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Improved Detection of Visual Field 
Progression Using a Spatiotemporal 
Boundary Detection Method
Samuel I. Berchuck1, Jean-Claude Mwanza2, Angelo P. Tanna3, Donald L. Budenz2 & 
Joshua L. Warren   4

Glaucoma is the leading cause of irreversible blindness worldwide and requires regular monitoring 
upon diagnosis to ascertain whether the disease is stable or progressing. However, making this 
determination remains a difficult clinical task. Recently, a novel spatiotemporal boundary detection 
predictor of glaucomatous visual field (VF) progression (STBound) was developed. In this work, we 
explore the ability of STBound to differentiate progressing and non-progressing glaucoma patients 
in comparison to existing methods. STBound, Spatial PROGgression, and traditional trend-based 
progression methods (global index (GI) regression, mean regression slope, point-wise linear regression, 
permutation of pointwise linear regression) were applied to longitudinal VF data from 191 eyes 
of 91 glaucoma patients. The ability of each method to identify progression was compared using 
Akaike information criterion (AIC), full/partial area under the receiver operating characteristic curve 
(AUC/pAUC), sensitivity, and specificity. STBound offered improved diagnostic ability (AIC: 197.77 
vs. 204.11–217.55; AUC: 0.74 vs. 0.63–0.70) and showed no correlation (r: −0.01–0.11; p-values: 
0.11–0.93) with the competing methods. STBound combined with GI (the top performing competitor) 
provided improved performance over all individual metrics and compared to all metrics combined with 
GI (all p-values < 0.05). STBound may be a valuable diagnostic tool and can be used in conjunction with 
existing methods.

The chronic and progressive nature of open-angle glaucoma (OAG) requires patients to be monitored over time 
in order to establish whether the disease is progressing and at what rate. Determination of progression status is 
important for timely adjustment or escalation of treatment. However, detecting glaucomatous functional pro-
gression is challenging1–5. Despite the use of visual field (VF) data for clinical decision making and as an end-
point in clinical trials5–10, there is no widely accepted reference standard for determining VF progression. One 
of the factors contributing substantially to this difficulty is the variability in test results. This variability is driven 
by patient-related factors such as inattention as well as disease-associated factors. Glaucomatous optic nerve 
damage is in and of itself associated with increased fluctuation in visual sensitivity. This intra-test and inter-test 
variability, can mimic VF worsening (or progression) in the absence of true disease worsening or mask a true 
glaucoma-related functional change.

Standard achromatic perimetry (SAP) is the most commonly used functional testing method for VF assess-
ment. SAP, which can be performed with the Humphrey Field Analyzer (HFA, Carl Zeiss Meditec, Dublin, CA, 
USA), the Octopus Perimeter (Haag-Streit, Koniz, Switzerland), or other similar devices, provides sensitivity 
estimates at each test point in the VF. These sensitivities are monitored over time to determine if glaucomatous 
progression is occurring for an eye. For decision-making about progression status, most clinicians use either 
their own subjective assessment of VF series or assessment of statistically significant progression determined by 
software with automated algorithms built into SAP devices.

Currently, statistical modeling for assessing VF progression mainly relies on event- or trend-based analy-
ses11. Event-based analyses (e.g., HFA Guided Progression Analysis (GPA)) express progression status in a binary 
manner (progression or no progression) after comparing a recent VF test with baseline results, often without 
considering test results from all other visits12. These methods use pre-specified levels of deterioration in order to 
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define progression. Trend-based analyses (e.g., HFA-compatible PROGRESSOR, Medisoft Inc, Leeds, UK) assess 
VF progression using rates of loss determined by regression modeling of global indices (e.g., mean deviation)13–15, 
sectoral mean sensitivity, and/or sensitivity of individual test points over time16. Advanced methods including 
spatial filters11,17,18, statistical modeling of spatial correlation19–21, general hierarchical Bayesian modeling22, and 
machine learning23 have also been introduced to properly differentiate true signal from non-specific variability.

