The difference
in the AUC of 2 curves was compared using a Wald test
based on the bootstrap covariance.29 Additionally, to ac-
count for any possible unbalanced distribution of eyes
with and without repeatable glaucomatous visual field
loss, we also plotted precision-recall (PR) curves.30 PR
126 AMERICAN JOURNAL OF
curves evaluate the fraction of true positives among posi-
tive predictions by presenting the positive predictive power
(precision, that is, ratio of the number of true positives
divided by the sum of the true positives and false positive)
in function of sensitivity (recall). This approach avoids any
overly optimistic assessment of the model’s performance in
unbalanced data.31 Similarly to the AUC for ROC curves,
values for an area under the PR curve (AUPR) closer to 1
represent perfect discrimination.
DL models were implemented using Keras (version

2.1.4), an open-source Python library. All statistical ana-
lyses were completed in Stata (version 15, StataCorp LP,
College Station, TX). The alpha level (type 1 error) was
set at 0.05.
RESULTS

THE M2M DL ALGORITHM WAS ABLE TO ESTIMATE RNFL

thickness from the fundus photos with a mean absolute
error (MAE) of 7.39mm. There was a strong correlation be-
tween the predicted and the observed RNFL thickness
values (Pearson’s r ¼ 0.832; P < .001). Further details on
the performance and validation of the algorithm can be
found in our previous work.20 Results are presented below
for the performance of the algorithm in the grading sample.
The grading sample consisted of 490 fundus photographs

acquired from 490 eyes of 370 subjects, randomly drawn
from the testing sample. Table 1 shows a summary of the de-
mographic and clinical characteristics of the grading sample
overall and stratified by the presence or absence of a repeat-
able glaucomatous visual field defect (ie, perimetric glau-
coma). While there was no statistically significant
difference in age, race, or sex between the 2 groups (all P
> .05), those with perimetric glaucoma had a significantly
more negative SAP MD (–8.59 6 7.10 vs –1.12 6 1.69,
MARCH 2020OPHTHALMOLOGY



FIGURE 2. (A) Performance of the human gradings (probability of glaucomatous optical neuropathy [GON], and vertical and hor-
izontal cup-to-disc ratio [C/D]) and the deep learning (DL)-predicted retinal nerve fiber layer (RNFL) thickness to discriminate eyes
with repeatable glaucomatous visual field loss. (B) Partial AUCs (pAUCs) at a specificity of 85%-100% and (C) precision-recall
curves for the DL-predicted RNFL thickness and the probability of GON given by human graders. AUC[ area under the receiver
operating characteristic curve, AUPR [ area under the precision-recall curve.
P< .001). In addition, presence of perimetric glaucoma was
associated with a greater probability of GON according to
human graders (69.4% 6 25.9% vs 40.3% 6 22.0%, P <
.001), and thinner predicted global RNFL thickness accord-
ing to the DL algorithm (76.4%6 15.0% vs 91.6%6 9.7%,
P < .001).

There was a significant correlation between the M2M
DL–predicted global RNFL thickness and the mean proba-
bility of GON given by the human graders (absolute
Spearman rho¼ 0.65, P< .001; Figure 1). Lower predicted
RNFL thickness was associated with higher probability of
GON given by human graders. However, the correlation
with SAP MD was significantly stronger for the M2M DL
model predictions than for the probability of GON given
by human graders (absolute Spearman rho ¼ 0.54 vs
0.48, respectively, P < .001; Supplemental Figure 1, avail-
able at AJO.com). With SAP PSD, correlations were also
stronger for the M2M DL predictions (absolute Spearman
rho ¼ 0.52 vs 0.45, respectively; P ¼ .001; Table 2).

