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ABSTRACT
Diagnosing glaucoma progression is critical for limiting irreversible vision loss. A common method for
assessing glaucoma progression uses a longitudinal series of visual fields (VFs) acquired at regular intervals.
VF data are characterized by a complex spatiotemporal structure due to the data generating process and
ocular anatomy. Thus, advanced statistical methods are needed to make clinical determinations regarding
progression status. We introduce a spatiotemporal boundary detection model that allows the underlying
anatomy of the optic disc to dictate the spatial structure of the VF data across time. We show that our
new method provides novel insight into vision loss that improves diagnosis of glaucoma progression using
data from the Vein Pulsation Study Trial in Glaucoma and the Lions Eye Institute trial registry. Simulations
are presented, showing the proposed methodology is preferred over existing spatial methods for VF data.
Supplementary materials for this article are available online and the method is implemented in the R
package womblR.
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1. Introduction

Glaucoma is a leading cause of blindness worldwide, with a
prevalence of 4% in the population aged 40–80 (Tham et al.
2014). The most common form of glaucoma is primary open-
angle glaucoma (POAG). The biological basis of the disease is
not fully defined, however, the most significant risk factor for
POAG is elevated intraocular pressure (IOP). Elevated IOP can
be treated with eye drops, surgery, or laser. If this condition goes
untreated the optic nerve may be damaged, resulting in perma-
nent vision loss. Since visual impairment caused by glaucoma is
irreversible and efficient treatments exist, early detection of the
disease is essential. As such, patients diagnosed with glaucoma
are monitored for disease progression even if they are receiving
treatment, because the role of the treatment is to slow the pro-
gression. Determining if the disease is progressing remains one
of the most challenging aspects of glaucoma management, since
it is difficult to distinguish true progression from variability due
to natural degradation or noise (Vianna and Chauhan 2015).
Numerous techniques have been developed to monitor progres-
sion, but there is currently no consensus as to which method is
best. In this study, we focus on visual field (VF) testing.

A VF test is a psychophysical procedure that assesses a
patient’s field of vision. The test results in a two-dimensional
map that represents the level of eyesight uniformly across the
retina. Glaucoma patients normally receive biannual VF tests
and have follow-up lasting numerous years (Chauhan et al.
2008). The collection of VF data results in a longitudinal series
of spatially referenced measurements that exhibit a complex spa-
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tiotemporal structure. The spatial surface of the VF is observed
on a lattice (i.e., uniform areal data), however, it is a complex
projection of the underlying optic disc and exhibits anatomically
induced spatial dependencies. In particular, localized damage to
the optic disc can result in clinically deterministic deterioration
across the VF (Quigley et al. 1992). Incorporating this nonstan-
dard spatial dependence structure into our methodology is a
priority for properly analyzing these data.

There are comparable methodological complexities that arise
in Alzheimer’s disease, attention deficit hyperactivity disorder,
and multiple sclerosis, all related to white-matter connectivity
of the brain (He, Chen, and Evans 2008; Konrad and Eickhoff
2010). However, complex brain imaging data are generally ana-
lyzed using point-referenced statistical models as opposed to
areal data models (Bowman et al. 2008). The point-referenced
framework has a rich theory that accounts for nonstandard
spatial dependencies, mainly through the assumptions of non-
stationarity (Sampson 2010) and anisotropy (Ecker and Gelfand
2003). Castruccio, Ombao, and Genton (2016) model anatom-
ical regions of interest of the brain in fMRI data using these
assumptions in a study of stroke rehabilitation, while another
study accounts for brain connectivity in Alzheimer’s patients
(Thompson et al. 2004).

The literature surrounding complex spatial dependencies is
less developed in the areal data setting with spatiotemporal
methods even less common. One reason for this is that stationar-
ity and isotropy (i.e., correlation as a function of distance alone)
cannot be defined for areal data due to the contrasting defini-
tion of spatial proximity between the two frameworks. When
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analyzing areal data, spatial similarity is typically dictated by
a local neighborhood structure (Banerjee, Gelfand, and Carlin
2003). Over time, modifications to the neighborhood structure
have been proposed, and in this manuscript we work within
the boundary detection framework. An extension of directional
gradients from point-referenced theory (Banerjee and Gelfand
2006), boundary detection was originally developed to identify
boundaries on geographical maps in the context of disease
mapping (Ma and Carlin 2007). The inherited method of mod-
ifying the local neighborhood structure provides an intricate
framework for introducing complex spatial structure on the VF.
We introduce a novel spatiotemporal boundary detection model
that allows the underlying anatomy of the optic disc to dictate
the spatial structure of the VF across time and show that it
offers new and valuable information for improved progression
detection through analysis of data from the Vein Pulsation Study
Trial in Glaucoma (VPSG) and the Lions Eye Institute trial
registry.

This article is outlined as follows. Section 2 details the data
generating mechanism for VF data and the setting of glaucoma
progression diagnostics. We briefly review spatial boundary
detection methods in Section 3. In Section 4, our newly devel-
oped statistical methodology is described. We apply our method
to a dataset of VF tests from glaucoma patients in Section 5
and compare its performance to an existing boundary detection
method via simulation study in Section 6. We conclude in
Section 7 with a discussion.

2. Visual Field Data

The VF is the spatial array of visual sensations that the
brain perceives as vision (Smythies 1996). The most common
technique for testing the VF is standard automated perimetry
(SAP, Chauhan et al. 2008). In this study, we analyze data
acquired with the Humphrey Field Analyzer-II (HFA-II) (Carl
Zeiss Meditec Inc., Dublin, CA). The VF data generating
process is displayed in Figure 1. We follow a single observation
throughout the figure, presented as a diamond. In Figure 1(a), a
patient (the first author) is tested on a HFA-II. SAP constructs
a VF map by assessing a patient’s response to varying levels of
light. Patients are instructed to focus on a central fixation point
as light is introduced randomly in a preceding manner over a
grid on the VF. As light is observed, the patient presses a button
and the current light intensity is recorded (Chauhan et al. 2008).
The process is repeated until the entire VF is tested. In the figure,
the first author stares at the background of the machine, waiting
until he observes the stimulus to press the buzzer.