The majority of previous models in this setting focus on changes in VF sensitivities over time in some form 
(e.g., changes from baseline; trends over time), but do not explicitly consider how changes in variability, and 
more specifically spatial correlation, may be an equally important indicator of progression. This idea is partially 
supported by the known inverse relationship between VF sensitivities and testing variability24. We previously 
developed statistical theory for a novel spatiotemporal boundary detection model that considers the anatomical 
relationship between the retinal nerve fiber layer and the optic nerve when modeling longitudinal VF data, and 
successfully quantifies changes in spatial correlation across time. This measure of variability, hereafter referred 
to as STBound, was shown to be an important predictor of glaucomatous VF progression25. The purpose of this 
study is to extend STBound and validate it through comparison with existing VF progression statistical meth-
ods. Classification accuracy and the speed of the competing methods to correctly diagnose progression are both 
investigated.

Methods
Data description.  We source data from the Vein Pulsation Study Trial in Glaucoma and the Lions Eye 
Institute trial registry, Perth, Western Australia, which contain 1,448 VFs from 194 distinct eyes (98 patients 
in total)26. The average age of the subjects is 66.9 years with a standard deviation of 9.7 years; 66% are female27. 
All subjects have some form of OAG with average and median VF sensitivities across all eyes/visits of 23 and 
27 decibels, respectively (standard deviation: 10; range: 0–49)27. Three of the eyes were removed from the final 
analysis because of missing information on the clinical determination of progression. The mean follow-up time 
for the remaining participants is 2.6 years (range: 0.2–9.4) with an average of 7.4 tests (range: 2–21) per eye. 
Glaucomatous VF progression status was determined at the final visit based on the expertise of two independent 
clinicians. A third clinician evaluated any discrepancies between the two primary assessors (only necessary for 
13 VF series). The clinicians had access to GPA output and VF printouts of the tests across time when making 
their determinations. In total, there are 141 (74%) stable and 50 (26%) progressing eyes. Informed consent was 
obtained from each participant in the study. The trial adhered to the tenets of The Declaration of Helsinki and was 
approved by the University of Western Australia’s ethics committee. Full information on the VF data collection 
process has been previously described26,27.

Spatiotemporal boundary detection (STBound).  The statistical method developed in Berchuck et al. 
provides a novel approach to diagnosing glaucomatous VF progression25. Unlike previous methods that focus on 
estimating trends in changing VF sensitivities over time, it quantifies changes in the spatial correlation structure 
of VF data across time and uses the developed metric, STBound, to detect VF progression.

For each VF test, a statistical method known as spatial boundary detection with a dissimilarity metric is 
applied to the collected data and the spatial correlation structure of the data at the current visit is estimated. This 
correlation is partially determined by the fact that in glaucomatous optic nerve damage, VF damage occurs in 
certain characteristic patterns determined by the anatomy of the retinal ganglion cells and their axonal pathways 
as they bundle together to form the optic nerve28. If the estimated spatial correlation is changing substantially 
over time, we showed that this is highly predictive of progression. If the estimates of spatial correlation are stable 
across time, the eye is more likely to be classified as non-progressing. In order to quantify the variability in spatial 
correlation across time and to create a standardized metric to facilitate comparisons across eyes, we used the 
coefficient of variation (CV) (large value: high variability; small value: low variability).

While we previously only investigated the estimated CV as a predictor of VF progression, in this study we 
explore the use of the estimated CV, its standard error, and their interaction in combination, and refer to this 
set of predictors as STBound. By including these additional predictors in the framework, this work extends the 
predictive capabilities of the original work and yields a more clinically useful metric for monitoring VF progres-
sion. Supplementary Fig. S1 shows an example of the variability in the estimated spatial correlation across time 
for two patients in the study, one progressing, one stable, along with the individual components of the STBound 
metric and predicted probabilities of progression based on STBound. The full details on the statistical model, 
including model fitting, can be found elsewhere25. The model is freely available and implemented in the R package 
womblR29.