We compared the ability of the human graders and the
M2M DL algorithm to discriminate reproducible glaucom-
atous visual field loss from no visual field loss by plotting the
ROC and PR curves for each method (Figure 2). The over-
all AUC for the M2M DL–predicted RNFL thickness was
similar to that of the probability of GON given by human
graders (AUC ¼ 0.801 [95% CI: 0.757, 0.845] vs 0.775
[95% CI: 0.728, 0.823], respectively; P ¼ .222), and both
of them performed significantly better than the vertical
C/D (AUC ¼ 0.732 [95% CI: 0.680, 0.784]) or horizontal
C/D ratio (AUC ¼ 0.683 [95% CI: 0.628, 0.739]; all com-
parisons P< .05). The performance of the M2M algorithm
was also similar to the probability of GON by human
graders in the PR curves (AUPR ¼ 0.810 [95% CI:
0.765, 0.851] vs 0.761 [95% CI: 0.703, 0.819], respec-
tively). In the region of clinically meaningful specificity
(85%-100%), the pAUC for the M2M DL algorithm was
significantly higher than the probability of GON by human
graders (pAUC ¼ 0.529 vs 0.411, respectively; P ¼ .016).
VOL. 211 HUMAN VS MACHINE FOR G
Figure 3 provides several examples of fundus photo-
graphs from the grading data set, with the corresponding
SAP, probability of GON, and C/D given by the human
graders and the M2M DL–predicted RNFL thickness.
DISCUSSION

IN THIS STUDY, WE COMPARED THE PERFORMANCE OF AN

objective DL algorithm to that of subjective human grad-
ings in detecting glaucomatous damage on fundus photo-
graphs. We showed that predictions from the M2M DL
algorithm had a significantly stronger correlation with vi-
sual field metrics than human gradings. In addition, in
the range of clinically relevant specificity, the M2M DL
predictions performed significantly better than human
gradings in discriminating eyes with visual field loss from
those with normal fields. Hence, our findings suggest that
an automated objective method to quantify neural damage
may perform at least as good as, if not better than, subjec-
tive human gradings in detecting signs of glaucomatous
damage on fundus photographs.
The motivation for the development of the M2M

model came from the realization that subjective gradings
of optic disc photographs by human experts may have a
limited accuracy in detecting glaucomatous damage. In
a previous study, we have shown that cross-sectional hu-
man grading of photographs, even by fellowship-trained
glaucoma specialists, had a poor accuracy in predicting
risk of future visual field loss.32 Another study showed
that glaucoma specialists tend to frequently under- or
overestimate signs of glaucoma damage when assessing
photographs.7 Eyes with large physiologic cups, for
example, are frequently diagnosed as having glaucoma,
whereas eyes with small optic discs but showing significant
rim loss may go undetected.7,33 A fundamental aspect of
the development of a deep learning network is
127LAUCOMA DIAGNOSIS
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FIGURE 3. Examples of eyes included in the study. (A) An eye with normal visual field and normal-appearing optic disc. The human
graders gave a low probability of glaucomatous optic neuropathy (GON) (15%), which agreed to the thick retinal nerve fiber layer
(RNFL) thickness predicted by the machine-to-machine (M2M) deep learning (DL) algorithm. (B) An eye with a large but likely
physiologic cup given the healthy appearance of the RNFL. The DL prediction indicated a thick RNFL, whereas human graders
seemed to have overestimated the probability of GON. (C) An eye with early glaucomatous visual field loss where the DL algorithm
predicted a thinner RNFL and human graders also gave a high probability of GON. (D) An eye with advanced visual field loss where
the DL thin predicted RNFL agrees with the high probability of GON given by human graders.
establishing a reliable ‘‘ground-truth’’ or reference label
that can be used to train the algorithm. If the reference
standard is biased, the same biases will be learned by the
network. Therefore, training a DL network to learn to
replicate subjective gradings by humans may lead to an al-
gorithm that will have limited applicability in clinical
practice or in screening situations.

In contrast to subjective human gradings, SD OCT can
provide reliable quantitative measurements of neural loss
128 AMERICAN JOURNAL OF
in glaucoma. A previous study has shown that RNFL thick-
ness measurements by SD OCT may be able to detect signs
of glaucomatous damage 5-6 years before the earliest visual
field defect.34 In addition, for eyes with moderate or severe
glaucoma, SDOCT has been shown to have excellent diag-
nostic accuracy.35,36 Our M2M DL model was trained to
predict RNFL thickness measurements using simple color
photographs. The predictions showed excellent correlation
with actual SD OCT measurements, with r of 0.832 and
MARCH 2020OPHTHALMOLOGY



MAE of only 7.39 mm. In the present work, we expanded
our observations by showing that such predictions outper-
formed glaucoma specialists’ gradings in detecting eyes
with glaucomatous visual field loss in our sample. The
M2Mmodel had stronger correlations with visual field met-
rics and in greater diagnostic accuracy in the region of high
specificity compared to an overall probability of glaucoma
given by the average score from human graders. In a disease
with a relatively low prevalence such as glaucoma, a
screening test should have a high specificity to avoid an
overwhelming number of normal subjects being referred
with a diagnosis of glaucoma.