The HFA-II measures 54 test points, however, two of these
correspond to a natural blind spot corresponding to the optic
disc, resulting in 52 informative points. The points that cor-
respond to the blind spot are highlighted yellow (Figure 1c).
Figure 1(b) presents the anatomy of the eye. The retina is a light-
sensitive layer at the back of the eye that absorbs stimulus from
the HFA-II and transmits information to the brain through the
optic disc along the optic nerve. The optic nerve is a bundle of
more than one million fibers that carry visual information in the
form of electrical signal from the retina to the brain. The retinal
nerve fiber layer (RNFL), Figure 1(c), is made of retinal ganglion

cell (RGC) axons. All the axons converge at the optic disc, which
is the departure point of the optic nerve.

These RGC axons are responsible for encoding visual infor-
mation. The ganglion cells disperse across the retina, but are
mostly concentrated in the center of the retina, and use pho-
toreceptors to transmit information to the brain along their
axons (Davson 2012). Both the RGCs and their axons may die
progressively as a result of elevated IOP. In particular, damage
to specific regions of the optic disc corresponds to loss of RGCs
whose axons enter the damaged region. Thus, vision loss across
the VF and the corresponding damage to the optic disc are
the result of the death of RGCs and their axons. Furthermore,
correlation between two test points on the VF is dependent on
the spatial proximity that their underlying nerve fibers enter the
optic disc. This indicates that variability in the neighborhood
structure of the VF is possibly indicative of progression. The
nerve fibers (not to be confused with the thicker and more sparse
blood vessels) are shown extending throughout the retina with
the VF test points represented by black dots.

Each test location has underlying fibers that track across the
RNFL and enter the optic disc at a particular angle. Garway-
Heath et al. (2000) studied the relationship between the VF test
points and the underlying RNFL. They quantified the relation-
ship between the VF and optic disc by estimating the angle
that each test location’s underlying fiber enters the optic disc,
measured in degrees (◦). The measure ranges from 0◦ to 360◦,
where 0◦ is designated at the 9-o’clock position (right eye) and
angles are counted counter clockwise. The Garway-Heath angle
for the example location is 77◦ (Figure 1(d)).

In the course of a VF test all 52 informative locations are
assessed, resulting in a grid of test values (Figure 1(e)). The two
locations corresponding to the blind spot are gray. SAP mea-
sures the differential light sensitivity (DLS) across the VF. The
measurement represents a contrast between the background of
the machine, normally white, and the light stimulus. The inten-
sity of the stimulus is initially similar to the background, but as
the intensity increases the contrast grows and the probability of
detecting the stimulus increases. The intensity of the stimulus
is measured in Apostilbs (asb), where larger values represent a
greater intensity. The HFA-II is capable of outputting intensities
ranging from one (similar to the background) to 10,000 asb. All
stimuli that are not detected by 10,000 asb are censored, due to
the constraints of the machine. In practice, these intensities are
converted to decibels (dB), where dB = 40−10 log10 (asb). This
inverts the scale, such that DLS values near 40 indicate good
vision, while values near zero represent possible blindness. In
the course of monitoring a patient with glaucoma, VF testing is
performed on a regular basis and a longitudinal series of VFs is
obtained (Figure 1(f)).

3. Spatial Boundary Detection

VF data exhibit a complex spatiotemporal structure that is
characterized by localized spatial dependencies dictated by the
underlying anatomy of the optic disc. These data are generated
over a lattice, a subset of areal data in spatial literature. In spatial
statistics, the foundational assumption states that dependence
between observations weakens as the distance between locations
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Figure 1. Demonstrating the VF data generating mechanism, (a) A patient (the first author) participates in a VF examination. (b) The HFA-II stimulus is absorbed by the
retina and transmitted through the optic disc, and along the optic nerve to the brain. (c) Each VF test point corresponds to a location on the underlying RNFL. (d) The
corresponding nerve fiber enters the optic disc at 77◦ . (e) Each VF test produces a map that shows the intensity a stimulus is detected at each test location. The gray
locations represent the blind spot. (f ) Over time the patient accrues VF tests.

increases (Gelfand et al. 2010). In areal data models, this
assumption often manifests through Gaussian Markov random
fields (GMRF) that induce neighborhood dependence across
the region (Geman and Geman 1984). A common GMRF is the
conditional autoregressive (CAR) process (Besag 1974).

The CAR model achieves spatial smoothing through random
effects, ϕi at location i for i = 1, . . . , n, with spatial structure
defined through the set of neighborhood adjacencies, {wij}.
These adjacencies are fixed, such that wij = 1(i ∼ j), where 1(·)
is the indicator function and i ∼ j is the event that locations i
and j share a border (wii = 0 for all i). This specification induces
an elegant conditional distribution for each random effect. We
present a general form of the CAR process originally introduced
by Leroux, Lei, and Breslow (2000),

ϕi|ϕ−i, μ, τ 2

∼ N

(
ρ

∑n
j=1 wijϕj + (1 − ρ)μ

ρ
∑n

j=1 wij + 1 − ρ
,

τ 2

ρ
∑n

j=1 wij + 1 − ρ

)
,

(1)

where ϕ−i = (ϕ1, . . . , ϕi−1, ϕi+1, . . . , ϕn)T . Note that setting
ρ = 1 reduces Equation (1) to the standard intrinsic CAR
process. The mean is a weighted average of the neighbors with
variance decreasing inversely with the number of neighbors.
The standard CAR model provides an attractive representation
and is flexible in its ability to model smooth spatial processes.
However, it can be limited in settings where spatial structure

is fragmented into localized regions due to {wij} being fixed. In
the areal data setting, a flexible class of models called boundary
detection can be used to remedy this issue (Banerjee, Gelfand,
and Carlin 2003).

Boundary detection was originally explored by Womble
(1951), but has gained a niche in the context of disease
mapping. The motivation for boundary detection is to identify
regions on the spatial surface where there are sharp changes
in the response value (Jacquez and Greiling 2003). In disease
mapping, these boundaries can take many forms, for example,
geographic obstacles such as mountain ranges or socioeconomic
boundaries caused by pockets of increased poverty. Standard
methods attempt to control for disjoint spatial regions by
including covariates in the mean structure of the CAR process.
This technique can be effective in producing highly variable
spatial surfaces, but is limited in producing truly localized
spatial smoothing (Banerjee, Gelfand, and Carlin 2003).
Boundary detection improves on this naive approach by
carefully considering the form of the adjacencies.