Model comparison.  In this study, we further explored the potential of STBound in diagnosing VF pro-
gression in comparison to existing methods and its ability to correctly detect disease worsening earlier than 
these methods. To formally make these comparisons, we constructed logistic regression models, regressing all 
developed predictors of VF progression on the clinical assessment of progression and calculated the Akaike 
Information Criterion (AIC), area under the receiver operating characteristic (ROC) curve (AUC) (full and par-
tial), sensitivity, and specificity. The final metrics used for diagnosing progression are the predicted probabilities 
of progression from each of the fitted logistic regression models.

We compared STBound to a global index regression method (GI), point-wise linear regression (PLR)16, 
the mean regression slope method (MS)30, permutation of pointwise linear regression (PoPLR)31, and Spatial 
PROGgression (SPROG)26. In GI, we first averaged the VF sensitivities during an exam to produce a single VF 
value. We then repeated this process separately for data from each VF test. Finally, we regressed these averages 
(one from each test) on time to determine the average rate of change in the VF across time. Any alternative global 
indices (e.g., mean deviation) could be used in the regression and we chose the average VF sensitivities due to ease 
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of interpretation and availability of information. We used the estimated regression slope and p-value, along with 
their interaction, as predictors of progression. Including the p-value when determining progression allows us to 
differentiate between statistically significant and non-significant slope estimates and should improve our ability 
to detect true progression.

GI will work well when large sections of the VF are degrading over time, but may struggle to detect highly 
localized damage32–34. As a result, we also considered several location-specific analyses. PLR is a commonly 
used trend-based point-wise method, in which detection of progression corresponds to statistically significant 
slopes of the VF location-specific regression lines (sensitivities regressed on time)16. We present results from four 
versions of PLR, where the progression criterion is based on the 1st, 2nd, 3rd, and 4th smallest p-values from all 
location-specific regressions being less than 0.001 (P1, P2, P3, P4)16. Therefore, the 1st, 2nd, 3rd, and 4th smallest 
p-values are used as predictors of progression in the logistic regression analyses. In MS30, we first computed PLR 
at each VF location and then averaged the estimated slopes whose p-values were < 0.01. This average slope value 
was used as a predictor of progression in the logistic regression analysis. PoPLR31 represents an advanced version 
of PLR that creates a test statistic defined as the sum of the negative logged PLR p-values that were less than 0.05. 
A larger value is indicative of progression. This test statistic was used as a predictor of progression in the logistic 
regression analysis.

We also include an advanced spatiotemporal statistical method for comparison26. SPROG simultaneously 
models sensitivities from each VF location linearly over time using hierarchical Bayesian disease mapping tech-
niques while also accounting for the underlying structural-functional correlates of the eye. If the overall slope 
that describes change in sensitivities over time is statistically significantly less than zero, then SPROG classifies 
the eye as progressing. We included the posterior probability that the global slope is less than zero as a predictor 
of progression in the logistic regression analysis. Full details of SPROG have been previously described26. A full 
summary of the progression metrics is given in Table 1.

We compared metrics using AIC, AUC, partial AUC (pAUC), sensitivity, and specificity. A smaller value of 
AIC indicates an improved model fit, while larger values of AUC, pAUC, sensitivity, and specificity indicate supe-
rior discriminatory ability35,36. Based on previous work in this area, we limited the pAUC to regions of clinically 
relevant specificity, 85–100%20. In addition, we used Pearson correlation and statistical hypothesis tests to inves-
tigate the similarity between each of the considered metrics. Methods that yield predictors with low correlation 
may be combined in order to improve predictive performance.

Assessing early stage progression.  Diagnosing glaucomatous VF progression early is critical for limiting 
irreversible vision loss, thus we study the performance of each metric in the early phases. To accomplish this, we 
study the longitudinal trends in AUC, pAUC, sensitivity, and specificity for each metric in the initial years from 
baseline with respect to the clinical determination of progression on the final testing date. We estimate these 
summaries at half-year increments up to 4.5 years of follow-up. Only visits that occurred on or before the cutoff 
time are included in each analysis. This imitates a clinical setting where each metric is calculated at every visit and 
progression is diagnosed.

