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Abstract

A principal hires an agent to run a firm. The principal determines not only the compen-
sation and termination time of the agent, but also the monitoring intensity. The optimal
contract treats pay incentives and monitoring as substitutes. Interestingly, the relationship
between firm performance and monitoring intensity is non-monotonic: monitoring inten-
sity increases (decreases) after periods of good performance for firms with low (high)
financial slack. When the contract is implemented with financial claims, we show that
more productive firms or those with less severe agency problems feature higher stock
prices, lower credit yield spreads and, crucially, greater levels of monitoring.
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1. Introduction

Firms hire managers to run them. However, as noted by Adam Smith (1776) and by Berle
and Means (1930), any such relationship is beset by a problem as old as time: managers
can take actions that benefit them at a cost to the owners of the firm.1 The owners of
the firm can mitigate the agency problem by realigning the agent’s incentives with their
own through well-structured compensation and effective monitoring of the agent. Private
equity (PE) investors, for instance, ensure that the management of the firms they invest
in is properly incentivised (usually by giving them a sufficiently large equity stake).

Before we proceed, it is important to distinguish between two possible notions of
monitoring: retrospective and prospective. Retrospective monitoring involves auditing
past performance and specifies punitive consequences in the face of malfeasance un-
earthed.2,3 Prospective monitoring, on the other hand, entails oversight that places new
barriers to malfeasance; it is purely prophylactic, and imposes no further costs on the
agent at all, save for making malfeasance more difficult.4 In this paper, we shall focus
exclusively on prospective monitoring (henceforth, simply ‘monitoring’), because it
aligns more closely with our conception of governance as a set of preventative measures,
guardrails so to speak.

Early work aimed at analysing the agency problem has focused almost exclusively
on the design of incentives; for example Holmström (1979) shows that a contractual
arrangement that links the compensation of the agent to the performance of the project
helps mitigate the losses that result from this long-standing problem. However, as em-
phasised by Milgrom and Roberts (1992, Chapter 7), the optimal contract should jointly
determine both the sensitivity of the agent’s compensation to output (ie, the incentive
structure) and the firm’s monitoring structure which, broadly speaking, includes all the
mechanisms that are implemented as part of the firm’s effort to control the extent of
agency problems (Shleifer and Vishny, 1997). The owners of firms, through their choice

1Smith (1776, Book 5, Chapter 1, Part 3) writes: “The directors of such companies . . . , being the managers
rather of other people’s money than of their own, it cannot well be expected that they should watch over it
with the same anxious vigilance with which the partners in a private company frequently watch over their
own . . . . Negligence and profusion, therefore, must always prevail, more or less, in the management and
affairs of such a company.”

2Malfeasance comes in many flavours and encompasses misuse, mismanagement, misallocation, and
misappropriation of firm resources.

3Auditing is not always the deterrent one would hope for. Larcker and Tayan (2011) describe the case
of Richard Scrushy, CEO of HealthSouth Corp.: “Scrushy and other corporate officers were accused of
overstating earnings by $1.4 billion and . . . Scrushy, who received backdated stock, sold back shares
. . . [ahead of] regulatory changes that caused the share price to plummet. . . . However, Scrushy was not
convicted of account manipulation in a criminal trial; instead he was ordered to pay $2.9 billion in a civil
suit”, of which he has repaid HealthSouth less than $100 million. The litigation is still ongoing.

4Indeed, as we will see below, the agent is completely indifferent to the intensity of monitoring. Monitoring
only serves to reduce the reliance on incentives in compensation.

1



of organisational structure, workplace environment, reporting requirements, and other
methods of oversight, can limit their employees’ opportunities to act in their own private
interest at the expense of their shareholders.5 We refer to these as the firm’s governance
structure, and use the terms ‘monitoring’ and ‘governance’ interchangeably.

The implementation, operation, and management of these governance mechanisms
is costly, and such costs must be balanced against those of compensation incentives. In
particular, firms dynamically trade off their reliance on compensation incentives versus
governance mechanisms in their effort to most efficiently ameliorate the agency problem.
We analyse this problem by considering a dynamic contracting model in which the agent’s
compensation structure as well as the firm’s corporate governance structure are jointly
determined at the optimum, and vary over time as functions of past performance.

Specifically, we consider a continuous-time dynamic contracting environment
where a risk-neutral agent manages a risky productive technology. The agent is resource-
constrained, and relies on investors (the principal) to absorb running losses, should
they occur. The cash flow stream produced by the technology is noisy over time, where
the noise process is modelled as a Brownian motion. The friction, ie, the source of
discrepancy between the two parties’ incentives, is that the agent can unobservably divert
cash flows from the firm for his own private benefit, as in DeMarzo and Sannikov (2006),
henceforth DS. The innovation in our model is that the principal can continuously adjust
the intensity of monitoring by making it more difficult for the agent to misappropriate the
firm’s cash flow: by investing in better (and costly) monitoring, the principal can make a
more precise attribution of good or bad shocks to chance, which reduces her reliance on
early termination and high-powered incentives. This mitigates the extent and scope of
the agency problem, and extends the expected life of the firm.

Our contracts can be written recursively in terms of the firm’s financial slack, which
essentially measures the size of negative shocks the firm can withstand before being
liquidated or, more succinctly, the “distance to termination.” This allows us to characterise
the optimal contract and, in the process, establish a number of new results about the
firm’s optimal monitoring policy. First, as in DS, the optimal contract (Theorem 1
and Proposition 5.1) features payments to the agent when the firm’s financial slack is
sufficiently high (ie, compensation is backloaded), and termination when it reaches zero.
Unique to the present paper, the optimal contract also features a monitoring schedule
where monitoring intensity and pay-performance sensitivity (which measures how much
the value of compensation changes after a random shock to output) are substitutes.6

Our second main contribution (Theorem 2) is in characterising the structure of

5A recent instance of such concerns is the desire of firms to see workers return to the office post-pandemic;
cf, “Bosses Still Aren’t Sure Remote Workers Have ‘Hustle’,” The Wall Street Journal, May 23, 2021.

6Bengtsson and Ravid (2015) find that in Venture Capital (VC) backed firms, contracts are relatively more
high-powered when monitoring is costlier (and hence lower) due to geographical distance.
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monitoring intensity, which is non-monotonic in the firm’s financial slack; instead, it is
single-peaked, first increasing in financial slack and then decreasing to the point where
monitoring is minimal when financial slack is high enough for the agent to be paid.
Indeed, the firm’s monitoring intensity is increasing in the firm’s induced risk aversion.
Because monitoring reduces the uncertainty about the agent’s actions, it is more profitable
when risk aversion is higher; thus, monitoring intensity is monotone in the firm’s risk
aversion.

To understand the source of the firm’s risk aversion, notice that even though both
principal and agent are risk neutral, the agent is protected by limited liability. Because
the optimal contract features termination when financial slack becomes zero, this induces
the firm to behave as if it were risk averse. Such risk aversion induced by so-called
“bankruptcy” or “shut-down” constraints is classically known (Masson, 1972). However,
the novel aspect of our setting is that the degree and structure of risk aversion (as a
function of financial slack) are endogenously and optimally chosen by the principal.

Our continuous-time formulation allows us to identify the two competing forces
shaping the firm’s risk aversion. On the one hand, as the firm’s financial slack increases
from its liquidation level (zero), the expected time to liquidation increases, which reduces
the risk of liquidation and hence decreases risk aversion. On the other hand, as financial
slack increases from zero, the firm’s value first increases (because liquidation is less
likely, all else being fixed), but then decreases as financial slack becomes high enough
that payments are due to the agent. Together, these forces result in the firm’s risk aversion
being single-peaked in financial slack.

An implication of this structure is that if a firm that had performed well in the
past suddenly experiences sustained poor performance, risk aversion (and hence the
intensity of monitoring) increases. This is in line with behaviour in VC-backed firms
(Kaplan and Strömberg, 2003), where VCs increase oversight and take over some of the
decision-making themselves, and therefore gain a more accurate picture of the agent’s
actions. It also conforms with Vafeas (1999), who finds that in publicly traded firms, the
frequency of board meetings increases with such a drop in performance. In contrast, if
the firm’s bad performance brings it close to termination, its small value can then reduce
risk aversion and monitoring; effectively, because the firm has less to protect, it cares less
about the agent’s potential improprieties. Indeed, a prediction of the financial security
implementation of our model is that a firm’s stock return will positively correlate with
the addition of tighter governance mechanisms when the firm’s financial slack is small,
and vice versa when the firm’s financial slack is high.

Our model also yields rich comparative statics. For example, we show (Theorem 3)
that firms with a greater expected cash flow (in the absence of any diversion by the agent)
or that have less severe agency problems (eg, the benefit of misappropriating a dollar of
output is lower for the agent) have greater monitoring for every level of financial slack.
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Intuitively, when expected cash flow is greater, the marginal returns from monitoring at
any level of financial slack are also greater.

In addition, we show that the optimal contract can be implemented using financial
securities (stocks, bonds, and cash reserves), as in Biais et al. (2007) (henceforth BMPR).
The optimal contract induces the following capital structure: The entrepreneur and the
investor each hold some fraction of the equity. The firm issues bonds (as debt) to investors,
and makes coupon payments that are proportional to the cash reserves (which represents
the financial slack). When cash reserves become sufficiently large, dividends are paid; the
payment is such that cash reserves never go above a certain threshold. The equilibrium
stock price is a monotone function of the cash reserves and agent compensation is
back-loaded and increasing in firm performance; this is consistent with the empirical
findings of DeAngelo, DeAngelo, and Stulz (2006) and Kaplan and Rauh (2010). In
particular, we find (Theorem 4) that firms with greater expected cash flow or those with
less severe agency problems have higher stock and bond prices, lower credit yield spread,
and crucially, greater monitoring.

The empirical literature investigating corporate governance has often treated gover-
nance as a fixed (but endogenous) firm characteristic. For example, the seminal studies
by Gompers, Ishii, and Metrick (2003) and Bebchuk, Cohen, and Ferrell (2009) use
measures of corporate governance that do not vary (much, if at all) over time for each
firm. As such, their cross-sectional finding that various firm performance measures, such
as stock returns, credit yield spreads, return on investment (ROI), and Tobin’s q, are posi-
tively correlated with measures of corporate governance potentially suffers from at least
two deficiencies. First, as pointed out by Himmelberg, Hubbard, and Palia (1999) and by
Core, Guay, and Rusticus (2006), because the relationship between corporate governance
and performance is endogenous, it is not clear if it is greater corporate governance that
causes improved performance or if it is the other way around. In fact, the correlation itself
is puzzling because, as argued by Demsetz and Lehn (1985), if governance structures are
chosen optimally by firms, there ought not to be any correlation between governance and
performance. Second, as shown by Wintoki, Linck, and Netter (2012), a firm’s needs
for better governance will in general change over time, and the choice of monitoring
intensity depends on past performance.

Our paper models firms that can constantly change the control they exert on their
agents by modifying the environment in which they operate, thus providing a proper
investigation of the role of governance, and one that takes into account both its endogenous
as well as dynamic nature. In doing so, we provide a mechanism that rationalises both
the observed correlation between governance and various measures of firm performance,
as well as the dynamics of the tradeoffs between monitoring and pay-sensitivity.

We also make more general methodological contributions that are critical for the
derivation of our results, and are also of independent interest. Using techniques from
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the theory of viscosity solutions (Crandall, Ishii, and Lions, 1992) and from nonlinear
differential equations (in particular Schauder estimates, see Gilbarg and Trudinger, 2001),
we show that the principal’s value function is twice continuously differentiable (C2) and
solves a variational-HJB equation (Theorem 1). Our techniques allow us to establish
smooth pasting and high-contact conditions as a Corollary 5.2. Another methodological
contribution is the use of the Comparison Principle (Theorem 5) for viscosity solutions
of differential equations as the basis for our comparative statics, thereby complementing
the techniques introduced by DS and BMPR.7

In what follows, we begin by reviewing the literature, both related to monitoring in
practise, as well as theoretically. We then lay out the model in Section 3, while Section 4
characterises the class of incentive compatible contracts. Optimal contracts and the
regularity of the principal’s value function are derived in Section 5, while Section 6
lays out our main comparative statics results. Section 7 studies an implementation of the
optimal contract in terms of cash flow and securities. All proofs are in the Appendix.

2. Related Literature

Empirical Literature on Monitoring. Monitoring is an important factor in explaining
the existence of venture capitalists (VCs) (Lerner, 1995).8 Boards of directors at PE-
backed firms actively monitor the performance of management, in addition to providing
guidance (Gompers, Kaplan, and Mukharlyamov, 2016, Gompers and Kaplan, 2022,
Chapter 7). Boards of directors also play a significant role in monitoring of management
in publicly traded corporations, as noted for instance in Weisbach (1988) and Vafeas
(1999).9 Importantly, in both PE-backed firms, as well as in publicly traded corporations,
the intensity of monitoring varies over time (eg, sustained poor performance leads to
increased oversight from the board of directors).

Venture capital activity is sensitive to distance and travel time. Venture capitalists
are more likely to sit on boards of firms that are geographically more proximate (Lerner,
1995), the idea being that managers in more distant firms are harder to monitor. VCs incur
costs when they monitor and infuse capital, where the monitoring costs include visits to
the plant, analysis of data and the choices of the manager, as well the opportunity cost of
other activities foregone (Gompers and Lerner, 2006, Chapter 8). Bengtsson and Ravid
(2015) show that venture capital contracts account for such monitoring costs by stipulating

7Roughly, DS and BMPR provide comparative statics that show how the principal’s value function (among
other things) changes with parameters. Our focus is on the first and second derivatives of the value function,
the latter determining the firm’s risk aversion and intensity of monitoring.

8There is, of course, a rich and growing literature on monitoring and governance. Here, we merely mention
some important studies that relate compensation, incentives, and monitoring.

9Shleifer and Vishny (1997) provide an excellent overview of the literature on corporate governance.
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contracts that are more high-powered as geographic distance increases, suggesting that
monitoring costs increase with distance, and more importantly, monitoring and pay-
sensitivity are substitutes. Similarly, Bernstein, Giroud, and Townsend (2016) show that
with decreased monitoring costs comes greater VC investment and engagement.

Entrepreneurs who are backed by VCs have backloaded compensation (DeAngelo,
DeAngelo, and Stulz, 2006) and also find increased oversight after poor performance.
If there is sustained good performance, the entrepreneur regains control and monitor-
ing decreases, as documented by Kaplan and Strömberg (2003). Indeed, Branzoli and
Fringuellotti (2022) show that the same is true for firms funded by banks in Italy, whereby
banks exercise increased oversight and impose additional restrictions on the use of cash
and other firm activities when firms underperform relative to expectations. Similarly,
Vafeas (1999) shows that the frequency of board meetings (which is a stand-in for the
intensity of monitoring) increases when the stock price drops.

These striking patterns regarding monitoring and contract structure in firms can be
summarised as: (i) pay-sensitivity and monitoring are substitutes, (ii) payments to the
entrepreneur are backloaded, and (iii) more stringent standards and monitoring obtain
after sufficiently bad outcomes, which ease up after good performance. Notably, this last
feature speaks to the dynamics of monitoring over the life-cycle of the firm.

There is also a literature initiated by Gompers, Ishii, and Metrick (2003) that
looks at cross-sections of firms, and establishes many regularities between aspects of
governance and various measures of firm performance. However, this strand does not
speak to the dynamics and evolution of the intensity of governance over time, and its
relation to various contractual elements and security prices.

Theoretical Literature: As mentioned above, our paper builds on the seminal analyses
of DS and BMPR, who initiate continuous-time methods in the dynamic contracting anal-
ysis of the firm and its capital structure, thereby refining and extending the discrete-time
framework of Clementi and Hopenhayn (2006), and DeMarzo and Fishman (2007a,b).
We add to this literature by allowing the firm to actively monitor the agent.

In a static model, Demougin and Fluet (2001) investigate the possibility for the
principal to add to the information contained in observable output by investing in costly
signals about the agent’s effort. In a similar vein, and more in line with our approach,
Milgrom and Roberts (1992) give the principal the ability to adjust the precision with
which output is observed and to adjust the agent’s compensation contract accordingly. In
Section 5.4 we compare our approach to that of Milgrom and Roberts (1992). A new and
related literature studies the general (static) problem of allowing the principal to flexibly
choose the information she receives, for instance, Li and Yang (2020) and Georgiadis
and Szentes (2020); these papers do not consider dynamic settings.

Parigi, Pelizzon, and von Thadden (2015) consider a multi-stage (but not dynamic)
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model that allows for governance which recreases cash flow. They also allow for man-
agerial effort which increases output. In all these models, as in ours, the cost that the
principal incurs to increase the quality of the feedback she gets from the output serves to
reduce agency costs by lowering the agent’s information rent, a point that Tirole (2006,
p341) also makes. However, in contrast to ours, the static nature of all these models
leaves them silent about the joint evolution of contracts, monitoring, and security prices.