Initially, boundary detection methods were parameterized
for use in disease mapping, defining boundaries as a function of
the difference in standardized incidence ratios (Lu and Carlin
2005). This method is limited, since it can be difficult to have
knowledge of boundaries a priori and does not generalize out-
side of disease mapping. Numerous methods in the boundary
detection literature treat the adjacencies as random variables
and construct hierarchical models to estimate the adjacency
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matrix (Lu et al. 2007; Ma and Carlin 2007), and even provide
extensions to the spatiotemporal setting (Rushworth, Lee, and
Sarran 2017). However, inference from these models can be
highly sensitive to prior specifications on certain parameters (Li
et al. 2015). Furthermore, these methods introduce (n)(n−1)/2
additional random variables leading to potential identifiability
issues. Li, Banerjee, and McBean (2011) proposed another class
of methods that enumerate all possible permutations of the
adjacencies in parallel models, using the Bayesian information
criterion to choose between them. This class of methods was
formalized when Lee, Rushworth, and Sahu (2014) introduced
a novel joint prior distribution for the spatial random effects and
adjacency matrix. This prior has been extended to spatiotempo-
ral models (Lee and Mitchell 2014).

A final class of methods models the adjacencies using dis-
similarity metrics. The method introduced in Lee and Mitchell
(2011) generalizes the form of Equation (1) to allow for the
adjacency weights to be modeled as a function of a small num-
ber of regression parameters, α = (α1, . . . , αq)T . According
to Lee and Mitchell (2011), “boundaries in the risk surface
are likely to occur between populations that are very differ-
ent because homogeneous populations should have similar risk
profiles.” They define q nonnegative dissimilarity metrics zij =
(zij1, . . . , zijq)T , where zijk = |zik − zjk| for k = 1, . . . , q. The q
covariates, zik at location i, drive detection of boundaries and are
characterized by their importance in defining the neighborhood
structure. The choice of q is problem specific and based on the
availability of useful explanatory information for describing the
boundaries. The adjacencies are modeled as follows,

wij (α) = 1(i ∼ j)1
(

exp
{
−zT

ij α
}

≥ 0.5
)

, (2)

where each αk is constrained to be nonnegative so that a larger
dissimilarity metric indicates a higher likelihood of a boundary
(or zero weight). In this model, ρ is fixed at 0.99 to force
the spatial correlation structure to be determined locally by
{wij (α)}, rather than globally by μ. This form has many appeal-
ing properties that make it amenable to boundary detection.
In particular, if there are no adjacencies (i.e., wij(α) = 0 for
all i �= j) the conditional mean and variance are still defined.
The method proposed by Lee and Mitchell (2011) provides a
parsimonious framework for introducing localized smoothing.

4. Methods

Following the approach of Lee and Mitchell (2011), we pro-
pose modeling localized spatial correlation through a set of
weights {wij (αt)} as a parsimonious function of dissimilarity
metrics and their regression parameters. However, we propose
extending the framework to account for spatiotemporal local-
ized smoothing and therefore define αt = (αt1, . . . , αtq)T , for
t = 1, . . . , ν. With appropriate temporal dependency structures
in place, this specification allows for localized smoothing in
instances of true temporal correlation. Inference for this model
is based on Markov chain Monte Carlo (MCMC) simulation,
and a description of the algorithm is given in the online supple-
mentary materials. Spatiotemporal models are computationally
intensive, so the MCMC algorithm is implemented using Rcpp

(Eddelbuettel et al. 2011) and is available from the R package
womblR (R Core Team 2016).

4.1. Observational Model

We begin by describing our new methodology generally before
applying it to VF data in Section 5. Let Yit denote an observa-
tion from spatial location i at time t, i = 1, . . . , nt , for t =
1, . . . , ν. The number of locations can vary over time. Define
ϕt = (

ϕ1t , . . . , ϕntt
)T , with ϕ−it missing the ith entry. The

observational model is given by,

Yit|ϑit , ζ
ind∼ f (Yit|ϑit , ζ ) for i = 1, . . . , nt , t = 1, . . . , ν,

(3)
g(ϑit) = ϕit ,

ϕit|ϕ−it , μt , τ 2
t , αt

ind∼ N

(
ρ

∑nt
j=1 wij (αt) ϕjt + (1 − ρ)μt

ρ
∑nt

j=1 wij (αt) + 1 − ρ
,

τ 2
t

ρ
∑nt

j=1 wij (αt) + 1 − ρ

)
.

The parameter ϑit describes the distribution of Yit and our
novel spatiotemporal random effect, ϕit , is introduced as a linear
predictor of g(ϑit), with g(·) a link function. Finally, ζ is a vector
of variance (or nuisance) parameters, for example, the over-
dispersion parameter in the negative binomial distribution. This
modeling framework is general and accommodates general-
ized linear mixed models (GLMM). The GLMM setting can be
obtained by setting ϑit = E[Yit|ϑit]. Due to the general specifi-
cation, our methodology can be used to induce spatiotemporal
localized smoothing in a general areal data setting, such as
disease mapping.

The random effect for ϕit represents an extension of the Lee
and Mitchell (2011) specification with temporally referenced
parameters, μt , τ 2

t , and αt (referred to as observational level
parameters). The ρ parameter acts as a gauge of present spatial
variation, where ρ = 0 corresponds to global independence
and ρ → 1 implies strong spatial correlation. In the same
vein as Lee and Mitchell (2011), we fix ρ = 0.99 to guarantee
that spatial correlation can be determined locally by the set of
weights {wij(αt)}. We fully explore the impact of this decision
through simulation as described in Section 5.6 and in the online
supplementary materials. Overall, we find that the results are
robust to this choice.

The conditional distributions of the random effect can be
written jointly using Brook’s lemma (Banerjee, Gelfand, and
Carlin 2003), ϕt|μt , τ 2

t , αt
ind∼ MVN

(
μt1nt , τ 2

t Q (αt)
−1) ,

t = 1, . . . , ν, where Q (αt) = [
ρW∗ (αt) + (1 − ρ)Int

]
,

and 1n and In are an n dimensional column of ones and
identity matrix, respectively. The matrix W∗ (αt) has diagonal
elements w∗

ii (αt) = ∑nt
j=1 wij (αt) and off-diagonal elements

w∗
ij (αt) = −wij (αt).