Results
Diagnostic capability of the metrics.  The results comparing the diagnostic capabilities of the different 
methods at the end of the study period are shown in Table 2. Assessment of the performance of each individual 
metric (“Without GI” columns of Table 2) indicates that each of the trend-based methods are highly predictive 
of progression, as noted by the significant marginal p-values that describe the overall utility of the predictor. The 
global metric, GI (AIC: 204.11; AUC: 0.70; pAUC: 0.26), is superior to the majority of existing trend-based meth-
ods (although not statistically significant, p-values 0.05–0.99) in terms of AIC (210.46–217.55), AUC (0.63–0.69), 
and pAUC (0.13–0.32). The only exception is the performance of PoPLR with respect to pAUC (0.32 vs. 0.26). 
The newly developed metric, STBound, has improved diagnostic ability compared to the competing trend-based 
methods, including GI, with respect to AIC (197.77) and AUC (0.74). It also performs similarly to PoPLR with 

Method Progression Metric

GI Slope and corresponding p-value from regressing the average (across all VF locations) differential light sensitivity (DLS) from 
each test across time, and their interaction29.

MS Overall mean slope (MS) of DLS over time for all location specific regression lines with a p-value < 0.0129.

P1 1st order statistic of slope p-values from the location specific regression16.

P2 2nd order statistic of slope p-values from the location specific regression16.

P3 3rd order statistic of slope p-values from the location specific regression16.

P4 4th order statistic of slope p-values from the location specific regression16.

PoPLR Overall p-value for the negative log sum of the slope p-values from the location specific regressions less than 0.05 based on 
permutation31.

SPROG The estimated overall slope that describes change in sensitivities over time across the entire VF after fitting a hierarchical 
Bayesian disease mapping statistical model26.

STBound The posterior mean and standard deviation of the coefficient of variation of the parameter that describes the spatial correlation 
of the VF data, and their interaction25.

Table 1.  Summary of criteria included in each diagnostic method. For each of the metrics, the covariates that 
are listed are included in a logistic regression model used to predict clinical assessment of progression. The 
resulting predicted probabilities of progression are used as the progression metric.
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respect to pAUC (0.31 vs. 0.32); though the AUC and pAUC values are not statistically significantly larger than 
the values produced by GI (p-values: 0.51, 0.60, respectively). However, this improved performance indicates that 
STBound may be useful for diagnosing progression on its own.

Correlation between methods.  The major strength of STBound is the fact that it does not rely on an 
underlying trend-based method and is therefore providing unique predictive information to the decision-making 
process. This fact is shown clearly in Table 3 where the Pearson correlation estimates and corresponding p-values 
between each of the fitted probabilities of progression based on the metrics from Table 2 are presented. The 
estimated correlations are presented below the diagonal with the p-values above the diagonal. All of the existing 
trend-based methods are highly correlated with each other (all p-values ≤ 0.05). STBound, however, is uncorre-
lated with the existing methods as indicated by the large bolded p-values (all p-values > 0.05). These correlations 
suggest that STBound explains a unique alternative pathway in understanding glaucomatous VF progression 
that is not incorporated into existing trend-based methods. As such, STBound can be used in conjunction with 
trend-based methods.

Combination of methods.  We tested the performance of combining GI with the other metrics, includ-
ing STBound, relative to these metrics alone. GI was selected because it was shown to be the top performing 
trend-based method in the study overall. The metrics were combined by including the predictor(s) corresponding 
to a selected method into a single logistic regression model that also included the predictors from the GI model 
(i.e., estimated regression slope, p-value, and interaction). This allowed us to determine if any of the metrics 
offered additional information with respect to detecting progression outside of that already provided by GI. The 
“With GI” columns of Table 2 display the results when each of the metrics are combined with GI. Based on the 
correlation analysis in Table 3, we did not expect large improvements in diagnostic ability when GI is added to 
the other trend-based methods due to their large degree of similarity. This appears to be the case as p-values 
that describe the statistical significance of the added metrics are generally >0.05, with the exception of P1 
(p-value = 0.032) (though the improvements in AUC and pAUC are not statistically significant). STBound is the 
only metric that improves the predictive performance across all diagnostic indicators. When STBound is added 
to GI, the increase in AUC and pAUC are statistically significant with p-values of 0.002 and 0.003, respectively. 
The model with GI and STBound (referred to as GI + STBound) has optimal characteristics with a minimum AIC 

