Teaching Statement

My goal of teaching economics is to equip students with a general understanding of economics and its tools so that they can apply economic thinking skills to everyday decisions. Having taught or tutored students of different ages and levels, in both economics and mathematics, I have found that enthusiasm, patience, an emphasis on promoting learning-by-doing or active learning, and the effort to present simplified models or convey the intuition are vital in helping students internalize economic knowledge. In what follows, I describe each of the four supporting elements.

Enthusiasm: Economics, unlike some of the more abstract branches in mathematics, has the advantage that it has more direct social relevance. I will try to foster enthusiasm by encouraging students to discuss newspaper clippings or magazine readings which they thought bear relevance to the course content. In addition, I will try to spark interest in the course by highlighting its everyday relevance.

Patience: Oftentimes, one finds that what seems like slow progress, the careful accumulation of econometric tools and economic concepts, has eventually allowed for new synthesis that one couldn't possibly do before. I intend to emphasize to students that the focus is as much as on the process as the outcome of learning. To do so, I try to maintain a patient and modest attitude, treating questions and struggles as part of the process. Furthermore, I will try to convey to students that the process can be enjoyable and satisfying in its own right, especially if developing mastery bolsters own confidence in future learning experience.

Active Learning: I find that teaching economics is best done in an interactive way where students practice applying the concepts or techniques right away. For example, one could hear about the distinction between fixed effect versus random effect and the properties of either estimator from a standard lecture. However, gaining practical knowledge in applying either estimator is best facilitated by working through examples or problem sets right after the lecture. When the students are forced to choose the most suitable estimator when there is little variation across observations in the key variable, they see that fixed effect estimation leads to large standard errors and retain that knowledge.

Presenting Simplified Models or Conveying the Intuition: I find that the most effective way to teach and learn complex papers is by breaking them into manageable pieces or strip them down to the kernel of idea. For example, an effective way to teach an involved paper applying solution techniques for discrete state dynamic oligopoly games to a rich, real-world setting is by first introducing the solution techniques in a “plain vanilla example. Furthermore, one should present the limitations from using the simplest solution techniques, such as value function iteration, first. Stripping the course material down to its essential requires a great deal of thoughts, but doing so pays dividends as students can then extend the techniques to richer problems or applications.