Closer still are the dynamic-contracting models of Piskorski and Westerfield (2016),
Orlov (2018), Varas, Marinovic, and Skrzypacz (2020), Chen, Sun, and Xiao (2020),
and Dai, Wang, and Yang (2021) who all consider continuous-time settings in which
the firm can, in addition to observing output, change the extent of the moral hazard
problem with its agent. The main difference between these models and ours is the fact
their monitoring technology is retrospective in that it is about auditing past malfeasance
by the agent, as opposed to being prospective, ie, setting guardrails before the agent
chooses his action. This distinction, first made by Holmström and Tirole (1993) and later
amplified in Tirole (2006, p.334), means that the firm, instead of reacting to performance
shocks by investigating them, implements an ex ante governance system ensuring that it
will understand the source of these shocks as it experiences them. In terms of results,
our paper is closest to Piskorski and Westerfield (2016) in that the optimal monitoring
structure they find is single-peaked in continuation utility. However, their conception
of monitoring is akin to auditing, and entails “catching a lie” at any given instant. In
contrast to our work, they do not characterise the evolution of the firm’s risk aversion,
which is central to setting the firm’s optimal governance over time. Our analysis goes
beyond theirs (and uses entirely different techniques) because of our comparative statics
results, and (via the implementation) for the firm’s equity prices and other securities, and
their relation to governance.

3. Model

Time is continuous, denoted by t P r0,8q. There is a risk-neutral principal with deep
pockets and a discount rate r ą 0, who is constrained by time or skill and is therefore
unable to run a project. An entrepreneur (agent) with no wealth or income runs the
project; the agent has discount rate γ ą r, and is protected by limited liability.10 The
principal covers all operating losses. For simplicity, we assume the agent’s outside option
is 0 and that the project has a liquidation (or scrap) value of 0.

The project produces a cumulative cash flow Yt P R, where Yt is given by Yt “

10The assumption that γ ą r reflects the fact that the intertemporal marginal rate of substitution for a
wealth-constrained agent is greater that r. If γ “ r, it is optimal for the principal to postpone consumption
to infinity. In particular, an optimal contract no longer exists, although approximately optimal contracts (of
the kind described below) exist.
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µt ` σtBt, where Bt is a standard Brownian motion, µ ą 0 is the expected rate of return,
and σt ą 0 is a process chosen by the principal, that we interpret below.

The cumulative cash flow up to time t, Yt, is not observable by the principal. Instead,
the agent reports the process Ŷ “ pŶtqtě0 to the principal; Yt ´ Ŷt is the amount of output
diverted by the agent for personal consumption. The benefit (to the agent) of diverting
Yt ´ Ŷt (up to time t) is λpYt ´ Ŷtq, where λ P p0, 1s, ie, there may be some deadweight loss
from the diversion. A larger λ naturally reflects a more severe agency problem, because
the agent gets a greater benefit from diverting an additional dollar.

The agent’s cumulative compensation is denoted by Ct; limited liability requires
this process to be non-decreasing. For simplicity, we assume that the agent cannot save
privately.11

The principal chooses the monitoring intensity σptq P Σ :“ tσp0q, . . . , σpnqu as a
function of the history of reports tŶs : 0 ď s ď tu, where σpiq ą σpi`1q for i “ 0, . . . , n´ 1.
The principal’s choice of monitoring, σptq, entails a running cost per unit of time, given
by ρ : Σ Ñ R`; we denote ρpσpiqq by ρi.12 We assume, without loss of generality, that
ρ0 “ 0, ie, the least amount of monitoring is costless, and that ρ is decreasing in σ, ie,
ρj ă ρj`1 for all j “ 0, . . . , n ´ 1.13

We interpret σptq as determining the intensity of monitoring by the principal at
time t, with the understanding that a lower σptq corresponds to greater monitoring.
Monitoring makes it more difficult for the agent to benefit from misappropriation, as
the lower noise makes it easier for the principal to attribute variations in cash flow to
possible cash-flow diversion by the agent. This is plausible, for instance, when cash flow
comes from multiple sources (say Y k

t “ µkt ` σkBt, for k “ 1, . . . ,m), and monitoring
amounts to directly observing the cash flow from some subset of these sources, thereby
reducing overall uncertainty, but where the cost of observing multiple sources of cash
flow is increasing in the number of sources observed. This can happen, for example, if
the principal could visit a particular field site of the firm more often, or install more
devices to keep track of cash-flow at each step of the production and payment process to
ensure compliance by the agent. All of these measures are costly, but they all improve the
principal’s information about agent performance, or more precisely, about the amount of
possible misappropriation by the agent. Of course, with this interpretation, output is the
residual amount under the control of the agent.

Monitoring in our model corresponds to the firm investing in internal controls and

11Savings can be allowed and treated in the same way as in DeMarzo and Sannikov (2006).
12We assume for simplicity that Σ is finite. Our results go through unchanged when Σ is an interval bounded

away from zero, failing which as long as ρ0 is sufficiently high, ie, as long as the cost of eliminating the
agency problem is sufficiently high.

13The model can be extended to accommodate fixed switching costs of changing the intensity of monitoring.
This does not affect any of our qualitative results.
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structures that allow it to more precisely attribute production to its various factors. In a
way, this determines the extent to which the firm is able to measure its internal processes
and deter future malfeasance or misappropriation.

Alternative Formulation: Following Milgrom and Roberts (1992, Chapter 7), we
conceive of monitoring as increasing the attribution of good or bad shocks to chance,
while leaving the agent’s payoffs from misappropriation unchanged. An alternative to our
model of monitoring is one where the principal can affect λ, the private benefit of stealing
a dollar, while leaving the accuracy of signals unchanged. That is, monitoring now reduces
the agent’s benefit from misappropriation. In Appendix F, we show that this view of
monitoring, which does not affect the volatility of the output, is nonetheless isomorphic
to the model describe above in terms of the optimal contract and its implementation via
securities (see Section 7 below). The central point here is that regardless of how one
models the specifics of monitoring, it is always concerned with the reduction of agency
costs, ie, managerial rents.

We make two remarks about monitoring in our framework.

Remark 3.1. (i) It is worth emphasising that monitoring is voluntary, and is a choice
made optimally by the principal. Our model reduces to that of DS or BMPR when
monitoring is ruled out by fiat. However, because the principal in our model can
always choose not to monitor, she can always do at least as well by monitoring as
without. Thus, the value function of DS (with volatility σp0q) provides a lower bound
for the principal’s value function. Similarly, the case of costless monitoring (where
ρpσq “ 0 for all σ P Σ) is an upper bound for the principal’s problem (because the
agency rents are lower), and corresponds to the value function analysed in DS, but
with the lowest possible volatility.

(ii) We assume that the principal can commit to a monitoring schedule. While monitoring
schedules are not, much like other non-capital investments, typically part of contracts,
boards of directors have reputational concerns when considering how and when to
monitor agents. Also, non-performing boards can be replaced (but see Gompers, Ishii,
and Metrick (2003) on the relative difficulty of achieveing this across firms).

3.1. Contracts

The principal conditions his actions on reports made by the agent. During the operation
of the firm, the agent reports the cash flow Ŷt.

A contract is a tuple Φ “
`

C “ pCtq, τ, σ “ pσtq
˘

that specifies, contingent on the
report process Ŷ , the cumulative payment Ct made to the agent up to time t which is a
non-decreasing process, the (stochastic) termination time τ , as well as the monitoring
intensity σt P Σ. The contract is contingent on the entire path of reported cash flows
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pŶtq. Note that any signal observed by the principal is also observed by the agent. The
principal offers the agent a contract at time t “ 0, and fully commits to this contract. The
agent can leave the contract at any time to an outside option normalized to 0.

We assume that Ŷt is continuous, Ŷt ď Yt (ie, the agent can never over-report cumu-
lative output), and Yt ´ Ŷt is absolutely continuous with respect to Lebesgue measure.14
This is reasonable because discontinuous reports or reports processes whose quadratic
variation is different from that of (the unobserved) Yt is certain evidence that the agent is
lying, and will be punished immediately.

It is clear that the only inefficiency that arises from the agency problem is in the
termination of the project, ie, when τ ă 8 with positive probability. Indeed, the first-best,
full information solution is to run the project forever (so τ “ 8), while paying the agent
whatever he is owed right away, and then paying him nothing more.

3.2. Payoffs and Principal’s Problem

Let ŵpŶ ; Φq be the agent’s utility from choosing the reporting strategy Ŷ under the
contract Φ. His utility when choosing an optimal reporting strategy is

wpΦq “ sup
Ŷ

ŵpŶ ; Φq “ sup
Ŷ

EŶ ,Φ

„
ż τ

0

e´γt
“

dCt ` λp dYt ´ dŶtq
‰

ȷ

[3.1]

The contract Φ is incentive compatible if wpΦq “ ŵpY,Φq, ie, if truth-telling with Ŷ “ Y

is optimal for the agent. The principal’s profit, when the agent chooses Ŷ , is given by

EŶ ,Φ

„
ż τ

0

e´rt
“

dŶt ´ ρpσtq dt ´ dCt

‰

ȷ

[3.2]

Observe that the choice of monitoring strategy σ “ pσtq only affects the volatility of the
driving uncertainty, Bt, and hence doesn’t affect its expectation. Nonetheless, it matters
crucially because it affects the agent’s reporting strategy, the payment structure, and the
termination time τ , all of which are of central concern to the principal.

Given an initial amount of utility w0 promised to the agent, the principal’s Con-
tracting Problem is

F pw0q :“ max
Φ
EY,Φ

„
ż τ

0

e´rt
“

dYt ´ dCt ´ ρpσtq dt
‰

ȷ

[3.3]

subject to (i) Φ “ pC, τ, σq being incentive compatible, and (ii) satisfying the promise-

14Thus, the process pŶtq has the same quadratic variation as pYtq, namely
şt

0
σ2
s ds, and the drift of Ŷ , like that

of Y , is absolutely continuous with respect to Lebesgue measure. These are consequences of Girsanov’s
Theorem.
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keeping constraint wpΦq “ ŵpY ; Φq “ w0.

4. Incentive-Compatible Contracts

Consider a contract Φ “ pC, τ, σq that conditions on the reporting process Ŷ by the agent.
The agent maximizes his utility given the contract. As noted above, the contract Φ is
incentive-compatible if the agent’s optimal reporting strategy is being truthful.

It is clear from the Revelation Principle that any contract Φ “ pC, τ, σq in which
the agent decides to use a reporting strategy Ŷ “ pŶtq is payoff equivalent to one where
the principal just increases consumption to C 1

t “ Ct ` λpdYt ´ dŶtq, and where the agent
does not divert any cash flows. Thus, we have the following result.

Lemma 4.1. Given a contract Φ “ pC, τ, σq where the agent optimally reports Ŷ ‰ Y ,
there exists another, incentive-compatible contract Φ1 “ pC 1, τ 1, σ1q where the agent
reports truthfully, and that leaves both principal and agent at least as well off in payoff
terms.

Intuitively, because the agent cannot save, any diversion can be simulated by the
principal and deferred to a later date by compounding at the agent’s discount rate γ. A
formal proof of this assertion, in a slightly more general form can be found in DeMarzo
and Sannikov (2006, Lemma 1).15 With the observation from Lemma 4.1 that it is without
loss of generality to consider contracts that optimally induce zero cash-flow diversion,
we now proceed to a characterization of incentive-compatible contracts.

As in discrete-time principal-agent models, it is useful to understand the evolution
of the agent’s continuation utility. Fix a contract Φ “ pC, τ, σq and a reporting strategy
Ŷ , and let Wt be the expected utility from time t onwards. Then Wt is given by

Wt “ EŶ ,Φ
t

„
ż τ

t

e´γps´tq
“

dCs ` λpdYs ´ dŶsq
‰

ȷ

[4.1]

While the continuation promised utility in [4.1] is entirely forward looking, Wt can, in
fact, be written as a diffusion process, whereby increments of promised utility depend
only on the current report, current output, the current level of promised utility, and the
exogenous noise. This is the central insight of Sannikov (2008) and DS, and it greatly
facilitates further analysis of incentive compatibility and the optimal contract. The next
lemma makes this precise.

Lemma 4.2. Let pWtq be as in [4.1] and fix a reporting strategy Ŷ . Then there exists a

15Their proof does not rely on the fact that σ is constant, and so is also valid in our setting.

11



(Ŷ -measurable) process Z “ pZtq such that

dWt “ γWtdt ´ dCt ` λpdYt ´ dŶtq ` Ztσ
´1
t

“

dYt ´ µdt
‰

[4.2]

with terminal condition limsÑτ EŶ ,Φ
t re´rps´tqWss “ 0 almost surely.

It is useful to think of continuation utility Wt as a stock that grows at the rate γ.
Thus, the increment to promised utility, dWt is the interest paid on the stock Wt, net of
the payment from the principal, and the amount stolen (which comes from the reported
output) plus a random term. The process Zt is the sensitivity of the increment dWt to the
(random) noise term dBt, which is output net of the known drift. The proof of the lemma
is found in Appendix D.

Notice that given a contract Φ and a reporting strategy Ŷ , Wt in [4.1] and [4.2] is
how the agent perceives his promised utility. The principal cannot see the true process
Yt, and so requires that the agent report truthfully, ie, that the contract be incentive-
compatible. Given the diffusion representation of promised utility in [4.1], it is now
relatively straightforward to characterize incentive-compatible contracts.

Lemma 4.3. Truth telling, ie Ŷt “ Yt, is incentive-compatible if and only if Zt ě λσt for
all t ď τ .

The intuition behind this characterization is exactly as in DeMarzo and Sannikov
(2006). The benefit to diversion is λpdYt ´ dŶtq, while the cost, as seen from [4.2] is
Ztσ

´1
t pdYt ´ dŶtq, because dŶt ´ µdt “ σtdBt ´ dpYt ´ Ŷtq. Incentive compatibility is

therefore the condition that the costs of misreporting are greater than the benefits.16
All that matters to the agent is his promised utility, and its evolution given C, Z, and

σ. It follows from Theorem 1 of Sannikov (2012) that promised utility Wt is a summary
statistic of the entire history pYsqsďt at each time t.17 Thus, we consider contracts that
contain elements C, Z, σ, and τ , that are deterministic functions of promised utility. This
allows us to formulate the principal’s problem recursively, as we do next.

5. Optimal Contracts

We now use the dynamic programming principle to derive the principal’s optimal contract.
As noted above, instead of contracts that depend on the entire path of reported output Ŷ ,

16If the principal cannot control σt, ie, his monitoring intensity is constant over time, then we recover the
characterization provided by DeMarzo and Sannikov (2006), namely that βt ě λ where βt :“ Ztσ

´1 is the
sensitivity in DeMarzo and Sannikov (2006).

17More precisely, there is a one-to-one correspondence between incentive compatible contracts Φ “ pC, τ, σq

and controlled processes W as in [4.2] with Markovian controls pC, σ, Z, τq, where Zt ě λσt for all t ď τ .
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we may restrict attention to recursive contracts that are Markovian in promised utility
Wt. Clearly, the agent’s outside option of 0 dictates that Wt ě 0 for all t. Recall that
F pwq ÞÑ R` Ñ R, as defined in [3.3], denotes the principal’s value function, which is
the largest profit the principal can obtain from all recursive contracts that provide the
agent with w ě 0 utiles.

In this section, we first show that F is a smooth and concave solution to a variational
inequality. We use this characterisation to establish the structure of the optimal contract,
ie, how and when payments are made, when the firm is terminated, and how the intensity
of monitoring varies over time.

5.1. Regularity of the Value Function

Suppose the agent is initially promised w ě 0 utiles. At any instant, if the principal
chooses to not pay the agent (so dCt “ 0), it must be that the other controls for the
principal (namely, Z and σ) are locally optimal, and satisfy the dynamic programming
principle, ie, the HJB equation in the form

rF pwq “ µ ` γwF 1
pwq ` max

zěλσ,σPΣ

“

1
2
z2F 2

pwq ´ ρpσq
‰

[5.1]

which is a necessary condition for optimality. Notice also that the principal can com-
pensate the agent via promised utility or by immediate payments. It must always be the
case that compensating via promised utility is at least as profitable, at the margin, as
immediately paying the agent. Formally, this amounts to requiring that F 1pwq ě ´1 for
all w ě 0.18 These two requirements can be combined to form a variational inequality
for the value function F :

min

«

rF pwq ´ µ ´ γwF 1
pwq ´ max

zěλσ
σPΣ

“

1
2
z2F 2

pwq ´ ρpσq
‰

, F 1
pwq ` 1

ff

“ 0[5.2]

Our first result shows that F , defined from the “sequence problem” in [3.3], is a regular
and concave solution of the variational inequality in [5.2].

Theorem 1. The value function F defined in [3.3] is a C2 solution of [5.2] with F p0q “ 0.
Moreover, F is concave.

Notice that F is bounded above by µ{r ´ w (the first best payoff for the principal),
and bounded below by ´w (where the principal pays the agent immediately and termi-
nates the firm). Because F is concave, it follows that F must be asymptotically affine,

18Equivalently, the principal can always pay a lump sum of δC ą 0 to the agent, and re-start the contract at
w ´ δC. Because this is always feasible, it must be that F pwq ě F pw ´ δCq ´ δC, ie, F 1pwq ě ´1.
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with limwÑ8 F
1pwq “ ´1; see Figure 1. These bounds are useful in establishing the

Comparison Principle in Theorem 5, which is central to our comparative statics results,
as well as in establishing the regularity of the value function F .