4.2. Neighborhood Model

We use a similar framework as Lee and Mitchell (2011) to
model the adjacency weights by writing them as a function of
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dissimilarity metrics, zij. The weights are defined as follows,

wij (αt) = 1(i ∼ j) exp
{
−zT

ij αt
}

. (4)

Unlike the original Lee and Mitchell (2011) specification (Equa-
tion (2)), the weights are not forced to be binary. We do specify
the components of αt to be nonnegative, forcing the adjacencies
in the open unit interval. These constraints on αtk yield intuitive
interpretations at extreme values. As αtk → ∞ the adjacen-
cies become zero, resulting in an independence model, while
αtk → 0 reduces the adjacencies to a standard CAR process
(Equation (1)). This new specification changes how neighbors
share information. It is best understood through the conditional
mean from Equation (1), which becomes a weighted average of
neighbors under our new definition of an adjacency, versus a
simple average.

4.3. Temporal Model

From the joint specification of the random effects, we see that
spatial structure is introduced through the covariance of ϕt at
each time point and there is conditional independence (ϕt1 ⊥
ϕt2 |μt , τ 2

t , αt : t = t1, t2). To induce temporal dependence
between the ϕt , we specify a separable temporal structure on
the observational level parameters. Define,

θ = [θ ·1 · · · θ ·ν] =

⎡
⎢⎢⎢⎢⎢⎣

θ1·
θ2·

θ2+1·
...

θ2+q·

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

μ1 · · · μν

log (τ1) · · · log (τν)

log (α11) · · · log (αν1)
...

...
log

(
α1q

) · · · log
(
ανq

)

⎤
⎥⎥⎥⎥⎥⎦ .

Using properties of the vectorization function, vec(·), and the
Kronecker product, ⊗, a separable process is specified such that

vec (θ) |δ, T, φ ∼ MVN (1ν ⊗ δ, � (φ) ⊗ T) . (5)

This process yields elegant interpretations for the row and col-
umn moments of θ . From the moments, we see that δ is a
constant that corresponds to the mean of the observational level
parameters at time t. The matrix T can be interpreted as the local
covariance of the observational level parameters at each time t.

Finally, the correlation matrix, �(φ), represents the temporal
correlation of each observational level parameter over time.
Due to the properties of the separable covariance, each of the
observational level parameters has the same temporal structure
dictated by the form of �(φ). The form of �(φ) is general
such that any standard temporal correlation function may be
specified (e.g., exponential or first-order autoregressive). The
parameter φ acts as a temporal tuning parameter describing the
strength of correlation across time and can be interpreted within
the context of each specific temporal structure.

4.4. Specifying Hyperprior Distributions

To complete the model specification, we define hyperprior dis-
tributions for the introduced parameters such that

δ ∼ MVN(μδ , �δ), T ∼ Inverse-Wishart(ξ , 	),
φ ∼ Uniform(aφ , bφ).

The choice of the entries in μδ can be informative or nonin-
formative depending on the context and user. It is important
to judiciously consider the entries of �δ . For simplifica-
tion, we detail a situation where �δ is diagonal, �δ =
diag(1000, 1000, υ1, . . . , υq). The entries in �δ that are of
importance are those that correspond to log(αtk), since the
large variances for μt and log(τt) induce approximately flat
priors. More care is needed in specifying υ1, . . . , υν . These
hyperprior variances are chosen for purposes of regularization,
to encourage log(αtk) to be in a realistic range. Regularization
is a common use of Bayesian priors (Gelman and Shalizi 2013).
In particular, these variances are chosen so that αtk do not
become larger than α∗

k , such that [α∗
k : exp{−α∗

k zk} = 0.5]
with zk = min

i,j
{zijk}. This condition comes from Equation (4),

where we isolate each dissimilarity metric individually.
For our prior on T, we use an inverse-Wishart distribution

with degrees of freedom ξ = (q + 2) + 1 and scale matrix, 	 =
Iq+2. This prior is appealing since it induces marginally uniform
priors on the correlations of T and allows for the diagonals to
be weakly informative (Gelman et al. 2014). Finally, we specify
the hyperprior distribution for the temporal tuning parameter φ

for correlation structures with one parameter. The bounds for φ

cannot be specified arbitrarily since it is important to account
for the magnitude of time elapsed. We specify the following
conditions for finding the bounds, [aφ : [�(aφ)]t,t′ = 0.95, |xt−
xt′ | = xmax] and [bφ : [�(bφ)]t,t′ = 0.01, |xt − xt′ | = xmin],
where xmin and xmax are the minimum and maximum temporal
differences between visits. These conditions state that the lower
bound of φ is small enough so that the greatest length of time
between time points can yield a correlation of 0.95 and the
upper bound is set so that the shortest length of time between
time points can reach 0.01. These conditions were specified so
that φ can dictate a temporal correlation close to independence
(φ → bφ) or strong correlation (φ → aφ), resulting in a weakly
informative prior distribution.

4.5. Prediction

Once posterior samples have been obtained, prediction is often
a priority. In particular, obtaining samples from the posterior
predictive distribution (PPD) is of interest, f (Yν+1|Y), where
Yt = (Y1t , . . . , Yntt)T and Y = (Y1, . . . , Yν)

T . We express
the PPD as an integral

∫
�

f (Yν+1|�, Y) f (�|Y) d� and then
further partition the integral,∫

�

f
(
Yν+1|g−1 (

ϕν+1
)

, ζ
)︸ ︷︷ ︸

1

f
(
ϕν+1|θ ·ν+1

)︸ ︷︷ ︸
2

f (θ ·ν+1|θ , δ, T, φ)︸ ︷︷ ︸
3

f (ζ , θ , δ, T, φ|Y)︸ ︷︷ ︸
4

d�, (6)

where � = (ϕν+1, θ ·ν+1, ζ , θ , δ, T, φ). The convenient form
of Equation (6) is a function of four known densities that are
defined as a consequence of the methodology introduced in
Section 4. As such, the PPD can be obtained through composi-
tion sampling (Tanner 1996). This theory is presented with one
future time point, but is easily generalized to multiple. Full pre-
diction theory details are presented in the online supplementary
materials.
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Figure 2. Demonstrating the Garway-Heath dissimilarity metric across the VF (right). The angles are defined as the degree at which the underlying nerve fiber enters the
optic disc for each location. The edges and corners are shaded to represent the distance between bordering locations on the VF, where darker shading represents a larger
distance. The RNFL is displayed to demonstrate the similarity of the pattern that appears on the VF by using the Garway-Heath angles (left).