Metric

Without GI With GI

AIC AUC pAUC P* AIC AUC pAUC P†

GI 204.11 0.70 0.26 <0.001 — — — —

MS 210.46 0.64 0.24 <0.001 204.49 0.70 0.31 0.203

P1 214.16 0.64 0.13 0.002 201.50 0.74 0.28 0.032

P2 217.55 0.64 0.26 0.014 204.52 0.71 0.26 0.207

P3 215.13 0.63 0.19 0.004 203.43 0.72 0.27 0.102

P4 214.12 0.65 0.18 0.002 203.32 0.71 0.28 0.095

PoPLR 212.94 0.69 0.32 0.001 206.10 0.70 0.26 0.906

SPROG 214.84 0.67 0.15 0.003 206.11 0.70 0.26 0.953

STBound 197.77 0.74 0.31 <0.001 180.41 0.81 0.45 <0.001

Table 2.  Assessing the diagnostic capability of the metrics. Each metric is regressed against the clinical 
assessment of progression, both with and without the global index (GI). To compare models, AIC, AUC and 
pAUC are reported. The pAUC is limited to the clinically relevant range of specificity, 85–100%. Also reported 
are p-values corresponding to hypothesis tests *for each metric marginally, and †in addition to GI. The bold cell 
indicates a significant improvement in AUC or pAUC over the GI model at the α = 0.05 level of significance.

Metric GI MS P1 P2 P3 P4 PoPLR SPROG STBound

GI — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.26

MS 0.55 — <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.93

P1 0.26 0.34 — <0.01 <0.01 <0.01 <0.01 0.05 0.48

P2 0.31 0.25 0.83 — <0.01 <0.01 <0.01 <0.01 0.47

P3 0.33 0.21 0.72 0.92 — <0.01 <0.01 <0.01 0.23

P4 0.38 0.24 0.68 0.85 0.92 — <0.01 <0.01 0.18

PoPLR 0.67 0.43 0.35 0.43 0.45 0.50 — <0.01 0.15

SPROG 0.57 0.32 0.14 0.27 0.26 0.28 0.81 — 0.11

STBound 0.08 −0.01 0.05 0.05 0.09 0.10 0.10 0.11 —

Table 3.  Correlation matrix and hypothesis test results for the diagnostic metrics. The estimated Pearson 
correlations and p-values between the metrics are presented below and above the diagonal, respectively. Bold 
values indicate that the correlation does not statistically differ from zero at the α = 0.05 level of significance.
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of 180.41 vs. 197.77, and maximum AUC and pAUC of 0.81 vs. 0.74 and 0.45 vs. 0.31, respectively. The estimated 
regression coefficients, standard errors, and p-values for GI + STBound are presented in Supplementary Table S1. 
When PoPLR is added to GI, the pAUC actually decreases, which may be indicative of the redundancy in the 
information that both provide.

In Fig. 1, ROC curves are displayed for each of the metrics from Table 2 that were significant, GI, MS, P1, 
PoPLR, SPROG, STBound, GI + P1, and GI + STBound. We only present P1 to represent the PLR methods in 
order to simplify the figure. The ROC curve can be interpreted as sensitivity and (1-specificity) over various 
thresholds. Figure 1 confirms the results in Table 3, as the ROC curve of GI + STBound suggests significant 
improvement over the STBound curve, in particular in the region of high specificity. Although P1 was shown to 
improve GI, it is clear from the ROC curves that the improvement is marginal at best.