The difficulty in establishing regularity, as compared to DS, is the presence of
the volatility controls. Because the notion of viscosity solution used in the proof is not
required for our main arguments, we provide all the technical details of the proof of
Theorem 1 in Appendix H. We first show in Appendix H.1 that F is a continuous viscosity
solution of [5.2], which also allows us to also establish the concavity of F . Next, using
techniques from the theory of nonlinear differential equations (Schauder theory), we
show in Appendix H.2 that F is also C2 everywhere. It also follows from the Comparison
Principle in Theorem 5 below that F is the unique viscosity (and hence C2) solution
to [5.2]. Interestingly, our approach leverages several properties of the value function
without monitoring (as in DS), which for different levels of volatility provides both upper
and lower bounds for F .

To see the concavity of F , notice that if F were not concave on some interval, the
principal can randomise between the end points of the interval achieve a higher payoff.
However, the proof of Theorem 1 does not rely on such randomisations, and instead uses
the fact that F is a viscosity solution to [5.2]. Knowing that F is smooth and concave now
allows us to deduce the structure of the optimal contract.

5.2. Optimal Payment and Termination

An immediate economic consequence of Theorem 1 is that monitoring and pay-sensitivity
are substitutes. To see this, notice that because F is concave and C2, the optimal pay-
sensitivity z “ λσ in [5.2]. Thus, pay-sensitivity is high whenever monitoring is low, and
vice versa, as described in Bengtsson and Ravid (2015). We now describe the optimal
structure of payment and termination. A useful implication of this structure is that
payments are backloaded (see Proposition 5.1).

Let w‹ :“ inftw : F 1pwq “ ´1u be the smallest level of promised utility such that
the principal is indifferent between compensating the agent via payment or promises;
we call w‹ the payment boundary. Because F is concave and twice differentiable, w‹

is well defined. Because the agent discounts the future more than the principal, it is
optimal to immediately pay the agent Wt ´ w‹ utiles whenever Wt ě w‹, and re-start
the contract at w‹. This is exactly as in DeMarzo and Sannikov (2006), in spite of the
additional (monitoring) instruments available to the principal. The intuition behind this
result is that because F 1pwq ě ´1, the principal wants to backload payments (which arise
as the agent’s information rents) as much as possible.19 This allows the principal to use

19This property is also seen in the discrete time literature on dynamic contracting; see, for instance, De-
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promised utility as a stock of carrots which she can add to when performance is good,
and deplete when performance is bad, and pay the agent when the stock of carrots is
sufficiently high.20

Notice that running the project without the agent diverting all the output entails
giving up some information rents, but to incentivise the agent, it must be the case that
promised utility can further decrease. This is impossible at w “ 0 (because of the agent’s
limited liability and outside option of 0), and hence it is optimal to choose the random
termination time τ as τ :“ inftt : Wt “ 0u. Thus, the optimal contract should (i) pay
the agent when Wt ě w‹, and (ii) terminate him when Wt “ 0. The next proposition
summarises our findings.

Proposition 5.1. There exists aw‹ P p0,8q such that under the optimal profit-maximizing
and incentive-compatible contract that delivers w P r0, w‹s to the agent, promised utility
Wt, with W0 “ w, evolves as

dWt “ γWt dt ´ dCt ` λ
`

dYt ´ µ dt

“σt dBt

˘

[5.3]

and where cumulative payment Ct satisfies

Ct “

ż t

0

1pWs “ w‹
q dCs[5.4]

for all t P r0, τ s. The termination time τ “ inftt ě 0 : Wt “ 0u ă 8 a.s. and Wt “ 0 for
t ě τ . The payment process Ct is nondecreasing in time, and payments are made only
when Wt hits w‹. If w0 ą w‹, an immediate payment of w0 ´ w‹ is made to the agent,
and the contract is re-started at w‹.

Condition [5.4] is a flat-off condition, which requires that C increase only when W
hits the payment boundary w‹, and can equivalently be written as

şt

0
1pWs ă w‹q dCs “ 0

for all t ě 0. The flat-off condition ensures thatWt ď w‹, ie, thatWt is reflected at w‹, and
soWt can never escape the interval r0, w‹s. The proof of Proposition 5.1 is straightforward,
except for showing that w‹ P p0,8q. This is established in Proposition H.7 in Appendix H,
whereby w‹ is finite if, and only if, γ ą r.

Thus, Theorem 1 and Proposition 5.1 allow us to completely describe the local
behaviour of F on r0, w‹s and also determine its structure beyond this interval.

Marzo and Fishman (2007a,b), Clementi and Hopenhayn (2006) for cash-flow diversion models and
Krishna, Lopomo, and Taylor (2013) for a dynamic procurement model that features similar backloading
of information rents.

20Technically, the payment here is more complicated than in discrete time. The payment process is designed
to ensure that Wt ď w‹; formally C “ pCtq is a singular process because it is not absolutely continuous
with respect to Lebesgue measure.
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Figure 1: Value function F pwq. The line F “ µ{r ´ w is the full information payoff for the
principal, where Bt is observed at no cost, or equivalently, σ can be set to 0 for free. F
satisfies the HJB equation [5.1] on r0, w‹s and has slope ´1 on rw‹,8q.

Corollary 5.2. The principal’s value function F pwq satisfies the HJB equation [5.1] on
p0, w‹q, along with the boundary conditions

F p0q “ 0, F 1
pw‹

q “ ´1, F 2
pw‹

q “ 0[5.5]

Moreover, F is affine beyond w‹, ie, F pwq “ F pw‹q ` pw‹ ´ wq for w ě w‹.

The boundary conditions in [5.5] are intuitive. As noted above, the project must be
terminated when Wt “ 0, and thus F p0q “ 0.21 At w “ w‹, the principal is, at the margin,
indifferent between using immediate payments and future promises to incentivise the
agent; thus, F 1pwq “ ´1 at w “ w‹, which is the C1-fit condition in [5.5]. To understand
the C2-fit condition, notice that by [5.1], F 2pw‹q “ 0 is equivalent to

rF pw‹
q ` γw‹

“ µ[5.6]

Clearly, it is optimal for the principal to increase w‹ as much as possible as this increases
the (expected, discounted) time to termination. The condition [5.6] says that the principal
will increase w‹ until the sum of expected returns for principal and agent can no longer
be satisfied the the technology of the firm. The line w ÞÑ pµ ´ γwq{r (see Figure 1)
represents the division of expected returns between principal and agent, and must equal

21Recall that the project has zero scrap value for both principal and agent.
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µ; the payment boundary w‹ is the point where the value function F meets this line.22
It is now easy to check that F 1pwq “ ´1 and rF pwq ą µ ` γwF 1pwq (ie, F pwq ą

pµ´γwq{r, as in Figure 1) forw ą w‹. Intuitively, payments and promises are two distinct
instruments that are never used simultaneously. Corollary 5.2 follows immediately from
Theorem 1 and its proof is omitted.

To completely characterise the optimal contract, we need to describe the optimal
monitoring choice σt. We do this next.

5.3. Optimal Monitoring

Recall from Corollary 5.2 that F satisfies the HJB equation [5.1] on r0, w‹s. Let σ˚pwq

denote the optimal intensity of monitoring, ie, σ˚pwq P argmaxσPΣr1
2
λ2σ2F 2pwq ´ ρpσqs.

Because F 2 ď 0, the optimal choice of σ is monotone increasing in F 2. In other words,
the higher the firm’s induced risk aversion, namely ´λ2F 2, the greater the intensity of
monitoring.23 To understand how monitoring varies with w, we need an understanding
of how F 2pwq varies with w. This is a subtle exercise because F 2 is not differentiable at
points where there is a switch in σ. Indeed, the shape of F 2 is not even obvious in the
setting of DS without monitoring, where F is infinitely differentiable. Nonetheless, we
have a rich characterisation of F 2pwq.

w

�2F 00.w/

�2F 00.w/

high monitoring

low monitoring

�2�

�2
.0/

�2�.�.1//

�2
.0/
��2

.1/

w?0

Figure 2: The shape of λ2F 2 with two levels of monitoring.

22More generally, the C2-fit condition is a natural requirement for free boundary problems with reflecting
boundaries; see, for instance, Dumas (1991).

23The expected loss from a lottery with mean w and small variance ε is proportional to ´λ2F 2pwqε. Thus,
´λ2F 2pwq represents the firm’s induced risk aversion. Intuitively, the risk comes from the fact that at any
w, the life expectancy of the project is uncertain. Of course, if the agent were not constrained by limited
liability, then the first best is achievable and the principal is effectively risk neutral.

17



Theorem 2. For each µ ą 0 and λ P p0, 1s, the function λ2F 2pwq is continuous and
piecewise C2 in w, is single-valleyed, and has a unique local and global minimum.
Optimal monitoring σ˚pwq is monotone in the firm’s risk aversion ´λ2F 2pwq, and hence
is single peaked in w. In particular, pay-sensitivity and monitoring are substitutes.

In other words, when µ is sufficiently large, optimal monitoring is single-peaked
in w; starting at w “ 0, monitoring initially increases in promised utility, reaches a
maximum level of monitoring, and then decreases as w increases, until there is minimal
monitoring in a neighbourhood of the payment boundary w‹.

To understand the intuition behind Theorem 2 which describes the shape of ´λ2F 2pwq,
consider the firm’s risk aversion at a level w where the optimal monitoring σ˚ is locally
constant, so that risk aversion is proportionally written as

´λ2F 2
pwq 9 r

”µ

r
´ F pwq ´ w

ı

efficiency loss

` γw
`

F 1
pwq ` r{γ

˘

expected change in value

[5.7]

The first term µ{r ´ pF pwq ` wq is decreasing in w; it represents the efficiency loss,
relative to the first best, due to the agency problem. We call w{λ the firm’s financial slack,
because w{λmeasures the size of the adverse shocks the firm can withstand before it must
be liquidated.24 With increased financial slack, the effect of the agency problem is more
muted, because the principal now has a bigger ‘stick’ with which to punish the agent,
while avoiding termination,25 which makes it easier (cheaper) to provide incentives.

The second term γw
`

F 1pwq ` r{γ
˘

in [5.7] represents the expected change in firm
value due to the evolution of w; when µ is sufficiently large (so that F 1p0q ą 0), this term
is initially increasing and positive and then decreases in w to ´w‹pγ ´ rq ă 0. When w
is small, the gain in efficiency is more than offset by the expected increase in firm value.
However, for sufficiently large w, the payment boundary looms near, and increases in
w correspond to greater likelihood of payments to the agent. Of course, at the payment
boundary, the value of reduced volatility is 0, so risk aversion drops to 0. Thus, risk
aversion initially increases and then decreases, as in Figure 2.26

In particular, Theorem 2 says that if the firm has sustained good performance, then
monitoring eventually drops to a de minimis level, but if performance falters, the intensity
of monitoring will increase. This is in line with the findings of Kaplan and Strömberg
(2003) who show that if a firm performs poorly, the investor (VC) obtains greater control,

24Notice that this liquidation threshold is chosen by the principal, so this measure of financial slack is also a
part of the contract.

25An increase in w results in a decrease in the Lagrange multiplier for the incentive compatibility constraint.
26Because σ˚pwq is locally constant, we can differentiate [5.7] to get ´λ2F3pwq 9 pγ ´ rqF 1pwq `γwF 2pwq.

For µ sufficiently large, F 1pwq is initially positive and then negative (indeed, F3p0q ă 0 if, and only if,
F 1p0q ą 0), while F 2 ď 0 (because F is concave).
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but if performance improves sufficiently, the entrepreneur (agent) retains or obtains more
control and cash flow rights.27 Similarly, Vafeas (1999) shows that in publicly traded
firms, the frequency of board meetings (which corresponds to monitoring intensity)
increases after poor performance.

Naturally, this raises the question, Where (ie, at what level of promised utility)
does a small and temporary reduction to σt have the greatest effect? When w is near the
payment boundary w‹, the agent is about to get paid (with high probability), and so a
small reduction in volatility is not very valuable because the probability of affecting
this event (payment) is very low; indeed, at w “ w‹, any reduction in volatility is worth
exactly 0, because it affects neither the expected time to liquidation nor the payment to
the agent. Similarly, when w is near 0, the marginal value of reducing volatility is small
(but not zero), because reducing volatility increases the time to liquidation (which is
valuable), but not by very much given the proximity to the absorbing boundary w “ 0. It
is for intermediate values of w that the value of reducing volatility is highest, because it is
here that such a reduction will have its greatest impact, in terms of delaying liquidation.

Finally, we note that for each λ P p0, 1s, there exists a µ:pλq such that the global
minimum of F 2 occurs at w˚ ą 0 if, and only if, µ ą µ:pλq. Intuitively, when µ ă µ:pλq,
the expected cash flow is insufficient to make up for the inefficient termination of the
agent, and so F pw;µ, λq ă 0 for all w ą 0. Of course, for µ sufficiently small, the optimal
intensity of monitoring is none at all, ie, to set σ˚ ” σp0q for all t ď τ .

5.4. Substitutes vs Complements

In our linear model, pay-sensitivity (“ λσ˚pWtq) and monitoring are substitutes, as
noted in Theorem 2. As discussed above, this has empirical support, at least in financial
contracts. In contrast, Milgrom and Roberts (1992, Chapter 7) suggest that monitoring
and pay-sensitivity should be complements. They consider a static model where output
is y “ a ` σε, where a is effort, ε is noise, and σ controls the volatility of output.
The agent is risk averse and wage contracts are linear in output. A contract delivers
wage w “ s ` β ¨ py ´ aq where β is the pay-sensitivity. (Linear contracts are chosen
by fiat; in general, linear contracts are not optimal in their setting.) As in our model,
monitoring reduces the variance of the noise. Their main observation is summarised as the
Monitoring Intensity Principle (p 226) which states that pay-sensitivity and monitoring are
complements: “. . . When the plan is to make the agent’s pay very sensitive to performance
[output], it will pay to measure that performance carefully.”

The reason for the discrepancy between our model and theirs is that in their setting,

27While we do not explicitly model control, a natural interpretation of monitoring is as reducing the amount
of freedom the agent has to make decisions without oversight.
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the optimal action can vary depending on the amount of monitoring (in particular, the
variance of the output), while the optimal action in our model is always constant, namely,
the agent never diverts the flow of cash. In their model, the principal can induce different
actions by changing the pay-sensitivity and the level of monitoring. These, and the
optimal action, are all chosen simultaneously at the optimum. Our model simplifies this
by keeping the optimal action fixed, so that it is only pay-sensitivity and monitoring that
vary, and do so as substitutes. In future work, we aim to study the Monitoring Intensity
Principle in a dynamic setting such as Sannikov (2008) where the optimal action can
also vary over time.

6. Comparative Statics

We consider two main variations in parameters. First, we consider the impact of a change
in µ, the intrinsic profitability of the firm, and next we consider the impact of a change
in λ, the severity of the agency problem. Notice that uniform changes to the cost of
monitoring, namely reducing ρp¨q by a constant amount, is equivalent to reducing µ as it
merely reduces the flow revenue from the project.

A firm with a greater µ has greater expected cash flow and any incentive compatible
policy for a lower level of µ will deliver a higher expected profit for a higher level of
µ while still being incentive compatible. Similarly, a firm with a lower λ has a less
severe agency problem because it can adopt the optimal contract of a firm with a higher
λ, and still make the same profit, or optimally choose another contract, with a lower
pay-sensitivity (Zt), which generates higher profit.

Proposition 6.1. For a fixed w ą 0, F pw;µ, λq is strictly increasing in µ and strictly
decreasing in λ. Moreover, the payment boundary w‹ is strictly increasing in both µ and
λ.

The monotonicity of F in µ is intuitive, and is also straightforward to prove. That
this results in a higher payment boundary w‹pµq is shown in Corollary C.4. Intuitively,
when µ is larger, it pays to defer payments, because once the firm has built up enough
financial slack, it is less likely to lose this slack, which results in more frequent payments,
conditional on reaching the payment boundary.

To see the monotonicity in λ, notice that when λ decreases, the principal can
reduce the sensitivity λσt of the optimal contract. Keeping all other policy variables
fixed (namely, w‹ and hence C), it follows that the agent’s promised utility process is
less sensitive to shocks, and in particular, the time to liquidation strictly increases. This,
in and of itself, constitutes an improvement for the principal. Recall that w‹pλq is where
F pw;µ, λq intersects the line w ÞÑ pµ ´ rF q{γ (also see Figure 1), which is independent
of λ. A higher F pw; ¨q must therefore result in a lower w‹pλq.
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Figure 3: The shape of F 2 as a function of µ where µ1 ă µ2.