5. Analysis of Visual Field Data

5.1. Study Data

In this study, we source data from the VPSG and the Lions
Eye Institute trial registry, Perth, Western Australia. The dataset
contains 1448 VFs from 194 distinct eyes (98 patients in total).
Three of the eyes had no clinical assessment of progression and
are discarded, yielding 191 series of VFs for analysis. All of the
subjects have some form of POAG. The mean follow-up time for
participants is 934 days (2.5 years) with an average of 7.4 tests
per subject. The progression status of each eye was determined
by a group of expert clinicians. Although there is no consensus
gold standard for diagnosing progression, there is precedent for
treating clinician expertise as a gold standard when introducing
new analytic models (Betz-Stablein et al. 2013; Warren et al.
2016). Every VF series is diagnosed as progressing based on
the clinical judgment of two independent clinicians. In the case
that the two clinicians disagree, a third clinician is consulted
(occurred for only 13 VF series). In our study, we have 141 (74%)
stable and 50 (26%) progressing patient eyes. For a detailed
description of the data, please refer to Betz-Stablein et al. (2013).

5.2. Accounting for Zero-Truncation

We apply our newly developed methodology to a longitudinal
series of VFs. From Section 2, we know that VF testing machin-
ery does not allow observations below 0 dB, and therefore any
zero measurement represents a potentially censored observa-
tion. This motivates the use of a Tobit model (Tobin 1958),
in which there is precedent in glaucoma progression research
(Betz-Stablein et al. 2013; Bryan et al. 2015).

Define the observed DLS, Yit , at VF location i with i =
1, . . . , 52 and visit t with t = 1, . . . , ν. There are 52 VF locations
excluding the blind spot and ν is the number of visits a patient
accrues and is patient specific. To induce the Tobit model, define
g(ϑit) = ϕit with identity link and specify,

f (Yit ; ϑit) = P(Yit = x|ϑit) = 1(x = 0)1(ϑit ≤ 0)

+ 1(x = ϑit)1(ϑit > 0), x ≥ 0.

This specification induces the standard Tobit model, Yit =
max {0, ϑit}, where ϑit is an underlying normally distributed
latent process.

5.3. Creating a Dissimilarity Metric

We specify a dissimilarity metric based on the Garway-Heath
angles defined in Section 2, since we know that correspondence
between VF test locations and their underlying nerve fibers is
important in determining local neighborhood structure. Fig-
ure 2 displays the dissimilarity metric. It shows that two loca-
tions on the VF may be neighbors, but can still be dissimilar
in terms of the Garway-Heath angles. Interestingly, a pattern
emerges across the VF that mirrors the RNFL (left in Figure 2).
In particular, the locations that are separated by the superior
and inferior regions are separated by nearly 180◦ and the flow
of spatial dependency emulates the nerve fibers.

Formally, we define zi as the Garway-Heath angle for location
i. Then, the dissimilarity metric between locations i and j is zij =
||zi − zj||. We use the following distance metric, ||x − y|| =
min{|x−y|, 360−max{x, y}+min{x, y}}. This metric calculates
the minimum difference in Garway-Heath angles on the arc of
the circular optic disc. We define our dissimilarity parameter at
time t as αtGH , since we only use a single dissimilarity metric.
We allow the event 1(i ∼ j) to include both edges and corners
(i.e., a queen specification).

5.4. Model Estimation

To finalize the model, we specify the temporal correlation struc-
ture and hyperparameters. We define an exponential correlation
structure, such that [�(φ)]t,t′ = exp{−φ|xt − xt′ |}, where xt is
the number of days at visit t after the initial visit, with x1 = 0
for each patient. Based on the criterion in Section 4.4 for the
Garway-Heath dissimilarity metric, we specify υ1 = 1. Then we
set �δ = diag(1000, 1000, 1) and μδ = (3, 0, 0). For complete
details on the implementation of the model, see Section 1 of the
online supplementary materials.

5.5. Diagnosing Glaucoma Progression

5.5.1. Establishing a Novel Diagnostic Metric
The methodology presented in Section 4 provides a novel
framework for studying glaucoma progression. Since progres-
sion is characterized by worsening disease severity over time,
we propose using a function of αtGH that can quantify this
variation. We suggest using the posterior mean of the coefficient
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Figure 3. Posterior mean estimates of αtGH plotted across time for all patients, subset by progression status defined at the end of the study.

of variation (CV) of αtGH for t = 1, . . . , ν. The CV is the ratio
of the SD and mean and is an ideal summary metric, because it
accounts for the variability in a parameter while standardizing
by its mean, allowing it to be comparable over populations.
This metric is novel clinically as αtGH does not describe mean
trend in DLS over time, but rather is representative of optic
disc damage and changes in the spatial covariance structure
across time. We refer to our metric based on the spatiotemporal
(ST) model as “ST CV.” In Figure 3, we display posterior
mean estimates of αtGH over time for all patients, subset by
progression status. The figure suggests that there is more
variability in the estimates across time for the progressing
patients generally, and that there is not a clear trend in the
estimates across time for either group. This further motivates
a metric like CV to quantify general variability across time for
diagnostic purposes.

To assess the novelty of our metric, we compare it to two met-
rics that aim to be representative of a class of standard VF trend-
based methods. Trend-based VF diagnostic techniques can be
grouped in two categories, global and point-wise, and study
associations between VF changes and progression (Vianna and
Chauhan 2015). We define the global metric “Mean CV” as the
CV of the VF wide mean of DLS at each visit. If the patient
is stable, the means should be similar at each visit and the
CV of the metric should be near zero. On the other hand, a
progressing patient will have varying means at each visit and the
CV should increase as visits accrue. We also compare our model
to a commonly used point-wise linear regression (PLR) method.
The progression metric is defined as the minimum p-value for
the slope parameter from separately run simple linear regression
analyses across all VF locations, where observed DLS is the
dependent variable and time from first visit is the independent
variable (Smith, Katz, and Quigley 1996). Using both “Mean
CV” and PLR as comparators is far-reaching, as global methods
are generally more robust, while point-wise methods identify
local changes in visual ability.