We observed that the estimation of the C/D ratio by hu-
man graders had the lowest correlation with both SAPMD
and PSD and the lowest performance in discriminating eyes
with glaucomatous visual field loss. The C/D ratio was first
popularized as an indicator of GON by Armaly,37 but esti-
mates of the C/D, even among experts, may lack sufficient
reliability to be a generalizable measure for screening. Indi-
vidual graders may differ by >0.2 in their C/D ratio esti-
mates in up to 76% of cases.10 Moreover, for C/D less
than 0.7, there is a tendency to overestimate a larger C/D
ratio by 10% to 20% on clinical examination as compared
with the photographs.38 Subjective grading of C/D ratio
and of the probability of glaucoma is also influenced by
variation in optic disc characteristics such as disc size,
cup depth, peripapillary atrophy, and different angles of im-
plantation of the optic disc to the sclera.7

The M2MDL model may offer several additional advan-
tages compared to previous DL models trained based on
subjective gradings. Most importantly, previous models
have been trained to output a binary classification decision,
that is, yes or no, for the presence of glaucomatous damage.
In contrast, the M2M model is able to provide a quantita-
tive output. This makes it easier to set up cut-offs according
to desired levels of specificity, for example. In addition, it is
possible that the quantitative measurements might be use-
ful for tracking changes over time, although this still re-
quires validation.

This study has limitations. A study that attempts to
compare a new diagnostic test with human gradings of
fundus photographs offers some challenges, notably
with regard to the gold standard used for diagnosis. We
used the presence of visual field defects as the gold stan-
dard for glaucoma in this work. We attempted to avoid
using clinical optic disc appearance as a diagnostic crite-
rion, as this would most likely favor the performance of
VOL. 211 HUMAN VS MACHINE FOR G
human gradings. However, as the population from this
study was recruited from a tertiary hospital, it is likely
that subjective clinical assessments played an important
role in determining whether the patients were being
followed in the glaucoma clinic. However, although
this may have favored the diagnostic accuracy estimates
of subjective human gradings, our results showed that
the M2M model still showed significantly greater accu-
racy for detecting glaucoma. As another limitation, it is
likely that some eyes with pre-perimetric glaucoma, but
normal visual fields, may have been included in the con-
trol group, resulting in artificially lower accuracies for
detection of glaucoma. However, this potential bias
would most likely affect results from both subjective
grading and the DL model. Finally, clinicians may not
be used to routinely provide a score of probability of
GON like the one employed in this study. Although cli-
nicians are trained to identify features that are indicative
of glaucomatous damage (eg, enlarged C/D ratio, local-
ized RNFL defects, rim thinning) and are expected to
make judgments of higher or lower probability of glau-
coma on a routine basis. The scores are a direct measure-
ment of this judgment, and therefore are likely to be a
suitable metric to compare with the continuous metric
yielded by the DL algorithm. However, clinicians are
not formally trained to give a final score in the form of
a probability and this should be taken into consideration
when interpreting the results of our study.
Further refinement is desirable before the M2M DL al-

gorithm can be applied in either clinical or screening set-
tings. In particular, it will be important to define cut-offs
suitable for screening according to the desirable level of
specificity and the stage of the disease that one wants to
detect. External assessment of the validity of our test re-
sults in external data sets will be an important next step.
Also, the algorithm may underappreciate subtle sectoral
RNFL losses given that it was trained with a global
RNFL parameter. Thus, further refinement may include
training the algorithm for detection of localized RNFL
or rim loss.
In conclusion, a DL algorithm outperformed human

graders in detecting signs of glaucomatous damage on
fundus photographs. The algorithm provides objective
and quantitative assessment of neural damage that could
potentially be used for glaucoma diagnosis and screening,
avoiding the biases and labor of human subjective
gradings.
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