Our comparative statics are easiest to state when fixing the firm’s financial slack,
which is measured by w{λ. As noted above, financial slack measures, roughly, the amount
of negative shocks to cash flow the firm can absorb before it must terminate the agent
(for incentive reasons). Clearly, w{λ is not invariant to changes in λ; thus, we state our
comparative statics results for fixed levels of financial slack.

Theorem 3. Consider the firm’s policies as a function of µ or λ, and fix the firm’s
financial slack w0{λ. Suppose there is an increase in µ or a decrease in λ that keeps
financial slack fixed.28 Then, the following hold:
(i) The firm’s induced risk aversion increases.
(ii) The level of monitoring (weakly) increases.
(iii) Sensitivity of pay to output (weakly) decreases.
(iv) Expected (discounted) life span of the firm, given by EY,Φr

şτ

0
e´rt dts, increases.

(v) The expected expenditure on monitoring, EY,Φr
şτ

0
e´rtρpσtq dts, increases in µ.

Our analysis also shows that for more valuable firms, monitoring is naturally higher,
because the marginal returns from monitoring are higher. Equivalently, monitoring
increases because the firm’s induced risk aversion increases when their expected cash
flow is higher, or when the agency problem is less severe. Intuitively, this is because
with a greater µ or smaller λ, the firm is more valuable (see Proposition 6.1), and so the
(opportunity) cost of termination is greater.

To understand the intuition behind Theorem 3(i), consider the firm’s risk aversion as
decomposed in [5.7]. Assuming that σ˚pwq is locally constant in µ, differentiate both sides
with respect to µ. Then, the marginal change in risk aversion is the sum of r´1´BµF pw;µq

and γwBµF
1pw;µq. The first term is always positive because the efficiency loss due to the

28Thus, a decrease in λ entails a reduction in w0 in order to keep financial slack w0{λ fixed.
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agency problem increases in µ (see Lemma C.3) for a fixed level of financial slack. The
second term is also positive because the expected change in firm value is increasing in µ
(ie, BµF

1pw;µq ą 0; see Lemma C.5). Intuitively, this is because financial slack (w) and
intrinsic profitability (µ) are complements: increased financial slack is more valuable
when the firm itself is more valuable. Points (ii) and (iii) now follow immediately.

Point (iv) of Theorem 4 says that with increased monitoring (see point (ii)), the
principal need rely less on termination as an incentive device, which has the happy
consequence of increasing the expected (discounted) life expectancy of the firm. Finally,
point (v) of Theorem 3 formalises our intuition that in our model, greater marginal
benefits to monitoring imply a marginal increase in monitoring, and with it, an increase
in total monitoring, as measured by the expected expenditure on monitoring. However,
this is only true when firms have greater expected cash flow (greater µ). Indeed, numerical
calculations show that an increase in λ leads to an increase in expected expenses for some
values of financial slack and a decrease for others. This finding highlights the disparate
forces than an increase in λ entails. While there is increased monitoring at any level of
financial slack, the expected discounted cost of monitoring depends on how long each
regime persists, that is, the amount of time spent with a particular level of monitoring. It
may be that if the amount of time spent near the payment boundary is sufficiently high
(where monitoring is lowest), then the expected cost of monitoring actually goes down.
Theorem 3 is proved in Appendix C.29

Theorem 3 also suggests two natural dimensions along which to order or sort firms,
namely, the expected cash flow of the firm (its µ), or the severity of the agency problem
(its λ). This allows one to ask, for instance, Would an agent prefer to be at a firm with
more, or less, monitoring? As it turns out, the answer depends on how much bargaining
power the agent has, and more crucially, the source of the increased governance, which
is either greater intrinsic profitability or smaller private benefits for the agent from
misappropriation.

It is useful to consider the utility promised to the agent at the time of initialisation,
which is determined by the relative bargaining power of principal and agent. At one
extreme, if the principal has all the bargaining power, she choosesw0 such that F 1pw0q “ 0,
ie, an initial promise to maximise her profits. If the agent has all the bargaining power,
she chooses the largest w for which F pwq “ K, where K ě 0 is the initial capital outlay
required for the project. We denote the agent’s choice of promised utility by w7.

Proposition 6.2. If the principal has the all the bargaining power, then w0 increases in µ
and λ. On the other hand, if the agent has all the bargaining power, then w7 increases in

29In spite of the fact that Theorem 3 states that the impact of an increase in µ or decrease in λ is qualitatively
the same, establishing these claims requires different approaches, primarily because λ and µ affect the
boundary conditions for the HJB equation [5.1] differently. Appendix C.2 contains the proofs for a change
in µ, while Appendix C.3 proves Theorem 4 for the cases where λ changes.
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µ but decreases in λ.

Thus, if the agent has all the bargaining power, he welcomes increased monitoring
because the firm is more profitable, and is one where he can extract a larger amount
of the surplus. On the other hand, if the principal holds all the bargaining power, the
reason for increased monitoring matters. Proposition 6.2 says that agents would prefer
to be at a firm with greater governance if that increased governance is because the firm
is intrinsically more profitable, ie, has a higher µ. This is intuitive, because a higher µ
corresponds to greater surplus, and some of that additional surplus goes to the agent,
via his information rent. On the other hand, if the increased governance is because the
agent’s benefits from misappropriation are smaller, then the agent is worse off because
his information rents, which is the only reason he gets paid, are lower.

7. Optimal Contract via Securities

Our model has implications for corporate governance in firms, which we interpret as
monitoring of the CEO. This is seen most easily by implementing the optimal contract
via securities, where we follow the approach of Biais et al. (2007).

The dynamics of the optimal contract depend on the agent’s continuation utility,
Wt. As noted before, the expected discounted time to termination is increasing in w, and
so Wt is a measure of how far the firm is from termination. That is, when Wt is larger,
the firm can withstand larger negative shocks to cash flow before termination.

LetMt “ Wt{λ denote the firm’s observable cash reserves. BecauseWt is a measure
of the firm’s distance from termination, it is natural to interpret Mt as the firm’s available
financial slack (cf DeMarzo et al., 2012, Section IV, henceforth DFHW). Clearly, the
dynamics of Wt completely determine the dynamics of cash reserves Mt.

The financiers of the firm (which could be a single principal, or multiple lenders)
hold debt in the form of bonds. Bonds distribute a continuous coupon flow of µ ´

ρpσ˚pλMtqq ´ pγ ´ rqMt at time t that varies with the level of cash reserves. The first
term µ ´ ρpσ˚pλMtqq in the coupon payment is merely the firm’s expected cash flow net
of monitoring costs, while the second term, pγ ´ rqMt, accounts for the different rates of
discounting between principal and agent.30 In addition, the agent gets a non-tradeable
fraction λ of the firm’s equity,31 while the remaining equity goes to the financiers.

30Performance-sensitive debt payments are seen in VC contracts (Kaplan and Strömberg, 2003) and in
step-up bonds where coupon payments decrease in financial slack; Lando and Mortensen (2004) document
the prevalence and use of such step-up bonds and also address questions related to their pricing.

31The agent is the holder of unregistered or letter securities that cannot be publicly traded. This is necessary
because γ ą r, which means that the market always values the stock more than the agent does. Allowing
the agent to trade his stock will result in the agent trading his stock right away. Notice that if γ “ r, this is
no longer an issue, although we would then have to place an upper bound on the payment boundary.
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We can write the dynamics for Mt as

dMt “ γMt dt `
`

dYt ´ µ dt

“σ˚pλMtq dBt

˘

´ λ´1 dCt[7.1]

where λ´1Ct is the dividend payment.
Notice that in this implementation, the agent controls how payments are disbursed,

either as debt payments or as dividends. The firm is liquidated if coupon payments are not
made, or when cash reserves hit 0, ie, at the stochastic time τ “ inftt :Mt “ Wt{λ “ 0u.
The agent also chooses the amount of monitoring to be performed by the principal, as well
as his cash-diversion strategy. The following proposition summarises the implementation.

Proposition 7.1. Suppose the firm has initial cash reserves M0 and is in operation as
long as it makes dividend payments at the rate rµ´ ρpσ˚pλMtqq ´ pγ ´ rqMts. Then, it is
optimal for the agent to not divert any cash flows, to recommend monitoring according
to σ˚ as in Theorem 2, and to make dividend payments when cash reserves reach m‹. In
particular, the agent’s expected payoff from this policy is λM0 “ W0.

The proof is similar to that of Proposition 2 in DFHW, and hence is omitted. The
above implementation is clearly not unique. For instance, following DS, financial slack
Mt may obtain via a combination of cash reserves and a line of credit, with termination
occurring upon their exhaustion. The main point is that in any implementation, financial
slack will be proportional to Wt, which measures the distance to termination. The critical
distinguishing feature in our model (relative to BMPR, DS, and DFHW, for instance) is
that monitoring (or equivalently, governance) is optimally chosen within the contract,
and has the effect of increasing the financial slack of the firm. Importantly, investment in
monitoring, which is a non-capital investment, is non-monotonic in financial slack. This
is in contrast with DFHW who show that in a homegenous model, capital investment is
monotonic in financial slack.

Next, we show that the securities used in the implementation can be priced and that
they vary in natural ways in response to changes in the parameters of the model.

7.1. Comparative Statics for Securities

The cash reserves, and stock and bond prices are all processes that are adapted to Mt.
For all t P r0, τ s, the stock price St satisfies St “ Et

“şτ

t
e´rps´tqλ´1 dCs

‰

, so that the
stock price is the expected discounted value of dividend payments. The bond price
is denoted by Dt, where Dt “ Et

“şτ

t
e´rps´tqrµ ´ ρpσ˚pλMsqq ´ pγ ´ rqMss ds

‰

is the
expected discounted value of coupon payments. The credit yield spread at time t P r0,8q

on a consol bond that pays $1 until the firm is dissolved is given by ζt, where ζt satisfies
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ş8

t
exp

`

´ pr ` ζtqps ´ tq
˘

ds “ Et
“ şτ

t
e´rps´tq ds

‰

, which implies ζt :“ rTt

1´Tt
, where

Tt :“ Etre´rpτ´tqs for all t P r0, τ s. It can be shown that the stock and bond prices and the
credit yield spread are all deterministic functions of Mt, ie, are diffusions themselves.

As in Section 6, we consider the impact of a change in µ, the intrinsic profitability
of the firm, and the impact of a change in λ, the severity of the agency problem.

Theorem 4. Consider the firm’s policies as a function of µ or λ. Then, for any level of
cash reserves, the following hold:
(i) The level of governance (weakly) increases in µ and decreases in λ.
(ii) Sensitivity of pay to output (weakly) decreases in µ and increases in λ.
(iii) Stock prices increase in µ and decrease in λ.
(iv) Credit yield spread decreases in µ and increases in λ.
(v) The threshold cash reserve m‹ is increasing in µ and decreasing in λ.

Our analysis shows that for more valuable firms, governance (adjusted for financial
slack) is naturally higher, because the marginal returns from monitoring are higher. Stock
prices are higher and credit yield spreads are lower, because with increased monitoring,
the probability of termination is lower. Finally, observe that stock prices are higher in spite
of the fact that the threshold for payment, m‹, is increasing in µ. That is, stock holders
have to wait longer for dividend payments, but in spite of this, stock prices are higher,
because the fear of termination is correspondingly lower. We emphasise that (apart from
part (i)) Theorem 4 is not a corollary of Theorem 3, although it relies on Theorem 3
for the monotonicity of monitoring in cash reserves. Instead, the proof of Theorem 4
relies on a Comparison Principle for boundary-value problems (Proposition A.4) that
characterise stock price and credit yield spread.

The correlation between credit yield spreads and corporate governance is docu-
mented in Bhojraj and Sengupta (2003) and Ashbaugh-Skaife, Collins, and LaFond
(2008). Theorem 4 not only rationalises these (and other) findings, it also exhibits a
mechanism that explains the observed correlations. Our implementation also has the
following testable implications.
(i) Governance is single-peaked in financial slack and stock price. This follows immedi-

ately from Theorem 4.
(ii) Governance and pay-sensitivity are substitutes. Pay sensitivity is U-shaped as a

function of cash reserves, and is inversely related to the firm’s aversion to volatility.
(iii) Empirical measure of governance intensity. We are able to construct a measure of

the local intensity of governance can be constructed from three easily obtainable
quantities: the stock price, the local volatility of stock price, and the sensitivity of the
agent’s compensation to stock price movements.

Point (ii) is in line with the work of Fahlenbrach (2009) and Fernandes et al. (2013)
who empirically document that the sensitivity of CEO pay to firm performance is higher
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in firms with weaker corporate governance, as proxied by board independence or by
institutional ownership concentration. Point (iii) represents our key contribution to the
measurement of governance. It shows that a scaled measure of governance can be written
as a simple product of three quantities that are either observable (stock price) or easy to
estimate (local volatility of stock price and pay-performance sensitivity). In particular,
this result shows how asset prices can be used to infer the strength of a firm’s governance.

As mentioned above (and proved in Appendix C.1), stock price St “ SpMtq for some
strictly increasing and concave function S. Thus, we can write S1pMtq “ S1pS´1pStqq,
and using Itô’s Lemma, we obtain

dSt “
“

γMtS
1
pMtq ` 1

2
σ2

˚pλMtqS
2
pMtq

‰

“ rSpMtq “ rSt

dt

` S1
pMtq

“

σ˚pλMtq dBt ´ λ´1 dCt

‰

“ rSt dt ` S1
pS´1

pStqq ¨ σ˚pλS´1
pStqq

“:VtSt

dBt ´ λ´1 dCt

[7.2]

where we have used the BVP characterization of Sfrom [C.1] which requires that dCt “ 0

if Mt ă m‹, and also noting (from [C.1]) that S1pm‹q “ 1, which is an analog of equation
(57) in BMPR.32

The dynamics for St in [7.2] make it a local volatility model for stock prices, where
the local volatility of the stock price is Vt “ S1pS´1pStqqσ˚pλS´1pStqq{St. The local
volatility of stock prices can be measured from stock price data using Dupire’s formula;
see Dupire (1994).

Pay-performance sensitivity (PPS) measures the sensitivity of the manager’s wealth
to changes in the stock price. In our setting, we can write Wt “ λS´1pStq, so that
PPSt “ λ

`

S´1pStq
˘1

“ λ{S1pMtq. This is also well measured empirically, see for instance
Core and Guay (2002) and Brick, Palmon, and Wald (2012). It is easy to see that

Vt ¨ PPSt ¨ St “: Govptq “ λσ˚ptq[7.3]

Thus, by measuring local volatility of stock price and pay-performance sensitivity at time
t, we can find a measure of the intensity of governance using [7.3]. Of course, in practice,
both the profitability (the µ) and the volatility of stock prices are affected by many factors,
but [7.3] nonetheless, suggests some testable implications. In particular, we see that local
volatility Vt and pay-performance sensitivity PPSt are inversely related, monitoring and
PPS are not positively correlated, and PPS increases in stock price. Moreover, option

32Note that stock returns, defined as rdSt `λ´1dCts{St (ie, capital gains plus dividends), are equal to r dt in
expectation. This is unsurprising because both principal and agent are risk neutral, and stocks are rationally
priced. Thus, expected stock returns do not vary with governance in our model.
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values are highest when PPS is very high, which also happens to be when monitoring
is lowest (and so volatility is higher). But, because this is near the payment boundary,
future monitoring will be higher, which reduces stock returns, and so PPS is negatively
related to future stock returns. This is broadly consistent with Brick, Palmon, and Wald
(2012). We note that even in an alternate model where the principal monitors the agent
by effecting changes in λ, we would still obtain the same measure Govptq of the intensity
of monitoring, as defined in [7.3]. We leave to future work further analysis of the Govptq

process.

8. Conclusion

In this paper, we provide a dynamic model of monitoring in contracts. We find that
monitoring and pay-performance sensitivity are substitutes, that payments are optimally
backloaded, and that monitoring intensity increases after sustained poor performance, but
decreases after sufficient good performance. These are properties of the optimal contract
for a given firm and rationalise stylised facts about VC contracts for firm financing.

Our comparative statics results show that firms with greater expected cash flow or
with a lower intrinsic agency problem have more monitoring and are also more valuable.
Intuitively, the marginal cost of monitoring is lower in such firms, and this begets greater
monitoring. When viewing monitoring as corporate governance, our findings rationalise
observed positive correlations between the governance measures and various measures
of firm performance such as stock prices, stock returns, credit yield spread, and more.
Thus, our model shows how the firm’s balance sheet, security prices, and governance
structure are related.

We also make several technical contributions. We use Schauder theory to prove
the regularity of the value function and that it satisfies the variational form of the HJB
equation. We also use the Comparison Principle in the theory of viscosity solutions for
our comparative statics as well as to prove that the value function is the unique solution
to the variational form of the HJB.

Our model assumes that the agent’s actions have linear costs. An extension to
convex costs and multiple actions would allow us to speak to many other features of
incentive systems. Another extension would be to consider the question of credit risk but
with agency and monitoring concerns. We leave these for future work.

Appendices

In Appendix A, we state the Comparison Principles that we use for our comparative
statics. Appendix B proves Theorem 2. Appendix C derives the dynamics of securities
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(stock price and credit yield spread) and proves the comparative statics from Theorems 3
and 4. All further results are in the Online Appendix.