To assess the diagnostic capability of our metric, we construct
logistic regression models regressing various metrics on the
clinical assessment of progression. We compare our method to
“Mean CV,” PLR, and also the posterior mean CV of αtGH from
the Lee and Mitchell (2011) model, where αtGH is estimated
independently at each visit. We refer to this metric as “Space
CV.” To obtain “Space CV,” we apply the Lee and Mitchell (2011)
methodology with a Tobit likelihood. Thus, the appreciable
differences between the two models that produce “Space CV”
and “ST CV” are the definition of the weights, cross-covariance,

Table 1. Assessing the diagnostic capability of VF metrics.

Metrics Estimate SE z-Value Pr(>|z|)
Mean CV 0.40 0.16 2.55 0.011∗
PLR −0.59 0.25 −2.37 0.018∗
Space CV −0.07 0.17 −0.41 0.680
ST CV 0.39 0.16 2.44 0.015∗

NOTE: Each metric is regressed against the clinical assessment of progression using a
logistic regression model with the slope estimates being displayed (∗significance
level of 0.05). “Mean CV” is the CV of the VF wide mean of DLS at each visit, PLR
is the minimum p-value of the location specific regression slopes, and “Space
CV” and “ST CV” represent the mean posterior CV of αtGH from the Lee and
Mitchell (2011) and our spatiotemporal models, respectively. Each of the metrics
are standardized.

and temporal correlation structure for the observational level
parameters.

In Table 1, we present the results from the logistic regression
analyses using a significance level of 0.05. Each predictor is
standardized to facilitate comparisons of the different metrics.
We can see that as expected “Mean CV” and PLR are signifi-
cantly associated with glaucoma progression, with p-values of
0.011 and 0.018, respectively. For “Mean CV,” the estimated
slope coefficient of 0.40 indicates that as a patient’s “Mean CV”
increases, their risk of progression increases. For PLR, a smaller
minimum p-value suggests an increased risk of progression
(estimated slope coefficient of −0.59). Based on the glaucoma
literature, we would expect trend-based methods such as “Mean
CV” and PLR to have good discriminatory capability between
stable and progressing eyes. It was less clear for our new metrics
dependent on αtGH . We see that “Space CV” is not significantly
associated with glaucoma progression with a p-value of 0.680,
while “ST CV” is significantly associated with a p-value of 0.015.
This result is encouraging, yet surprising, since the models are
similar and illuminates their differences in the VF data setting.
However, for this newly defined metric to be impactful, we
must verify that it is explaining a novel pathway in glaucoma
progression, independent of existing metrics.

To assess whether “ST CV” provides novel diagnostic capa-
bilities, we explore the correlation between the metrics. In Fig-
ure 1 of the online supplementary materials, we show pairwise
correlation plots. We also present Pearson correlation estimates
(ρ) and p-values from the hypothesis test: H0 : ρ = 0, H1 :
ρ �= 0. “ST CV” is uncorrelated with both “Mean CV” and PLR
with estimated correlations of 0.06 and 0.11, respectively, and
large p-values. This result has important implications; indicating
that in addition to being highly predictive of progression, “ST
CV” is uncorrelated with the standard trend-based metrics.
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Table 2. Operating characteristics for diagnostic metrics.

AIC AUC pAUC p-Value1 p-Value2 p-Value3

Mean CV & PLR 209.81 0.68 0.21 − − −
Mean CV & PLR + 213.46 0.70 0.22 0.503 0.196 0.410

Space CV
Mean CV & PLR + ST CV 204.46 0.74 0.29 0.010 0.042 0.059

NOTE: p-Values assess statistical significance of improvement over the combined
trend-based metric (Mean CV & PLR) for, (1) additionally included regression
parameters (using a nested likelihood ratio test), (2) AUC, and (3) pAUC.

This suggests that “ST CV” and the trend-based metrics can
be used in conjunction to diagnose progression. Finally, the
estimated correlation between “Space CV” and “ST CV” is 0.48
and the p-value is highly significant (<0.001), which is not
surprising since “Space CV” and “ST CV” are estimating the
same quantity. It is, however, interesting that these two metrics
have such different associations with glaucoma progression (see
Table 1). When “Space CV” was calculated with continuous
weights this association did not change (p-value: 0.326, not
included in Table 1), indicating the importance of temporal
correlation and cross-covariance for properly modeling VF data.
Presumably due to our enhanced methodology, “ST CV” is more
precisely estimating the CV of αtGH by smoothing the αtGH and
eliminating temporal noise and cross-covariance dependencies.
To formalize this hypothesis a simulation study is designed in
Section 6.

5.5.2. Extension to the Clinical Setting
Having demonstrated the novelty of using variability in the
boundary detection parameter as a progression diagnostic, we
now establish its clinical utility. We combine the two trend-
based metrics into a composite model that represents an ideal
synthesis of global and local methods. This metric includes
“Mean CV” and PLR and their interaction. We then compare
the changes in operating characteristics after separately adding
“Space CV” and “ST CV” to this composite model, including
the main effect and pairwise interactions. These results are
presented in Table 2, where summary statistics include the
Akaike information criterion (AIC), area under the receiver
operating characteristic (ROC) curve (AUC), and the partial
AUC (pAUC). Here, pAUC is limited to the clinically significant
region of specificity of 85–100% (Zhu et al. 2014).

The results indicate the clinical importance of “ST CV,” pro-
ducing optimal values of AIC, AUC, and pAUC. Furthermore,
adding “ST CV” produces statistically significant improvements
over the composite trend-based model in terms of the additional
predictors, and both AUC and pAUC (although at the α = 0.10
level for pAUC). Meanwhile, there are no improvements in the
operating characteristics when adding “Space CV,” which is also
confirmed when investigating the ROC curves (Figure 4a). In
Figure 4a, it is clear that the inclusion of “ST CV” increases
the discriminatory ability of the composite trend-based model,
in particular within the clinically significant region, left of the
dashed line.

In addition to operating characteristics calculated at the end
of the study, we are also interested in the diagnostic performance
of each metric in earlier stages of the disease, where accurate dis-
crimination is more important for preserving a patient’s visual
ability. In Figure 4(b), a smoothed LOESS trajectory of pAUC is

presented for each of the models in Table 2 for the first 4.5 years
of follow-up. This analysis reflects a true clinical setting where
data are analyzed as they are collected for a patient over time.
We calculate “Mean CV,” PLR, “Space CV,” and “ST CV” for each
patient during each visit. Then, using the fitted logistic regres-
sion models from the end of the study, we calculate predicted
probabilities of VF progression. Finally, these probabilities are
converted into binary disease progression diagnoses based on
probability cutoffs obtained from the full study data. We forgo
the commonly used Youden’s index (which maximizes sensitiv-
ity and specificity), for a criteria that forces specificity to be in
the clinically significant range, while maximizing sensitivity.