Determination of progression over time.  We also explored the performance of the metrics in the early 
years of the study with respect to progression determined at the end of the study. The presentation of the longitu-
dinal trends of AUC and pAUC are displayed in Fig. 2 for all metrics found to be significant in Table 2 (again only 
including P1 to represent the PLR methods). The figure presents smoothed local regression estimates of AUC and 
pAUC37. In Fig. 2A, the AUC trends are presented, where GI + STBound has superior AUC over the entire time 
period. The pAUC trends are displayed in Fig. 2B, with an even more pronounced separation of GI + STBound 
over the other metrics. Supplementary Table S2 presents the raw estimates of AUC and pAUC at the first four 
years of the study, corresponding to the smoothed lines presented in Fig. 2. Bolded entries in the table coincide to 
values that significantly improve upon the GI value at the same year (α = 0.05 level of significance), demonstrat-
ing that the gains seen in GI + STBound in Fig. 2 are statistically significant. Overall, GI + STBound is shown to 
produce improved diagnostic metrics earlier than the competing methods.

Figure 3 and Supplementary Table S3 present sensitivity and specificity estimates for each metric annually for 
four years after the baseline visit and at the end of the study. The sensitivity and specificity values are obtained 
through calculation of an optimal threshold. The threshold in use is motivated clinically, so that the specificity 
is guaranteed to be at least 85%20, while maximizing sensitivity. The thresholds are calculated using the com-
pleted study and are given in Supplementary Table S3. In Fig. 3, it is clear that the sensitivity is superior in the 
GI + STBound model beginning early in follow-up (0.34–0.64 vs. 0.06–0.60). Due to the definition of the thresh-
old, the specificity for all models is around the 85% level throughout follow-up. Specifically in Supplementary 
Table S3, by the end of the study GI + STBound has optimal operating characteristics, with specificity in the 
clinical range, while showing statistically significant improvement in sensitivity over GI. In the earlier years, the 
specificity does not deteriorate, and the sensitivity only begins to drop-off significantly within two years from 
baseline, with sensitivity of 0.52.

Finally, we explore how much faster the GI + STBound metric is able to successfully diagnose progression in 
terms of days from baseline visit. For all 50 progressing patients, we determined which visit each metric would 
have identified the patient as progressing using the clinically motivated thresholds in Supplementary Table S3. If a 
model was incapable of detecting progression at the end of the study, those patients were assigned the date of the 
last visit. Figure 4 presents the density estimate of the time of first diagnosis for each model in days from baseline 
visit along with the mean number of days. The GI + STBound metric is capable of diagnosing progressing earliest, 
improving approximately two months over the second fastest, GI.
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Figure 1.  Receiver operating characteristic (ROC) curves for statistically significant diagnostic metrics.
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Discussion
This study validates the method introduced previously as a modeling framework for diagnosing glaucomatous VF 
progression25. The method utilizes an innovative spatiotemporal boundary detection framework that accounts 
for the characteristic patterns of visual loss in the setting of glaucoma, resulting in a novel diagnostic metric that 
represents a departure from standard trend-based methods. Instead, STBound quantifies change in the spatial 
correlation of the VF data, representative of underlying damage to the optic disc across time.