A. Comparison Principles

We state here two general Comparison Principles that will be used both to show the
existence of a smooth value function as well as to establish our comparative statics.

A.1. Comparison Principle via Viscosity Solutions

The HJB equation for the value function F takes the abstract form,

Hpx, upxq, u1
pxq, u2

pxqq “ 0; up0q “ 0 and x ą 0[A.1]

where H : R` ˆ R3 Ñ R is given by

Hpx, p, q,Γq :“ min
␣

rp ´ γxq ´ HpΓq, q ` η
(

HpΓq :“ sup
!

1
2
z2Γ ` µ ´ ρpσq : σ P Σ and σλ ď z

)[A.2]

and η P p0, 1s. The problem [A.1] is a boundary value problem with a gradient constraint;
the gradient constraint comes from the term q ` η in H, which imposes the constraint
u1pxq`η ě 0 on the solution. Notice that by posing the problem with a gradient constraint,
we are effectively reformulating our free boundary problem, where the boundary w‹ was
endogenously determined, into a nonlinear differential equation on the domain r0,8q.

Lemma A.1. The function H in [A.2] is convex, Lipschitz, and strictly increasing.

Note that the function H in [A.2] is easily extended to R by setting HpΓq “ 8 for
Γ ą 0. The notion of viscosity solution that we use is now defined.

Definition A.2. A locally bounded lower (respectively upper) semicontinuous function
u is a viscosity supersolution (respectively subsolution) to [A.1], if for all x0 ą 0 and all
smooth function ϕ such that u´ ϕ has a local minimum (respectively maximum) at x0
with upx0q “ ϕpx0q, we have

[A.3] Hpx0, ϕpx0q, ϕ
1
px0q, ϕ

2
px0qq ě pďq 0

with up0q ě 0 (respectively up0q ď 0).
A continuous function u is called a viscosity solution to [A.1] if it is both a sub- and

a supersolution in the viscosity sense.
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We are now ready to state our first Comparison Principle.33

Theorem 5 (Comparison Principle). Let v and V be, respectively, upper and lower
semicontinuous viscosity sub- and supersolutions of [A.1] with vpxq ď K ´ ηx for some
K ą 0. Then, v ď V .

Remark A.3. The condition vpxq ď K ´ ηx is crucial for the comparison to hold. For
instance, suppose η “ 1, and consider the function upxq “ x, which satisfies rupxq ´

γxu1pxq ´ Hpu2pxqq “ rx ´ µ ´ γx ` ρpσ0q “ pr ´ γqx ´ pµ ´ ρpσ0qq ď 0 for all x ě 0,
because ρpσ0q “ 0 ă µ. Thus, u is a subsolution of [A.1]. Similarly, we can check that
V pxq “ µ{r ´ x is a supersolution to [A.1]. But upxq ą V pxq for all x sufficiently large,
which demonstrates the necessity of such a condition.

The proof of Theorem 5 is somewhat involved and uses ideas not required elsewhere.
It is therefore deferred to Appendix G.

A.2. Comparison Principle for Piecewise Smooth Functions

We use the following Comparison Principle for the comparative statics of Sand T.

Proposition A.4 (Comparison Principle). Let v (respectively V ) be a bounded C1 and
piecewise-C2 subsolution (respectively supersolution) of the elliptic equation Lφ “

´1
2
σ̂2pmqφ2 ´ γmφ1 ` rφ “ 0 on p0,m‹q, with boundary conditions φp0q “ α and

φ1pm‹q “ β, ie,

L v ď 0; vp0q ď α and v1
pm‹

q ď β[A.4]

LV ě 0; V p0qě α and V 1
pm‹

q ě β[A.5]

Then, v ď V .

The proof of Proposition A.4 is in Appendix I.

B. Proof of Theorem 2

Proof. We have already shown in Theorem 1 that F is C2 everywhere and also globally
concave. Thus, there exist intervalsAj Ă r0, w‹s such that σj is optimal onAj . Generically,
at any w, exactly one σj will be optimal.

33We cannot appeal to the “standard” Comparison Principle in Crandall, Ishii, and Lions (1992, Theorem 3.3)
because that result only applies to bounded domains, whereas our domain (and solutions) are unbounded.
Nonetheless, we exploit the bounds delivered by the first-best and the immediate-liquidation strategies.
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Letws be a point where there is a regime change, ie, where σi and σj are both optimal.
In particular, suppose σi is optimal on rws´ε, wss while σj is optimal on rws, ws`εs. This
gives us the following differential equation (which is the HJB) in each of the intervals
1
2
θ2kF

2

pwq `γwF
1

pwq ´ rF pwq `µ´ρk “ 0 where k “ i, j, and θk “ λσk. Differentiating
the HJB on the relevant intervals, we have 1

2
θ2kF

3

pwq ` γwF
2

pwq ` pγ ´ rqF 1pwq “ 0.
Because F 1 and F 2 are continuous, we may take limits as w Ñ ws from above and below
in [B], which implies θ2iF3pws´q “ θ2jF

3pws`q. This implies F3pws´q and F3pws`q

have the same sign, and so any interior minimum occurs only at points where F 2 is
differentiable.

On the other hand, except at the switching points, we have 1
2
θ2kF

p4qpwq`γwF
3

pwq`

p2γ ´ rqF 2pwq “ 0. At any interior critical point w˚ of F 2 , we have F 3

pw˚q “ 0. The
concavity of F implies F 2

pwq ă 0 for w ă w‹, and so we conclude that F p4qpw˚q ą 0

and therefore, w˚ can only be a local minimum.
A local interior minimum exists if, and only if, F 1p0q ą 0, because F3p0`q “

´pγ ´ rqF 1p0q. But this happens whenver µ is sufficiently large, a fact that is relatively
straightforward to establish, by bounding from below the value function from DS. Simi-
larly, it can be shown that when µ is sufficiently small, F 1p0q ă 0. Lemma C.5 establishes
that F 1p0;µq is strictly increasing and continuous in µ. Because F 1p0;µq ă 0 for µ very
small while F 1p0;µq ą 0 for µ very large, the existence of µ: follows immediately.

C. Proofs of Comparative Statics Results

C.1. Dynamics of Securities

We begin by describing, in the fashion of BMPR, some boundary value problems that
characterise the stock price and the credit yield spread. Propositions in this section are
proved in Appendix E.1.

The stock price St satisfies St “ Et
“şτ

t
e´rps´tqλ´1 dCs

‰

. Because Ct is a determin-
istic function of Mt, it follows that we can write St “ SpMtq. Furthermore, we have the
following result.

Proposition C.1. The stock price St is given by s “ Spmq, where Sis the unique solution
to the boundary value problem

rSpmq “ γmS1
pmq ` 1

2
σ2

˚pλmqS2
pmq

Sp0q “ 0 and S1
pm‹

q “ 1
[C.1]

and m P r0,m‹s. Moreover, the stock price Spmq is a strictly increasing and strictly
concave function of m, the level of cash reserves. It is C1 everywhere, and piecewise C2,
with S2 being discontinuous at points where σ˚p¨q is discontinuous.
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The price of the bond is denoted by Dt, which can also be written as a Dt “ DpMtq

for some deterministic function D. The function D solves a boundary value problem, as
in BMPR..

It is clear that for all t P r0, τ s, Tt “ Etre´rpτ´tqs “: TpMtq where T is a determin-
istic function. Moreover, T is the solution to the boundary value problem

Tpmq “ γmT1
pmq ` 1

2
σ˚pλmqT2

pmq

Tp0q “ 1 and T1
pm‹

q “ 0
[C.2]

This leads to the following proposition.

Proposition C.2. The credit yield spread is a strictly positive, strictly decreasing, and
strictly convex function of cash reserves.

C.2. Comparative Statics in µ

We analyze here the sensitivity of the value function and other policy variables to the
parameter µ.

Lemma C.3. The value function F satisfies

BF pw, µq

Bµ
“

1 ´ Ere´rτ s

r
ă

1

r
[C.3]

In particular, F pw, µq and µ ´ rF pw, µq are both strictly increasing in µ.

Proof. Let σ˚ denote the optimal monitoring strategy and C˚ the optimal payment
strategy, resulting in the optimal contract Φ˚ “ pC˚, σ˚, τ˚q. The value function F is
defined in [3.3]. In particular, we have

F pw, µq “ EΦ˚

„
ż τ

0

e´rs
“

pµ ´ ρpσ˚
t qq ds ´ dC˚

s

‰

| W0 “ w

ȷ

Notice that F pw, µq is bounded above by µ{r ´ w, and below by ´w. Therefore, we may
apply the envelope theorem from Milgrom and Segal (2002), to conclude that [C.3] holds.
It follows immediately that F pw, µq is increasing in µ. By [C.3], 1´r BF pw,µq

Bµ
“ Ere´rτ s ą 0,

which completes the proof.

Corollary C.4. The payment boundary w‹pµq is strictly increasing in µ, and hence so is
the cash reserve threshold m‹ “ w‹{λ.

Proof. Recall the C1-pasting condition F 1pw‹q “ ´1, and the C2-pasting condition
F 2pw‹q “ 0 in [5.5], which imply that at w “ w‹, the HJB equation [5.2] becomes
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rF pw‹, µq “ µ ´ γw‹. Differentiating with respect to µ, we obtain rBµF pw‹, µq `

rF 1pw‹, µqpdw‹{dµq “ 1 ´ γ dw‹

dµ
. But F 1pw‹, µq “ ´1, which implies pγ ´ rq dw‹

dµ
“

1 ´ rBµF pw‹, µq “ Ere´rτ s P p0, 1q where the last equality is from [C.3]. Because γ ą r,
it follows that dw‹{dµ ą 0, as claimed.

To understand the effect of a change in µ on the optimal contract, one needs to
understand how it affects F 2. The next lemma takes us in that direction.

Lemma C.5. Given µ1 ă µ2, F 1pw, µ1q ď F 1pw, µ2q, where the equality holds if, and
only if, both sides are ´1. Thus, F 1 is strictly increasing in µ in the relevant part of the
domain.

Proof. Let µ2 ą µ1 and w‹
i be the corresponding payment boundary for i “ 1, 2. By

Corollary C.4, w‹
2 ą w‹

1, and so F 1pw‹
1, µ2q ą F 1pw‹

1, µ1q “ ´1. Let w˝ be the largest
w P r0, w‹

1q such that F 1pw˝, µ2q “ F 1pw˝, µ1q, so that F 1pw, µ2q ą F 1pw, µ1q for all
w P pw˝, w

‹
1q.

In the HJB equation [5.1], let us defineΦpΓq :“ maxσPΣ

`

1
2
σ2λ2Γ´ρpσq

˘

. It is easy to
see that Φ is strictly increasing in Γ. Notice that the HJB equation [5.1] can now be written
asΦpF 2pw˝, µ1qq “ rF pw˝, µ1q´µ1´γw˝F

1pw˝, µ1q ą rF pw˝, µ2q´µ2´γw˝F
1pw˝, µ2q “

ΦpF 2pw˝, µ2qq, where the inequality follows from Lemma C.3 (which says rF ´ µ is
strictly decreasing in µ) and because F 1pw˝, µ2q “ F 1pw˝, µ1q by assumption.

The monotonicity ofΦ now implies thatF 2pw˝, µ1q ą F 2pw˝, µ2q. Thus,F 2pw˝, µ1q ą

F 2pw˝, µ2q “ limwÓw˝

F 1pw,µ2q´F 1pw˝,µ2q

w´w˝
ě limwÓw˝

F 1pw,µ1q´F 1pw˝,µ1q

w´w˝
“ F 2pw˝, µ1q which is

a contradiction. Thus, there is no such w˝ ě 0. On the other hand, for all w ě w‹
2,

F 1pw, µ2q “ F 1pw, µ1q “ ´1, which proves the claim.

We are now in a position to describe how F 2 changes with µ.

Corollary C.6. F 2p¨, µq is locally strictly decreasing in µ on r0, w‹s.

Proof. Consider the HJB equation [5.1] on r0, w‹s, written as ΦpF 2pw, µqq “ rF pw, µq ´

µ ´ γwF 1pw, µq, with boundary conditions in [5.5]. By Lemma C.3, it follows that
rF pw, µq ´ µ is locally strictly decreasing in µ, while Lemma C.5 says F 1pw, µq in-
creases in µ. The monotonicity of Φ implies F 2pw, µq is locally strictly decreasing in µ
when w P r0, w‹q.

Recall that σ˚pw, µq “ argmaxσPΣ

“

1
2
σ2λ2F 2pw, µq ´ ρpσq

‰

denotes the optimal
choice of monitoring at w. The behaviour of F 2 with respect to µ dictates how optimal
monitoring changes with µ.

Proposition C.7. The optimal level of monitoring, as a function of promised utility or
of cash reserves, is increasing in µ.
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Proof. The objective 1
2
σ2λ2F 2pw, µq ´ ρpσq has increasing differences in pσ, µq if µ is

given the reverse order because F 2 is monotone decreasing in µ (in the standard order)
by Corollary C.6. Therefore, σ˚pw, µq is decreasing in µ (in the standard order), ie, the
level of monitoring increases in µ. It is clear that the same holds as a function of cash
reserves, because m “ w{λ is independent of µ.

We now show that stock prices are also monotone in µ.

Proposition C.8. Stock price Spm,µq is increasing in µ.

Proof. Consider µ1 ă µ2, and let σ˚
i be the optimal policy under µi, m‹

i the cash reserve
threshold, and Si the corresponding stock price. We have already established in Corol-
lary C.4 that m‹ increases in µ, which implies that S1

2pm
‹
1q ą 1. By virtue of being a

solution to the boundary value problem (at µ “ µ1), we have

0 “ rS1pmq ´ γmS1
1pmq ´ 1

2
σ2

˚1S
2
1 pmq ě rS1pmq ´ γmS1

1pmq ´ 1
2
σ2

˚2S
2
1 pmq[C.4]

where the inequality is because σ˚1pλmq ě σ˚2pλmq (by Proposition C.7) and because
S2
i ď 0 for i “ 1, 2 by Proposition C.1.

Thus, S1 is a subsolution to the boundary value problem [C.1] under µ2. We have
also noted that S2p0q “ S1p0q, and S1

2pm
‹
1q ą S1

1pm‹
1q “ 1, and so by the Comparison

Principle in Proposition A.4, it follows that Spm,µ2q ě Spm,µ1q for all m (where they
are both defined).

We now show that the expected discounted hitting time is decreasing in µ.

Proposition C.9. The expected discounted liquidation time Tpmq in [C.2] is decreasing
in µ.

Proof. Let µ1 ă µ2, σ˚i be the optimal policy under µi,m‹
i the cash reserve threshold, and

Ti the corresponding expected discounted liquidation time in [C.2]. We have already estab-
lished in Corollary C.4 thatm‹ increases in µ, which implies that T1

2 pm‹
1q ă 0. Because T1

solves [C.2] when µ “ µ1, we have 0 “ rT1pmq´γmT1
1 pmq´ 1

2
σ˚1pmq2T2

1 pmq ď rT1pmq´

γmT1
1 pmq ´ 1

2
σ˚2pmq2T2

1 pmq where the inequality is because σ˚1pλmq ě σ˚2pλmq (by
Proposition C.7) and because T2

i ě 0 for i “ 1, 2 by Lemma E.1.
Thus, T1 is a supersolution to the boundary value problem [C.2] under µ1. We have

also noted that T2p0q “ T1p0q “ 1, and T1
2 pm‹

1q ă 0 “ T1
1 pm‹

1q, and so by the Comparison
Principle in Proposition A.4, it follows that Tpm,µ2q ď Tpm,µ1q for all m.

Corollary C.10. The credit yield spread ∆ is decreasing in µ.

Proof. As noted in the proof of Proposition C.2, ∆ “ φpTpm,µqq, where φpxq “ rx{p1´

xq is increasing and convex. By Proposition C.9, Tpm,µq is decreasing in µ, so it follows
that ∆, for a given level of cash reserves, is also decreasing in µ.
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C.3. Comparative Statics in λ

The HJB equation can be written as a variational inequality as follows:

Ψpw,F, F 1, F 2, λq :“ min rrF pwq ´ µ ´ γwF 1
pwq ´ ΦpF 2

pwq, λq, F 1
pwq ` 1s

“ 0
[C.5]

with F p0q “ 0, where ΦpΓ, λq :“ maxσPΣ

`

1
2
σ2λ2Γ ´ ρpσq

˘

as before. We first show that
F decreases in λ, and the solution to [C.5] is F pw, λq.

Proposition C.11. Let F pw, λq be the solution to the [C.5]. Then, λ1 ă λ2 implies
F pw, λ1q ě F pw, λ2q for all w ě 0.

Proof. Recall that for any λ, F 2pw, λq ď 0 for all w ě 0, with a strict inequality
when w P r0, w‹q. Because Γ ď 0, ΦpΓ, λq is decreasing in λ. Therefore, we have 0 “

Ψ
`

F pw, λ2q, λ2
˘

ě Ψ
`

F pw, λ2q, λ1
˘

. Thus, F pw, λ2q is a subsolution to [C.5] ΨpF, λ1q “ 0.
Because F p0, λ1q “ F p0, λ2q, we conclude by the Comparison Principle in Theorem 5
that F pw, λ1q ě F pw, λ2q for all w ě 0.