These results indicate that the improvement in operating
characteristics attributed to “ST CV” begins early during the
follow-up period, in particular for pAUC. This result estab-
lishes that “ST CV” is clinically useful, and further enforces
the importance of the introduced methodology as “Space CV”
is incapable of improving operating characteristics during the
same time period. In addition, Figure 4(c) presents boxplots of
the predicted probabilities at half-year intervals, by progression
status as defined at the end of the study. In Figure 4(c), there is
a clear separation between the progressing and non progress-
ing patients’ predicted probabilities of progression beginning
around 1.5 years after baseline visit. This separation is more
pronounced with the addition of “ST CV.”

5.6. Sensitivity Analyses

In the online supplementary materials, we present a number
of sensitivity analyses and an additional simulation study to
explore various modeling assumptions, including hyperparam-
eter choices, the correlation structure, the bounds of φ, and
misspecification of ρ and the dissimilarity metric. Overall, we
find that the results are robust to these assumptions. For full
details on these analyses, please see the online supplementary
materials.

6. Model Performance Simulation

A simulation study is designed to assess the performance of the
proposed model in the presence of temporal dependence and
cross-covariance. We focus on the estimation of CV of αtGH ,
since we propose using this posterior distribution in diagnosing
progression.

To understand the gains of using our methodology in
the presence of temporal correlation and cross-covariance
dependence, we design a simulation study comparing the spatial
model of Lee and Mitchell (2011), referred to as Space, and
our spatiotemporal method (ST). We simulate data based on a
set of known hyperparameters and then estimate the posterior
mean of the CV of αtGH using both models, comparing the
estimates to the known truth using bias, mean squared error
(MSE), and empirical coverage (EC). The simulation is designed
to explore model performance in a typical patient from our
study data. As such, we fix the true hyperparameters in the
simulation study to the posterior means obtained from Section 5
for an average patient. Here an average patient is one whose
posterior mean estimates are average among all patients. The
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Figure 4. Demonstrating the performance of diagnostic metrics: (a) ROC curves for the combined trend-based metric (Mean CV and PLR), including the addition of “Space
CV” and “ST CV” (clinically meaningful region to the left of dashed line), (b) pAUC in the initial years from baseline visit (estimates are presented as smooth LOESS curves
and the dashed line indicates no discrimination), (c) boxplots of the predicted probabilities of progression presented by disease status over time as defined at the end of
the study period.

true hyperparameters used in the simulation study are as
follows,

δ =
⎡
⎣2.446

0.070
0.974

⎤
⎦ , T =

⎡
⎣ 0.820 0.004 −0.028

0.004 0.380 −0.191
−0.028 −0.191 0.840

⎤
⎦ ,

φ = 0.163.

Simulation settings are developed to incrementally under-
stand the impact of the cross-covariance, T, and temporal
correlation, �(φ). To facilitate this analysis, Equation (5) is used.
Define Tdiag = diag(T), such that Tdiag has zeros on the off-
diagonal and φI = 100 (note that a large φ for the exponential
correlation implies temporal independence). The simulation
settings are as follows with the data generating covariance given
in parentheses, A: no temporal correlation, no cross-covariance(
� (φI) ⊗ Tdiag

)
, B: no temporal correlation, cross-covariance

(� (φI) ⊗ T), C: temporal correlation, no cross-covariance(
� (φ) ⊗ Tdiag

)
, D: temporal correlation, cross-covariance

(� (φ) ⊗ T). Finally, we must specify the days and number
of VF visits. To obtain the visit days, we sampled from a Poisson
distribution with rate parameter equal to the average difference
in days between VF visits (rate = 117.25 days). We present the
simulation at the median (7) and maximum (21) number of
visits in our study data.

For each simulation setting, we generate 100 values of θ

and then use each θ to simulate 10 datasets. This yields 1000
simulated datasets for each of the simulation settings. In Table 3,

Table 3. Results from simulation study estimating the posterior mean of the CV
of αtGH in setting A: no temporal correlation, no cross-covariance, B: no temporal
correlation, cross-covariance, C: temporal correlation, no cross-covariance, and D:
temporal correlation, cross-covariance.

# Visits

7 (Median) 21 (Maximum)

Setting Model Bias MSE EC Bias MSE EC

A ST 0.032 0.107 0.97 0.023 0.084 0.95
Space 0.102 0.111 0.87 0.174 0.098 0.81

B ST 0.047 0.125 0.96 0.034 0.101 0.95
Space 0.119 0.120 0.80 0.250 0.176 0.68

C ST −0.113 0.088 0.97 0.002 0.037 0.98
Space −0.306 0.172 0.51 −0.182 0.088 0.60

D ST −0.103 0.085 0.98 0.015 0.060 0.98
Space −0.299 0.172 0.51 −0.169 0.087 0.59

NOTE: Each setting is also implemented for the median (7) and maximum (21)
number of VF visits. Each reported estimate is based on 1000 simulated datasets.

the bias, MSE, and EC are presented for the two models across
all settings and at the median and maximum number of visits.
We begin by noting the average (across all settings) simulation
standard errors of the bias (0.223, 0.063), MSE (0.039, 0.028),
and EC (0.141, 0.013) for the space and spatiotemporal models,
respectively. In general the spatiotemporal model has smaller
standard errors than the space model, indicating less variability
in estimation across the simulated datasets.

The bias results suggest that our spatiotemporal model pro-
duces an estimator of CV with bias closer to zero than the spatial
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model on average across all settings. In the settings with no
temporal correlation (i.e., A and B) the MSE is quite similar
between the models, except for Setting B where the maximum
number of visits is considered. In this setting, the MSE is lower
for the spatiotemporal model, revealing the importance of the
cross-covariance for properly estimating the posterior mean of
the CV of αtGH . In all other settings, the estimated MSEs for
the spatiotemporal model are smaller than for the spatial model,
with the largest differences seen in Settings C and D for the
median number of visits.