When establishing a novel diagnostic testing algorithm, assessing its predictive performance in isolation is 
fundamental; however, demonstrating the incremental performance over established metrics is necessary to 
demonstrate its clinical utility. All of the metrics in the study were found to be marginally statistically significant 
predictors of progression (Table 2, “Without GI” columns). This was not surprising, since all but STBound were 
established diagnostic methods used for the detection of glaucoma progression. However, only STBound pro-
vided improved performance in addition to GI (Table 2, “With GI” columns). Although P1 was also significant, 
it is clear from the results that this improvement was minimal. The established metrics GI, PLR, MS, PoPLR, 
and SPROG are derived from analyzing changes in the mean trend of VF sensitivities across time and therefore, 
explain similar components of progression. This is confirmed in Table 3, where the Pearson correlation estimates 
for all of the mean trend metrics are significant. On the other hand, the Pearson correlations between STBound 
and the mean trend metrics are close to zero, establishing their independence. As an independent diagnostic, 
STBound has clinical utility in its ability to assess an adjacent pathway in glaucoma progression.
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Figure 2.  Performance of diagnostic metrics in the initial years from baseline visit, AUC (A) and pAUC (B). 
Estimates are presented as smooth curves using the LOESS method. The horizontal dashed line indicates the 
value at which a metric does not contribute any diagnostic information.
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Figure 3.  Demonstrating the performance of sensitivity (A) and specificity (B) in the initial years from baseline 
visit. Both sensitivity and specificity are obtained by using a clinically motivated threshold defined to maximize 
sensitivity, while forcing the specificity to be no smaller than 85%. Estimates are presented as smooth curves 
using the LOESS method.
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Having demonstrated the utility of STBound clinically, we then established it as significantly superior in 
the important early stages from baseline visit as diagnosing progression early is critical for limiting irreversible 
vision loss. The AUC, pAUC, sensitivity, and specificity show GI + STBound is superior over the entire early stage 
(Figs 2, 3; Supplementary Tables S2, S3). This indicates the accelerated efficacy of STBound in the early stages 
from baseline. It also indicates the independence of STBound from GI, as GI + STBound is able to improve over 
the GI curve, while the GI + P1 metric makes no notable improvements. Early detection of glaucoma progression 
is important clinically as interventions can be effective in reducing a patient’s likelihood of vision loss38. Therefore, 
diagnostic metrics such as STBound are critical for providing improved patient outcomes.

This study has a few limitations. First, the final determination of VF progression was based on agreement 
among a group of expert clinicians who had access to GPA output and raw VF data. However, while no widely 
accepted reference standard currently exists to define VF progression, many researchers agree that assessment 
of a glaucoma patient’s data and agreement among a group of clinical experts is currently the most acceptable 
standard definition when introducing new analytic models39. We also note that only 13 out of the 191 assessed 
VF series resulted in disagreement among the clinicians, likely indicating clear progression/non-progression out-
comes. Past statistical methods work have also used this outcome when creating, validating, and comparing new 
and existing methods, including with the same dataset used in this analysis19,23,26. We also did not have access to 
pattern standard deviation (PSD) and/or loss variance (LV) during each VF test, nor did we have the exact ages of 
the subjects at the time of testing needed to directly calculate these metrics ourselves. In order to preserve patient 
confidentiality, we only received de-identified raw data from the original study. These metrics likely describe VF 
loss differently than the trend-based methods and could have been added to the set of competing methods. Future 
work should compare the performance of STBound to metrics like PSD and LV that quantify the variability in 
local vision loss, similar to STBound. In addition, future work is also needed to determine if certain aspects of 
STBound might be able to differentiate people with and without glaucoma, allowing for STBound to be used 
during each stage of disease management. Finally, the inclusion of structural indicators of disease progression 
into our regression framework could result in an improved ability to differentiate true progression from random 
variability, leading to preservation of a patient’s remaining vision.

With further validation, we propose that the metric STBound be integrated into the clinical environment. 
STBound requires a minimum of two visits to compute and from Fig. 4, we know that it can be used to decrease 
the time until a correct progression diagnosis by two months on average over GI. In practice, clinicians can 
implement the method defined in this study based on the clinically defined thresholds in Supplementary Table S3. 
We suggest using the GI + STBound model, as it has optimal operating characteristics across the entire study 
(Supplementary Table S3). These characteristics are relatively conservative, and this is due to the definition of the 
threshold, which prioritizes high values of specificity. We note that this threshold can be adjusted to accommo-
date different sensitivity/specificity preferences. GI + STBound can be calculated using the regression coefficients 
presented in Supplementary Table S1 along with the individual components of STBound that can be obtained 
using the womblR29 R package.

Data Availability
The deidentified dataset that includes each subject’s clinical determination of progression and all calculated pro-
gression metrics (including across time) is available from the corresponding author on request.
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