Corollary C.12. The payment boundary w‹ is increasing in λ.

Proof. The payment boundary is the intersection of F pw, λq and the line w ÞÑ µr´1 ´

γr´1w. Because F pw, λq is decreasing in λ, this point of intersection must be lower, and
occur at a higher w, ie, w‹ is increasing in λ.

To consider the effect of a change in λ on the optimal level of monitoring, it is
useful to consider the principal’s problem as a function of cash reserves. In particular,
consider the change of variable m “ wλ´1, which gives us F̂ pm,λq “ F pmλ, λq. Then,
we obtain the variational inequality

Ψ̂pm, F̂ , F̂ 1, F̂ 2, λq :“ min
”

rF̂ pmq ´ µ ´ γmF̂ 1
pmq ´ Φ̂pF̂ 2

pmqq, F̂ 1
pmq ` λ

ı

“ 0
[C.6]

with the boundary condition F̂ p0q “ 0, and where Φ̂pΓq :“ maxσPΣ

`

1
2
σ2Γ ´ ρpσq

˘

. We
also let

σ̂pmq :“ argmax
σPΣ

`

1
2
σ2F̂ 2

pmq ´ ρpσq
˘

[C.7]

denote the optimal choice of monitoring as a function of cash reserves. The advantage of
this change in perspective, demonstrated next, is that the nonlinear operator rF̂ pmq ´

µ ´ γmF̂ 1pmq ´ Φ̂pF̂ 2pmqq is independent of λ.
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In what follows, we suppress the dependence of F̂ on λ where this dependence is
not emphasized for comparison.

Proposition C.13. Let F̂ pm,λq be a solution to [C.6]. Then, λ1 ď λ2 implies F̂ pm,λ2q ď

F̂ pm,λ1q.

Proof. By assumption, Ψ̂pm, F̂ , F̂ 1, F̂ 2, λ1q “ 0. But we also have

min
”

rF̂ pm,λ1q ´ µ ´ γmF̂ 1
pm,λ1q ´ Φ̂pF̂ 2

pm,λ1qq, F̂ 1
pm,λ1q ` λ2

ı

ě 0

which implies F̂ pm,λ1q is a supersolution to the nonlinear differential equation Ψ̂p¨, λ2q “

0 in [C.6]. Because F̂ pm,λ2q is a solution (and hence a subsolution) to Ψ̂p¨, λ2q “ 0, it
follows from the Comparison Principle in Theorem 5 that F̂ pm,λ1q ě F̂ pm,λ2q.

To understand how optimal monitoring σ̂ and the dividend payment threshold
m‹ “ w‹{λ vary with λ, we need to understand how F̂ 2pm,λq changes with λ. The
following lemma describes this behaviour.

Lemma C.14. Let F̂ pm,λq be a solution to [C.6]. Then, λ1 ď λ2 implies F̂ 1pm,λ1q ě

F̂ 1pm,λ2q and F̂ 2pm,λ1q ď F̂ 2pm,λ2q.

Proof. Let Gpmq :“ rF̂ pmq ´ γmF̂ 1pmq ´ µ “ Φ̂pF̂ 2pmqq and notice that Φ̂pΓq “

maxσ
`

1
2
σ2Γ´ρpσq

˘

is a strictly increasing function of Γ. Therefore, Φ̂´1 is a well defined
and strictly increasing function. If Gpmq is increasing in λ, then it follows that F̂ 2 is
also increasing in λ. In addition, Gpmq increasing in λ implies, by Proposition C.13, that
Gpmq ´rF̂ pmq `µ “ ´γmF̂ 1pmq is increasing in λ, ie, F̂ 1pm,λq is decreasing in λ. Thus,
all that remains is to show that Gpmq is increasing in λ.

To see that Gpmq increases in λ, observe first that

G1
pmq “ pr ´ γqF̂ 1

pmq ´ γmF̂ 2
pmq

“ pr ´ γqpγmq
´1rF̂ pmq

“:Kpm,λq

` pγ ´ rqpγmq
´1Gpmq ´ γmΦ̂´1

pGpmqq

“:Gpm,Gq

“ Gpm,Gpmqq ` Kpm,λq

Thus, G is the solution to the differential equation G1pmq “ Gpm,Gpmqq ` Kpm,λq

for each λ. By Proposition C.13, we see that Kpm,λq is increasing in λ. Thus, by the
Comparison Theorem for first order differential equations—see, for instance, Birkhoff
and Rota (1989, Theorem 8, p.30)—we find that Gpm,λ1q ď Gpm,λ2q, which completes
the proof.

Corollary C.15. The dividend payment threshold m‹ “ w‹{λ is decreasing in λ.
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Proof. By definition, m‹
i satisfies F̂ 2pm‹

i , λiq “ 0 for i “ 1, 2 where λ1 ă λ2. By
Lemma C.14, F̂ 2pm,λq is increasing in λ. Therefore, 0 “ F̂ 2pm‹

2, λ2q ě F̂ 2pm‹
2, λ1q,

which implies m‹
2 ď m‹

1.

We can now describe how optimal monitoring changes with λ.

Proposition C.16. The optimal σ̂pmq is increasing in λ. Thus, monitoring is decreasing
in λ.

Proof. Notice that 1
2
σ2F̂ 2pm,λq ´ ρpσq has increasing differences in pσ, λq because by

Proposition C.13, F̂ 2pm,λq is increasing in λ. Therefore, by Topkis’ Theorem, σ̂pm,λq “

argmaxσPΣ

“

1
2
σ2F̂ 2pm,λq ´ ρpσq

‰

is also increasing in λ.

We now show that stock prices are also monotone in λ.

Proposition C.17. The stock price Spm,λq is decreasing in λ.

Proof. Consider λ1 ă λ2, and let σ̂i be the optimal policy under λi, m‹
i the cash reserve

threshold, and Si the corresponding stock price. We have already established in Corol-
lary C.15 that m‹ decreases in λ, which implies that S1

1pm
‹
2q ą 1. By virtue of being a

solution to the boundary value problem (at λ “ λ1), we have

0 “ rS1pmq ´ γmS1
1pmq ´ 1

2
σ̂2
1S

2
1 pmq ď rS1pmq ´ γmS1

1pmq ´ 1
2
σ̂2
2S

2
1 pmq[C.8]

where the inequality is because σ̂1pmq ď σ̂2pmq (by Proposition C.16) and because S2
i ă 0

for i “ 1, 2 by Proposition C.1.
Thus, S1 is a supersolution to the boundary value problem [C.1] when λ “ λ2. We

have also noted that S2p0q “ S1p0q “ 0, and S1
1pm‹

2q ą S1
2pm

‹
2q “ 1; the Comparison

Principle in Proposition A.4 now implies that Spm,λ1q ě Spm,λ2q for all m.

We now show that the expected discounted hitting time is increasing in λ.

Proposition C.18. The expected discounted liquidation time Tpmq in [C.2] is increasing
in λ.

Proof. Let λ1 ă λ2, σ̂i be the optimal policy under λi, m‹
i the cash reserve threshold,

and Ti the corresponding expected discounted liquidation time in [C.2] when λ “ λi. We
have already established in Corollary C.15 that m‹ decreases in λ, which implies that
T1
1 pm‹

2q ă 0. Because T1 solves [C.2] when λ “ λ1, we have

0 “ rT1pmq ´ γmT1
1 pmq ´ 1

2
σ̂2
1T

2
1 pmq ě rT1pmq ´ γmT1

1 pmq ´ 1
2
σ̂2
2T

2
1 pmq[C.9]

where the inequality is because σ̂1pmq ď σ̂2pmq (by Proposition C.16) and because
T2
i ą 0 for i “ 1, 2 by Lemma E.1.
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Thus, T1 is a subsolution to the boundary value problem [C.2] when λ “ λ2. We
have also noted that T2p0q “ T1p0q “ 1, and T1

1 pm‹
2q ă 0 “ T1

2 pm‹
2q, and so by the

Comparison Principle from Proposition A.4, it follows that Tpm,λ1q ď Tpm,λ2q for all
m.

Corollary C.19. The credit yield spread ∆ is increasing in λ.

Proof. As noted in the proof of Proposition C.2, ∆ “ φpTpm,λqq, where φpxq “ rx{p1´

xq is increasing and convex. By Proposition C.18, Tpm,λq is increasing in λ, so it follows
that ∆, for a given level of cash reserves, is also increasing in λ.

C.4. Proof of Theorem 3

We now collate the results above and complete the proof of Theorem 3. Part (i) of Theo-
rem 3 is established in Corollary C.6 for the monotonicity in µ, while the monotonicity in
λ is Lemma C.14. That monitoring is increasing in the firm’s risk aversion now follows
from Proposition C.7 (for µ) and Proposition C.16 (for λ). Part (iii) follows from the
concavity of F whereby sensitivity Zt “ λσptq. By part (ii), σptq decreases in µ and
increases in λ, which establishes part (iii).

To see part (iv), let Xt “ Etr
şτ

0
e´rps´tq dts. The arguments above show that we

can write Xt “ XpMtq. In particular, given w0 (equivalently, m0), X0 “ 1 ´ E0re´rτ s “

1 ´ Tpm0q. By Proposition C.9, X0 is increasing in µ, while Proposition C.18 shows X0

is decreasing in λ.
For part (v), suppose µ1 ą µ2. By part (iv), it follows that Xp1q

0 ě X
p2q

0 , where
X

pjq

0 “ EΦj r
şτj
0
ert dts, where Φj “ pCj, τj, σ˚jq is the optimal contract when µ “ µj, for

j “ 1, 2. Because Φ2 is optimal at µ2, it follows that

F pw, µ2q “ EΦ2

„
ż τ2

0

e´rt
`

µ2 ´ ρpσ˚2ptqq
˘

dt

ȷ

ě EΦ1

„
ż τ1

0

e´rt
`

µ2 ´ ρpσ˚1ptqq
˘

dt

ȷ

which is true if, and only if,

EΦ1

„
ż τ1

0

e´rtρpσ˚1ptqq dt

ȷ

´ EΦ2

„
ż τ2

0

e´rtρpσ˚2ptqq dt

ȷ

ě µ2

`

X
p1q

0 ´ X
p2q

0

˘

But Xp1q

0 ě X
p2q

0 by part (iv), so the claim is proved.
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Online Appendix: Not for Publication

D. Proofs from Section 4

Recall that Ŷt is the process that is observed by the principal, and hence the contract is
conditioned on.

Proof of Lemma 4.2. Fix a contract Φ “ pC, τ, σq. Let Ŷ be a reporting strategy for the
agent. Recall our assumption that Ŷ is absolutely continuous with respect to Y . This
implies dŶ “ pµ ´ ∆tq dt ` σt dBt where ∆t is the instantaneous diversion of output.
His utility from such a strategy, for all t P r0, τ s, is

Vt :“ EŶ ,σ
t

„
ż τ

0

e´γs
`

dCs ` λp dYs ´ dŶsq
˘

ȷ

“

ż t

0

e´γs
`

dCs ` λp dYs ´ dŶsq
˘

` e´γtWt

[D.1]

where Wt is the process defined in [4.1]. But for a fixed Ŷ and contract, we find that pVtq

is a martingale, and so by the Martingale Representation Theorem there exists a process
Z “ pZtq such that Vt “

şt

0
e´γsZs dBs. From this and [D.1], we find that

e´γtWt “

ż t

0

e´γsZs dBs ´

ż t

0

e´γs
`

dCs ` λp dYs ´ dŶs
“asσs

q
˘

[D.2]

Writing this in differential form (and cancelling e´γt throughout), we obtain

dWt “ γWt dt ´
`

dCt ` λpdYs ´ dŶtq
˘

` Zt dBt[D.3]

Noting that dBt “ σ´1
t r dYt ´ µdts and substituting in [D.3] completes the proof.

Lemma 4.2 also now lets us characterize incentive compatibility for the agent.

Proof of Lemma 4.3. Suppose the contract is incentive-compatible. By the Comparison
Principle for BSDEs Touzi (2013, Theorem 10.4, p159) or equivalently, following San-
nikov (2008) and DeMarzo and Sannikov (2006), it is optimal for the agent to minimize
the drift of the SDE in [D.3]. Using Girsanov’s Theorem, we can rewrite [D.3] as

dWt “ γWtdt ´
“

dCt ` λp dYt ´ dŶtq
‰

` Zt

”

dB̂∆
t ` σ´1

t p dYt ´ dŶtq
ı

[D.4]

where dBt “ dB̂∆
t `σ´1

t pdYt ´dŶtq. For truthtelling (ie, dYt “ dŶt) to be optimal, it must
be that the contract specifies Zt and σt such that for all t, ´λ` Ztσ

´1
t ě 0, ie, Zt ě λσt.
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(This is the content of the Comparison Principle for BSDEs.) The sufficiency of this
condition follows from the Comparison Principle for BSDEs. Alternatively, the argument
in DeMarzo and Sannikov (2006) may be adapted to our setting.

E. Securities in Section 7

We begin by establishing that the stock price function is well defined and solves the
boundary value problem in [C.1]. We then prove Proposition C.1.

E.1. Proofs from Appendix C.1

Proof sketch of Proposition C.1. In contrast to BMPR, our M process has a volatility σ˚

that varies with M . But because σ˚ is progressively measurable, Itô’s lemma still applies.
Thus, an Itô expansion for e´rtSpMtq and following BMPR delivers the result.

Following the arguments above for S, it is not hard to show that Ts “ TpMsq for
all s P r0, τq, and that T is the solution to the following boundary value problem in [C.2].

Lemma E.1. The process Tt is given by T “ Tpmq, where T is a solution to the
boundary value problem [C.2], and m P r0,m‹s. Moreover, the expected discounted time
to dissolution is a strictly decreasing and strictly convex function of m, the level of cash
reserves.

Proof. That T is the solution the boundary value problem in [C.2] follows the same steps
as above in the proof of Proposition C.1 above, and so is omitted.

To see that T is strictly decreasing, fix m1 ă m0, and define the stopping time
ξ :“ mintt : Mt “ m1 | M0 “ m0u. Then, Tpm0q “ Ere´rξTpm1qs “ Tpm1qEre´rξs ă

Tpm1q because Ere´rξs P p0, 1q, which holds because Ere´rξs ă 8 almost surely.
To see that T is strictly convex, consider the boundary value problem in [C.2].

Thus, T2pmq “ rTpmq ´ γmT1pmq. Because Tpmq ą 0 for all m P p0,m‹s and T is
decreasing, so T1pmq ă 0, it follows that T2pmq ą 0, ie, T is strictly convex.

Proof of Proposition C.2. Let ∆ “ φpT q :“ rT {p1´T q. It is easy to see that φ is strictly
increasing and strictly convex. By Lemma E.1, T “ Tpmq. Therefore, we can write
∆ “ δpmq, where δpmq :“ φpTpmqq. Differentiation shows that δ1pmq “ φ1p¨qT1pmq ă

0, which follows because φ is increasing while T is decreasing. The function δ is a
composition of two convex functions, and hence is also convex. Moreover, on every
interval where σ̂ is constant, we find δ2pmq “ φ2p¨qrT1pmqs2 ` φ1p¨qT2pmq ą 0, where
we again use the strict monotonicity and convexity of both φ and T.
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E.2. Existence of Stock Price Function

Recall that the optimal monitoring strategy is given by

σ˚pwq P argmax
σPΣ

„

λ2σ2pwq

2
F 2

pwq ´ ρpσq

ȷ

[E.1]

Because Σ is a finite set, the function σ˚pwq is piecewise constant. We recall from [7.1]
that dMt “ γMt dt´λ´1 dC˚

t `λσ̂pmq dBt is the cash reserve process of the firm (where
σ̂pmq “ σ˚pλmq is also defined in [C.7]), and the stock price is given by

St :“ λ´1 Et
„
ż τ

t

e´rps´tq dC˚
s

ȷ

[E.2]

Integrating the Itô expansion of e´rtMt from t to τ , where the dynamics of Mt are from
[7.1], and noting Mτ “ 0, we see that

St “ Mt ` pγ ´ rqEt
„
ż τ

t

e´rps´tqMs ds

ȷ

[E.3]

Because M is a Markov process, it follows from [E.3] that

Et
„
ż τ

t

e´rps´tqMs ds

ȷ

“ E
„
ż τ

t

e´rps´tqMs ds
ˇ

ˇ

ˇ
Mt

ȷ

[E.4]

The following lemma records that the stock price at time t is given by a function of Mt,
namely St “ SpMtq.

Lemma E.2. Let Mt follow [7.1] and St be as in [E.2]. Then, St “ SpMtq, where

Spmq :“ m ` pγ ´ rqE
„
ż τ

t

e´rps´tqMs ds
ˇ

ˇ

ˇ
Mt “ m

ȷ

Proof. By [E.4], we have St “ SpMtq.