The EC is the proportion of the time that the estimated
Bayesian credible intervals contain the true CV value. We define
the nominal coverage as 95%. The EC results favor the spa-
tiotemporal model across all settings. The spatial model has an
EC of 0.87 and 0.81 in setting A for the median and maximum
settings, respectively. This is the most ideal setting for the spa-
tial model, because it was the setting in which the model was
introduced (although within the context of disease mapping).
The EC deteriorates in the spatial model as cross-covariance
and temporal structure are introduced in the simulated data,
falling as low as 0.51, while the spatiotemporal model performs
consistently.

7. Discussion

In this article, we proposed a modeling framework for incorpo-
rating local neighborhood structure into complex spatiotempo-
ral areal data. Based on this framework, we developed an inno-
vative and highly predictive diagnostic of glaucoma progression
that outperformed the spatial-only model. Although motivated
by VF data, the methodology was introduced in a general man-
ner that permits the model to be applied in broad areal data
settings, including disease mapping and more generally GLMM.
The methodology is built upon theory in boundary detection
literature, using a Bayesian hierarchical modeling framework
for inference. We extended the spatial-only method introduced
by Lee and Mitchell (2011), that elegantly introduced a dis-
similarity metric in a parsimonious framework. Our method
allows for the local neighborhood structure to adapt over time
as a function of changing dissimilarity metric parameters. Fur-
thermore, the temporal correlation and cross-covariance are
accounted for, eliminating known sources of excess variability.
This parsimonious method induces nonstandard local spatial
surfaces in areal data that are capable of mirroring complex
processes, such as the surface of the VF.

We have shown (Figure 2) that the spatiotemporal covariance
structure specified in our methodology successfully induces
local neighborhood structure across the VF. The novelty of
employing the Garway-Heath angles in the form of a dissim-
ilarity metric provides a connection between the VF and the
underlying optic disc, resulting in a neighborhood structure on
the VF that is representative of the RNFL. Other methods incor-
porated the Garway-Heath angles into statistical models, either
collapsed into regions of anatomical interest (Betz-Stablein et al.
2013; Warren et al. 2016) or by VF location (Zhu et al. 2014), but
none allowed the effect to change dynamically. The dissimilarity
metric parameter, αtGH , dictates the VF spatial surface at each

visit, allowing the neighborhood structure to adapt alongside
changes in DLS.

The results from applying our method to VF data (Section 5)
demonstrated the added benefit of using our methodology, in
both the clinical and statistical frameworks. We defined the
diagnostic metric “ST CV” as the posterior mean of the CV
of αtGH , and showed that it is a significant predictor of clin-
ically determined glaucoma progression while being uncorre-
lated with standard VF trend-based metrics (“Mean CV,” PLR).
Since “ST CV” is independent of “Mean CV” and PLR, and each
one is an effective predictor, there is clinical utility to combining
their diagnostic capability (i.e., “ST CV” is not meant to compete
with “Mean CV” and PLR but should be used together). The
“Space CV” metric was not significantly associated with pro-
gression.

The significant association observed between “ST CV” and
glaucoma progression was statistically note worthy, but taken
in isolation had limited clinical implications. We showed the
clinical utility of “ST CV” in Section 5.5.2, where the operating
characteristics of the trend-based methods, both at the end
of the study and in the early period, are improved with the
addition of “ST CV” (Table 2, Figure 4). This fundamental
finding shows that “ST CV” constitutes an alternate pathway
for studying glaucoma progression using VF data. This pathway
is facilitated by the dissimilarity metric framework introduced
by the proposed methodology and consequently “ST CV” has
a novel interpretation among glaucoma progression diagnostic
metrics. In particular, “ST CV” quantifies damage to the optic
disc over time as a function of stability on the spatial structure of
the VF. It provides a method for discussing underlying damage
to the optic disc using VF data.

Our simulation study indicated that the presence of tem-
poral correlation and cross-covariance dependence impacted
estimation of the posterior mean of the CV of αtGH . The results
(Table 3) illustrated superior bias, MSE, and EC for our pro-
posed spatiotemporal model over the spatial model of Lee and
Mitchell (2011). These results imply that our method provides
a framework for more precisely estimating the CV of αtGH by
smoothing the αtGH and eliminating temporal noise and cross-
covariance dependencies. These results are consistent with stud-
ies that have shown when temporal correlation is ignored, esti-
mators are often biased and variances are poorly estimated
(West 1996).

In our implementation of the model for glaucoma data, we
are not particularly interested in the specific location of the
spatial boundaries across the VF, unlike traditional boundary
detection applications. In isolation we do not believe those find-
ings would be predictive of glaucoma progression, but would
only inform about the current level of vision loss for a patient.
Our results suggest that changes in these boundaries across
time represent an informative, innovative, and unique metric
for diagnosing glaucoma progression. Using the dissimilarity
metric gives us the ability to directly quantify the boundary
changes across time and therefore, to make clinical progression
determinations for a patient.

The need for spatiotemporal boundary detection with a dis-
similarity metric is also driven by the unique features of our VF
dataset. Using a more basic CAR structure with fixed neighbor-
hood adjacencies would result in ignoring the fact that these



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1073

neighborhood definitions are potentially changing across time
due to disease progression. It would also require us to fix the
adjacencies a priori. On the other hand, using a point-referenced
geostatistical model with a spatiotemporal covariance function
would result in ignoring the inherent discreteness of the spatial
domain, a grid overlaying the VF. Spatiotemporal boundary
detection with a dissimilarity metric represents an ideal blend
between the two methods by allowing for discreteness in the
spatial domain and flexibility in defining neighbors through use
of a continuous covariate such as the Garway-Heath angles.

Finally, this work opens up numerous avenues for future sta-
tistical research. If data are available, covariates can be incorpo-
rated in the observational model naturally via the link function,
g(ϑit) = xitβ + ϕit . Currently, the specification of the Leroux,
Lei, and Breslow (2000) likelihood includes a μt in the mean
structure, thus to identify the μt and β0 we must either apply
a constraint,

∑ν
t=0 μt = 0, or reparameterize the likelihood to

be a function of only τt and αt . The incorporation of covariates
is of particular importance in disease mapping, where standard
incidence rates are often mapped over varying risk factors (Lee
and Mitchell 2013). Another natural extension to this approach
includes generalizing the separable temporal covariance to allow
unique temporal decay parameters.

Supplementary Material

The supplementary materials contain details for implementing the MCMC
sampler, including derivation of full conditionals, along with prediction
theory, additional sensitivity analyses, and figures.
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