We shall now show that S satisfies the boundary value problem [C.1], recapitulated
as:

´1
2
σ̂2

pmqϕ2
´ γmϕ1

` rϕ “ 0

ϕp0q “ 0 and ϕ1
pm‹

q “ 1
[E.5]

where σ̂ is the optimal level of monitoring (see [C.7]) and m‹ is the payment boundary.
Note that infmě0 σ̂pmq ą 0, and so the boundary value problem in [E.5] is strongly

elliptic. Because σ̂ is piecewise constant, we cannot expect [E.5] to have a C2 solution.
Instead, as we will see below, [E.5] has a solution in a weak sense, namely a C1 solution
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that is piecewise C2 (indeed, piecewise C8); at the points where σ̂ jumps, the solution
(S2) has distinct left- and right-limits.

Lemma E.3. For any stopping time ν ď τ , we have

Spmq “ Em
„

λ´1

ż ν

0

e´rs dC˚
s ` e´rνSpMνq

ȷ

[E.6]

Proof. By definition of St in [E.2] and Lemma E.2, we have

Spmq “ λ´1 Em
„
ż τ

0

e´rs dC˚
s

ȷ

“ Em
„

λ´1

ż ν

0

e´rs dC˚
s ` λ´1e´rν

ż τ

ν

e´rps´νq dC˚
s

ȷ

“ λ´1 Em
„
ż ν

0

e´rs dC˚
s

ȷ

` λ´1 Em
„

e´rν EMν

„
ż τ

ν

e´rps´νq dC˚
s

ȷȷ

Because M is time-homogeneous and by Lemma E.2 and the definition of S, we have

λ´1 EMν

„
ż τ

ν

e´rps´νq dC˚
s

ȷ

“ SpMνq

Therefore, [E.6] holds, completing the proof.

The following lemma shows that if a solution exists to the boundary value problem
in [E.5] with a suitably modified boundary condition at m‹, then the solution must be S.

Lemma E.4. Let v be a solution to

´1
2
σ̂2

pmqv2
´ γmv1

` rv “ 0

vp0q “ 0 and vpm‹
q “ Spm‹

q
[E.7]

and suppose v is C1 and piecewise-C2. Then, vpmq “ Spmq.

Proof. Let ν :“ inf tt ě 0 : Mt “ 0 or Mt “ m‹u. Because v is C2 except at finitely
many points, and because σ̂ is bounded away from 0, it follows that v2 is bounded. Thus,
by Problem 4.8 (p 57) of Oksendal (2010) we may apply Itô’s formula to obtain

e´rνvpMνq “ vpmq `

ż ν

0

e´rs
´

1
2
σ̂2

pMsqv
2
pMsq ` γMsv

1
pMsq ´ rvpMsq

¯

ds

´ λ´1

ż ν

0

e´rsv1
pMsq dC

˚
s `

ż ν

0

e´rsv1
pMsqσ̂pMsq dBs

[E.8]
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Because v satisfies the boundary value problem in [E.7], the display above simplifies to

e´rνvpMνq “ vpmq ´ λ´1

ż ν

0

e´rsv1
pMsq dC

˚
s `

ż ν

0

e´rsv1
pMsqσ̂pMsq dBs[E.9]

Because ν ď τ ă 8 a.s., and from the boundedness of σ̂ and v1, we conclude that the
stochastic integral is zero in expectation. Using the boundary condition vpMνq “ SpMνq,
we can now write

vpmq “Emre´rνSpMνqs ` λ´1 Em
„
ż ν

0

e´rsv1
pXsq dC

˚
s

ȷ

[E.10]

Because C˚ is a local time at m‹, ν is (weakly) smaller than the hitting time of M to m‹,
and so

şν

0
e´rsv1pMsq dC

˚
s “ 0, so that vpmq “ Emre´rνSpMνqs. Finally, from Lemma E.3

and the fact that
şν

0
e´rs dC˚

s “ 0, we have vpmq “ Emre´rνSpMνqs “ Spmq, completing
the proof.

We now show that the boundary value problem in [E.7] has a C1 solution that is
piecewise C2.

Lemma E.5. Assume that σ̂pmq is piecewise Lipschitz continuous, bounded, and infm σ̂pmq ą

0. Then, the boundary value problem in E.7 has a C1 and piecewise C2 solution.

Proof. Consider the following equivalent version of [E.7],

´1
2
ψ2

´ bpmqψ1
` cpmqψ “ 0

ψp0q “ 0 and ψpm‹
q “ Spm‹

q
[E.11]

where bpmq “ γm{σ̂2pmq and cpmq “ r{σ̂2pmq. As b and c are bounded functions, the
equivalent problem satisfies the assumption of Gilbarg and Trudinger (2001, Corol-
lary 9.18). Therefore, there exists a weak solution, v, in the Sobolev space W 2,ppr0,m‹sq

for all p ě 1. By the Sobolev embedding result, Gilbarg and Trudinger (2001, Corol-
lary 7.11), v is C1. As σ̂ is piecewise continuous, on any interval of continuity of σ̂, bpmq

and cpmq are continuous, and so by Gilbarg and Trudinger (2001, Theorem 6.14), v is
C2 on such an interval.

Thus, it follows from Lemma E.4 that S is C1 and piecewise C2. Next, we show
that S1pm‹q “ 1.

Proposition E.6. The function S : r0,m‹s Ñ R satisfies S1pm˚q “ 1.

Proof. Because S is C2 except at finitely many points, and because σ̂ is bounded away
from 0, it follows that S2 is bounded. Thus, by Problem 4.8 (p 57) of Oksendal (2010)
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we may still apply Itô’s formula on SpMτ q to obtain

e´rτSpMτ q “ Spmq `

ż τ

0

e´rs
´

1
2
σ̂2

pMsqS
2
pMsq ` γMsS

1
pMsq ´ rSpMsq

¯

ds

´ λ´1

ż τ

0

e´rsS1
pMsq dC

˚
s `

ż τ

0

e´rsS1
pMsqσ̂

2
pMsq dBs

[E.12]

Because Mτ “ 0, SpMτ q “ 0 and by [E.5], we can write

Spmq “ λ´1

ż τ

0

e´rsS1
pMsq dC

˚
s `

ż τ

0

e´rsS1
pMsqσ̂

2
pMsq dBs

Both σ̂ and S1 being bounded, after taking expectations, we obtain

Spmq “ λ´1 Em
„
ż τ

0

e´rsS1
pMsq dC

˚
s

ȷ

“ λ´1S1
pm‹

qEm
„
ż τ

0

e´rs dC˚
s

ȷ

where the last equality follows from the properties of the local time dC˚. By the definition
of St in [E.2] and using Lemma E.2, we obtain

“

S1
pm‹

q ´ 1
‰

λ´1 Em
„
ż τ

0

e´rs dC˚
s

ȷ

“ 0

which implies S1pm‹q “ 1, as claimed.

We are now ready to prove all the elements of Proposition C.1.

Proof. We have already shown that S is a solution to the boundary value problem [C.1],
and is piecewise-C2 and C1 everywhere. The Comparison Principle in Proposition A.4
shows that it is the unique solution. All that remains is to show the strict monotonicity of
concavity of S.

To show S is strictly increasing, we divide the DE in [C.1] by ´2
σ̂2pmq

and multiply it
by Gpmq :“ exp

`

γ
şm

0
2n

σ̂2pnq
dn

˘

. Since G1pmq “ Gpmq
2γm
σ2pmq

, we have

pGS1
q

1
“ r 2

σ̂2pmq
GS[E.13]

Integrating both sides, we obtain

GpmqS1
pmq “ S1

p0q ` r

ż m

0

2
σ̂2pnq

GpnqSpnq dn[E.14]
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By the definition of Gpmq, we have

S1
pmq “ exp

´

´ γ

ż m

0

2n
σ̂2pnq

dn
¯

S1
p0q

` 2r

ż m

0

exp
´

´ γ

ż m

n

2n
σ̂2pnq

dn
¯

Spnq dn
σ̂2pnq

[E.15]

Because Spmq ą 0 for m ą 0 and Sp0q “ 0, it follows that S1p0q ě 0. Therefore, [E.15]
implies that S1pmq ą 0 for m ą 0, and so S is strictly increasing.

To show the strict concavity, we evaluate S2pmq by taking the derivative of [E.15] on
each interval that hosts a regime. Assume that σi is the optimal regime between r0,ms1s.
Then, Spmq satisfies ´1

2
σ̂2pmqS2 ´ γmS1 ` rS“ 0 with Sp0q “ 0. It follows from [E.15]

that S is second order continuously differentiable on r0,ms1s. As a result, S1pmq satisfies
´1

2
σ̂2
iK

2 ´ γmK1 ´ pγ ´ rqK“ 0. By integrating the above equation, we obtain

S2
pmq “ exp

´

´ γ 2m2

σ̂2
i

¯´

S2
p0q ´

2pγ´rq

σ̂2
i

ż m

0

exp
´

2n2

σ̂2
i

¯

S1
pnq dn

¯

[E.16]

Since Sp0q “ 0, from the ODE for S, we deduce that S2p0q “ 0. In addition, since S1 ą 0,
we conclude that

S2
pmq “ ´ exp

´

´ γ 2m2

σ̂2
i

¯

2pγ´rq

σ̂2
i

ż m

0

exp
´

2n2

σ̂2
i

¯

S1
pnq dn ă 0[E.17]

In particular, at the switching point we have S2pm´q ă 0. Now, we assume that the
concavity of S is established for all m ď ms for some switching point ms ă m‹ and
regime j is optimal right before ms. Consider the interval rms,ms1s, where ms1 is either
the switching point right after ms or is m‹, and assume that regime i is optimal in this
interval. Since S is continuously differentiable, if follows from the DE in [C.1] that

σ2
jS

2
pms´q “ σ2

iS
2
pms`q[E.18]

and, in particular, S2pms`q ă 0. By rewriting [E.16] on rms,ms1s, we obtain that

S2
pmq “ exp

´

´ γ 2m2

σ̂2
i

¯´

S2
pms`q ´

2pγ´rq

σ̂2
i

ż m

0

exp
´

2n2

σ̂2
i

¯

S1
pnq dn

¯

[E.19]

which implies that S is concave on rms,ms1s and completes the proof.

F. Directly Controlling Agency Costs

We consider here a variant of the model where the principal directly controls λt, the
agency cost, or more precisely, the agent’s marginal benefit from diverting cash, while
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the volatility of output remains fixed at σ0.
For concreteness, suppose λt “ atλ0, and at P A :“ ta0, a1, . . . , anu, where a0 “ 1,

and ai ą ai`1 for all i “ 1, . . . , n´ 1. The instantaneous cost of choosing at “ ai is κpaiq.
As in the main model, we can write the agent’s promised utility process as

dWt “ γWt dt ´ dCt ` λtp dYt ´ dŶtq ` Zt dBt

where Zt is a sensitivity process, just as in [4.2]. Incentive compatibility is now charac-
terised as requiring Zt ě λtσ0 “ atλ0σ0.

Now, consider the change of variables as follows: Let σi :“ aiσ0 and λ :“ λ0, and
define the function ρpσiq :“ κpaiq, so that for all t ě 0 we have λtσ0 “ λσt. But the right
hand side is precisely the model studied in the paper, and the cost of controlling λt is
exactly the cost of changing σt.

Thus, the evolution of promised utility in both models is the same, as are the
principal’s costs, which implies that the principal’s value function is identical in both
models. It is now easy to show that the optimal contract, as a function of Wt, is also
identical, ie, the payment boundary is identical.

It is useful to see how to implement the optimal contract, given that λt is changing
over time. We define Mt “ Wt{λ0. Then, we may write the evolution of M as

dMt “ γMt dt ´ λ´1
0 dCt ` atσ0

“σt

dBt

which is exactly as in [7.1]. The stock price is St “ Et
“şτ

t
e´rps´tqλ´1

0 dCs

‰

, and it is easy to
see that this is the same stock price as in the main model where σt is controlled. Similarly,
we consider bonds that have a coupon payment of µ ´ pγ ´ rqMt, so that bond price is
Dt “ Et

“şτ

t
e´rps´tqrµ ´ pγ ´ rqMss ds

‰

. Because the stock and bond prices are the same
as in the main model, and the evolution of cash reserves is the same, both stock and bond
prices are deterministic functions of cash reserves, and these functions satisfy the same
boundary value problems as they do for the main model.

In the implementation, let the agent own a fraction λ0 of the stock, the principal
hold a fraction 1´λ0 of the stock, and all the debt, ie, the bonds, so that coupon payments
on the bond are paid to the principal. Thus, the properties of the implementation and all
subsequent results remain the same.

G. Proof of Comparison Principle in Theorem 5

We will provide here a proof of the Comparison Principle in Theorem 5. We begin with
some preliminaries.
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The subsolution property for [A.1] requires that for any test function ϕ

rϕpxq ´ γxϕ1
pxq ´ Hpϕ2

pxqq ď 0 or ϕ1
pxq ` η ě 0[G.1]

while the supersolution requires both inequalities to hold simultaneously, ie,

rϕpxq ´ γxϕ1
pxq ´ Hpϕ2

pxqq ě 0 and ϕ1
pxq ` η ě 0[G.2]

where the function H is defined in [A.2].

Remark G.1. If u is a classical, C2, solution of [A.1], then it is a viscosity solution.
This is because of the classical fact that if u ´ ϕ attains a local minimum at x0 with
upx0q “ ϕpx0q, then u1px0q “ ϕ1px0q and u2px0q ě ϕ2px0q. Because H is nonincreasing
in the second order derivative, we have

Hpx0, ϕ
2
px0q, ϕ1

px0q, ϕpx0qq ě Hpx0, u
2
px0q, u

1
px0q, upx0qq “ 0[G.3]

Similar calculation hold for the subsolution property.

Lemma G.2. Any supersolution V to [A.1] is concave and, therefore, continuous, differ-
entiable almost everywhere with right derivative, V 1px`q, and left derivative, V 1px´q,
both existing at all points, In addition, V 1px`q and V 1px´q are nonincreasing in x, and
satisfy V 1px`q ď V 1px´q.

Proof. Let V be a supersolution to [A.1]. To establish the concavity of V , it is sufficient
to show, by Oberman (2007, Theorem 1), that for any smooth test function ϕ such that
0 “ V pxq ´ϕpxq “ minyě0pV pyq ´ϕpyqq, we have ϕ2pxq ď 0. The supersolution property
in [G.2] requires that we have

rϕpxq ´ γxϕ1
pxq ´ max

σPΣ,zěλσ

“

1
2
z2ϕ2

pxq ` µ ´ ρpσq
‰

ě 0[G.4]

If ϕ2pxq ą 0, then maxzěλσ

“

1
2
z2ϕ2pxq ` µ ´ ρpσ

‰

“ 8 for any choice of σ P Σ, which
contradicts the posited supersolution property of V . The other properties are classically
known for concave functions.

We introduce the notion of strict viscosity solutions.

Definition G.3. A lower (respectively upper) semicontinuous function u is a strict super
(respectively sub) solution if for all smooth functions ϕ such that u ´ ϕ has a local
minimum (respectively maximum) at x0 with upx0q “ ϕpx0q, we have up0q ě ε ą 0

(respectively up0q ď ´ε ă 0) and Hpx0, ϕpx0q, ϕ
1px0q, ϕ

2px0qq ě ε ą 0 (respectively
Hpx0, ϕpx0q, ϕ1px0q, ϕ

2px0qq ď ´ε ă 0), where ε ą 0 is independent of x0.
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To establish the comparison result, we follow a method initiated in Soner (1986a,b)
and applied later to singular control problems in Alvarez (1994), David, Panas, and
Zariphopoulou (1993), and Benth, Karlsen, and Reikvam (2001), and adapt useful tech-
niques from Benth, Karlsen, and Reikvam (2001). The main tool is the existence on a
strict supersolution. In our case, the candidate is

V̄ pxq “ pµ ` εq{r ´ pη ´ εqx[G.5]

Because H is strictly increasing in Γ, it is straightforward to verify the following in a
viscosity sense;

$

’

’

&

’

’

%

rV̄ ´ µ ´ γxV̄ 1 ´ HpV̄ 2q ě ε ą 0

V̄ 1pxq ` η “ ε ą 0

V̄ p0q ą 0

[G.6]

V̄ is called a strict viscosity supersolution, because all the above inequalities are strict.

Lemma G.4. For any supersolution V of [A.1] and any θ P p0, 1s, Vθ :“ p1 ´ θqV ` θV̄

is a strict supersolution of [A.1], where V̄ is defined in [G.5]

Proof. Let ϕ and ϕ̄ be second order differentiable test functions for V and V̄ , respectively,
at x0. Then, ϕθ :“ p1 ´ θqϕ ` θϕ̄ yields is a test function for Vθ. Because H is a convex,
we have

rϕθ ´ γx0ϕ
1
θ ´ Hpϕ2

θq

ě p1 ´ θq rrϕ ´ γx0ϕ
1
θ ´ Hpϕ2

qs ` θ
“

rϕ̄ ´ γx0ϕ̄
1
´ Hpϕ̄2

q
‰

ě θε ą 0

where the last inequality above is because rϕθpx0q ´ γxϕ1
θ ´ Hpϕ̄2px0qq ě ε ą 0. Similar

strict inequalities for the gradient constraint and the boundary condition hold because of
linearity of these terms.

Lemma G.5. Let V be a supersolution to [A.1]. Then, there exists K ě 0 such that
V pxq ě K ´ ηx. Furthermore, for any ε ą 0 and θ P p0, 1q, Vθ :“ p1 ´ θqV ` θV̄ ě

K̄ ´ pη ´ εqx for some K̄ ą 0.

Proof. By Lemma G.2 and [G.2], V 1px˘q ` η ě 0 for all x ą 0. By the properties of
V 1px˘q in Lemma G.2, we conclude that V is absolutely continuous with respect to
Lebesgue measure and therefore, by the second inequality in [G.2],

V pxq “ V p0`q `

ż x

0

V 1
py`q dy ě V p0`q ´ ηx
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To show the bounds for a strict supersolution, notice that by Lemma G.4, p1 ´ θqV ` θV̄

is a strict supersolution. Moreover, because V pxq ě K ´ ηx, it follows that Vθpxq ě

K̄ ´ p1 ´ εqηx for some K̄, which proves the claim.

The next two lemmas are crucial in the proof of our Comparison Principle.

Lemma G.6. Let v and V be respectively, upper and lower semicontinuous and further
assume that vpxq´V pyq´ α

2
|x´y|2 attains its local maximum at an interior point px˚, y˚q.

Then, there exist real numbers X and Y such that pαpx˚, y˚q, Xq and pαpx˚, y˚q, Y q are a
superjet and a subjet of v and V , respectively, and X ď Y .

Intuitively, each test function ϕ for a lower-semicontinuous function u at x0 in
Definition A.2 induces a subjet given by pϕ1px0q, ϕ2px0qq. For a more formal definition of
sub- and superjets, see Crandall, Ishii, and Lions (1992).

Proof. The existence of real numbersX and Y such that pαpx˚, y˚q, Xq and pαpx˚, y˚q, Y q

are a superjet and a subjet of v and V , respectively is a direct result of Crandall, Ishii, and
Lions (1992, Theorem 3.2). In addition, Crandall, Ishii, and Lions (1992, Theorem 3.2)
yields the inequality

A :“

˜

X 0

0 ´Y

¸

ď 3α

˜

1 ´1

´1 1

¸

:“ Â

where the above inequality is understood in the order induced by the cone of positive
definite matrices. Specifically, letting 1 “ p1, 1q, we have X ´ Y “ 1A1J ď 1Â1J “ 0,
which completes the proof.

Lemma G.7. Let B ą 0 and v and V : r0,8q Ñ R be, respectively, upper and lower
semicontinuous functions. Set M :“ maxxPr0,Bstvpxq ´ V pxqu ě 0. Further, for α ą 0,
set Mα :“ maxx,yPr0,Bs2tvpxq ´ V pyq ´ α

2
px´ yq2u, and let pxα, yαq be a maximiser. Then,

up to a subsequence, and as α Ñ 8, we have pxα, yαq Ñ px̂, x̂q, α|xα ´ yα|2 Ñ 0, and
limαÑ8 Mα “ M , where M “ vpx̂q ´ V px̂q.

Proof. The proof follows from Crandall, Ishii, and Lions (1992, Lemma 3.1).

We are now ready to prove Theorem 5.

Proof of Theorem 5. We only need to show the comparison result for a subsolution and
a strict supersolution. To see this, notice that for any supersolution V , by Lemma G.4,
Vθ :“ p1 ´ θqV ` θV̄ , θ P p0, 1s, is a strict supersolution, with V̄ as in [G.5]. If v ď Vθ
holds for each θ P p0, 1s, by sending θ Ñ 0, we obtain v ď V . Therefore, without loss in
generality, we assume that V is a strict supersolution such that V pxq ě K̄ ´ pη ´ εqx for
some K̄ ą 0 and all ε ą 0, as in Lemma G.5.
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Set M :“ supxPr0,8qtvpxq ´ V pxqu. If M ď 0, we obtain vpxq ď V pxq for all x ě 0

and the desired inequality. Therefore, for the rest of proof, we assume that M ą 0 and
find a contradiction.

By assumption, vpxq ď K ´ ηx, which implies vpxq ´ V pxq ď K ´ K̄ ´ εx, and
thus, lim supxÑ8 vpxq ´ V pxq “ ´8. Therefore, M “ supxPr0,Bstvpxq ´ V pxqu for some
B ě 0 sufficiently large such that vpBq ´ V pBq ă 0. On the other hand, since the v and
V are sub and super solutions, respectively, we have vp0q ď 0 and V p0q ě 0. Therefore,
vp0q ´ V p0q ď 0 and M is attained at an interior point x̂ P p0, Bq.

Let Mα :“ maxx,yPr0,Bs2tvpxq ´ V pyq ´ α
2

px´ yq2u and denote a maximum point of
Mα by pxα, yαq. By Lemma G.7, we have limαÑ8 xα “ limαÑ8 yα “ x̂ and x̂ P p0, Bq is
a maximizer of vpxq ´ V pxq.

On the other hand, by Lemma G.6, pαpxα ´ yαq, Xαq a superjet for v at xα and
pαpxα ´ yαq, Yαq is a subjet for V at yα with Xα ď Yα. Note that as a supersolution, V is
concave and, therefore, Xα ď Yα ď 0 and we have HpYαq ă 8. Because H is increasing,
we have HpXαq ď HpYαq. From the definition of strict viscosity supersolution, we have

rV pyαq ´ γαyαpxα ´ yαq ´ HpYαq ě ε ą 0[G.7]

αpxα ´ yαq ` η ą ε ą 0[G.8]

On the other hand, by the definition of subsolution, we have

min rrvpxαq ´ γαxαpxα ´ yαq ´ HpXαq, αpxα ´ yαq ` ηs ď 0[G.9]

Since αpxα ´ yαq ` η ą ε ą 0 holds, the above inequality reduces to

rvpxαq ´ γαxαpxα ´ yαq ´ HpXαq ď 0[G.10]

From [G.7] and [G.10], we obtain

r
`

vpxαq ´ V pyαq
˘

´ γα|xα ´ yα|
2

` HpYαq ´ HpXαq ď ´ε ă 0[G.11]

Because H is increasing, we have HpYαq ´ HpXαq ě 0. Additionally, Mα “ vpxαq ´

V pyαq ´ α
2

|xα ´ yα|2. Therefore,

rMα ` αpr{2 ´ γq|xα ´ yα|
2

ď ´ε ă 0.[G.12]

It follows from Lemma G.7 that Mα Ñ M and α|xα ´ yα|2 Ñ 0 as α Ñ 8, which yields
rM ď ´ε ă 0, which contradicts our assumption that M ą 0, completing the proof.
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H. Regularity of the Value Function

We begin by showing that F is a continuous and concave solution of [A.1].

H.1. Continuity and Concavity of F

Priori to establishing the main results, we need the following definition.

Definition H.1 (Semicontinuous envelopes). The lower- and uppersemicontinuous enve-
lope of a function ϕ are defined, respectively by

[H.1] ϕ˚pxq :“ lim inf
x1Ñx

ϕpx1
q and ϕ˚

pxq :“ lim sup
x1Ñx

ϕpx1
q

If ϕ is locally bounded, then ϕ˚ and ϕ˚ are locally bounded.

We use semicontinuous envelopes of F in the proof of Lemma H.3. Therefore,
we need to first show F is locally bounded. To maintain consistency with the notation
in Appendix A.2, we use x instead of w for the promised utility process, which can be
written as dXt “ γXt dt´ dCt ´ Zt dBt under truthtelling, and where Zt ě λσt ensures
incentive compatibility.

Lemma H.2. For all x ě 0, we have ´x ď F pxq ď upxq ď
µ
r

´ x, where upxq is the C2

solution of

[H.2] min
!

ru ´ µ ´ 1
2
σ2
nu

2
´ γwu1, u1

` 1
)

“ 0, up0q “ 0

where σn “ minΣ. In particular, F p0q “ 0.

Proof. Because µ ´ ρpσq ď µ for all σ P Σ, we have

[H.3] F pxq ď sup
ΞPIC

EΞx

„
ż τ

0

e´rt
´

µ dt ´ dCtq

¯

ȷ

Recall that the set IC consists of all admissible Ξ “ pZt, σt, Ctq such that Zt ě σtλ,
σt P Σ, andCt is an increasing cádlág process withC0´ “ 0. In particular, IC is included
inside the set ICn of all admissible pZt, σt, Ctq such that Zt ě σnλ, σt “ σn, and Ct is
an increasing cádlág process with C0´ “ 0. Therefore,

[H.4] F pxq ď sup
ΞPIC

EΞx

„
ż τ

0

e´rt
`

µ dt ´ dCt

˘

ȷ

ď sup
ΞPICn

EΞx

„
ż τ

0

e´rt
`

µ dt ´ dCt

˘

ȷ

The problem in the right-hand side above is a single regime problem where σ “ σn, and
the cost of monitoring is 0; this is the problem studied in DeMarzo and Sannikov (2006)
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and the value function for this problem is u. Thus,

[H.5] F pxq ď upxq “ sup
ΞPICmin

EΞx

„
ż τ

0

e´rt
`

µ dt ´ dCt

˘

ȷ

which completes the proof.

Lemma H.3. F is a continuous viscosity solution of [A.1].

Proof. We shall show that F˚ (respectively F ˚), the lower- (respectively upper-) semi-
continuous envelope of F , is a supersolution (respectively subsolution) of [A.1]. By
definition, F˚ is lower semicontinuous and F ˚ is upper semicontinuous. By Lemma H.2,
we have ´x ď F˚ ď F ď F ˚ ď µ{r ´ x. Therefore, the conditions of the Comparison
Principle, Theorem 5, hold and we have F ˚ ď F˚, resulting in the equality F ˚ “ F˚ “ F .
In particular, it implies that F is continuous. We start by showing F˚ is a supersolution.

(i) Let x ą 0. Consider a smooth test function ϕ such that 0 “ F˚pxq ´ ϕpxq “

minyě0pF˚pyq ´ ϕpyqq. We shall show that,

[H.6] ´Hpϕ2
pxqq ´ γxϕ1

pxq ` rϕpxq ě 0 and 1 ` ϕ1
pxq ě 0

We first establish that 1 ` ϕ1pxq ě 0. By the definition of F˚, there exists a sequence pynq

such that limnÑ8 F pynq “ F˚pxq. By the dynamic programming principle, Touzi (2013,
Theorem 3.3), we have

[H.7] F pynq ě sup
Ztěσtλ
σtPΣ,C

EΞyn

„
ż ν

0

e´rt
´

pµ ´ ρpσtqq dt ´ dCt

¯

` e´rνF˚pXνq

ȷ

where ν is an arbitrary stopping time bounded by τ and Ξ “ pZt, σt, Ctq P IC. Note
that F˚pXνq ´ϕpXνq ě minyě0pF˚pyq ´ϕpyqq “ 0. Therefore, F˚pXνq ě ϕpXνq. If we set
ηn :“ F pynq ´ ϕpynq, we can write [H.7] as

[H.8] ϕpynq ` ηn ě sup
Ztěσputqλ
utPU,C

EΞyn

„
ż ν

0

e´rt
´

pµ ´ ρpσtqq dt ´ dCt

¯

` e´rνϕpXνq

ȷ

By applying Itô’s formula to e´rνϕpXνq, we obtain

ηn ě sup
Ztěλσt
σtPΣ,C

EΞyn

„
ż ν

0

e´rt
´

pµ ´ ρpσtq ` 1
2
Z2

t ϕ
2
pXtq

` γXtϕ
1
pXtq ´ rϕpXtqq dt ´ p1 ` ϕ1

pXtqq dCt

¯

ȷ

[H.9]

Let us assume, by way of contradiction, that 1 ` ϕ1pxq ă 0. Then, there exists
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ε-neighborhood of x, denoted by Nεpxq, such that 1 ` ϕpyq ă 0 for y P Nεpxq. We can
choose ε sufficiently small so that 0 R Nεpxq. Set Lε :“ ´ supyPNεpxq 1 ` ϕpyq ă 0, and
νn :“

?
ηn ^ inftt ě 0 : Xt R Nεpxq, X0 “ ynu. For all n sufficiently large, we have

yn P Nεpxq and, therefore, 1 ` ϕ1pynq ă 0. In addition, the definition of νn implies that
Xt P Nεpxq and, therefore, 1 ` ϕ1pXtq ă ´Lε ă 0 for all t ă νn. Note that [H.8] holds
for any choice of Ξ “ pZt, σt, Ctq P IC that also satisfies promise keeping, whereby
EΞyn

“şν

0
e´γt dCt

‰

“ yn. In particular, [H.8] holds if we take σt ” σ for an arbitrary σ P Σ,
Zt ” λσ, and Cn

t ” 0 for t ă νn and Cn
νn “ ´Xνn , provided that Cn satisfies promise

keeping.
We can directly verify promise keeping for this specific choice of Cn and τ “ νn

by evaluating EΞynr
şτ

0
e´γt dCn

t s “ EΞynre´γνnXνns. Because Cn
t ” 0 for t ă νn, e´γνnXνn “

yn ` λσ
şνn
0
e´γs dBs. Therefore, by the martingale property of the stochastic integral,

EΞynr
şτ

0
e´γt dCn

t s “ yn ` EΞynrλσ
şνn
0
e´γs dBss “ yn, and so promise keeping holds.

Therefore,

ηn ěEΞyn

„
ż νn

0

e´rt
´

`

µ ´ ρpσq `
z2

2
ϕ2

pXtq ` γXtϕ
1
pXtq ´ rϕpXtq

˘

dt

´ p1 ` ϕ1
pXtqq dCn

t

¯

ȷ

ěEΞyn

„
ż νn

0

e´rt
´

µ ´ ρpσq `
z2

2
ϕ2

pXtq ` γXtϕ
1
pXtq ´ rϕpXtq

¯

dt

` Lε

ż νn

0

e´rt dCn
t

ȷ

[H.10]

In the above, we used the bound Lε ą 0 on ´1 ´ ϕ1pyq over Nεpxq. By the definition
of Cn

t , we have EΞynr
şνn
0
e´rt dCn

t s “ EΞynre´rνnXνns. Because r ă γ, EΞynre´rνnXνns ě

EΞynre´γνnXνns “ yn, and we can write

[H.11] ηn ě EΞyn

„
ż νn

0

e´rt
´

µ ´ ρpσq `
z2

2
ϕ2

pXtq ` γXtϕ
1
pXtq ´ rϕpXtq

¯

dt ` ynLε

ȷ

Note that ε is independent of n. By sending n Ñ 8 on both sides of the above inequality,
and applying the dominated convergence theorem on the right-hand side, we obtain
0 ě xLε ą 0, which is a contradiction. Thus, it must be that 1 ` ϕ1pxq ě 0.

We now show that ´Hpϕ2pxqq ´ γxϕ1pxq ´ µ ` rϕpxq ě 0. Towards this end, we
note that [H.8] holds for the choice of a constant σt ” σ P Σ, with Zt ” λσ and Cn

t as
above. Consider the stopping time ν “ ν̄n :“ n

n`1
νn. Because ν̄n ă νn, Cn

t ” 0 on t ď ν̄n
and we can write

[H.12] ηn ě EΞyn

„
ż ν̄n

0

e´rt
´

µ ´ ρpσq `
z2

2
ϕ2

pXtq ` γXtϕ
1
pXtq ´ rϕpXtq

¯

dt

ȷ
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Let us denote by ω a generic path of process X, so that

[H.13] gpyn, ωq :“

ż ν̄npωq

0

e´rt
´

pµ ´ ρpσq `
z2

2
ϕ2

pωtq ` γωtϕ
1
pωtq ´ rϕpωtq

¯

dt

By the mean value theorem (for integrals), for any sample path ω, there exists t̄pωq P

p0, ν̄npωqq, such that

gpyn, ωq “ ν̄npωqe´rt̄pωq
´

µ̄pβq `
z2

2
ϕ2

pωt̄pωqq ` γωt̄pωqϕ
1
pωt̄pωqq ´ rϕpωt̄pωqq

¯

[H.14]

By a measurable selection theorem such as Graf (1979, Theorem 2.1), the function
t̄ : ω Ñ p0,8q can be chosen to be measurable.

Notice that for each ω, limnÑ8pηnq´1{2gpyn, ωq exists and is equal to µ ´ ρpσq `
z2

2
ϕ2pxq ` γxϕ1pxq ´ rϕpxq. Here we have used, t̄pωq ă ν̄npωq, and

lim
nÑ8

t̄pωq ď lim
nÑ8

ν̄npωq ď lim
nÑ8

?
ηn “ 0

as well as the continuity of sample path ω, limnÑ8 yn “ x, the continuity of sample paths
of X on the initial point yn, and limnÑ8 ν̄n{

?
ηn “ 1. On the other hand, pηnq´1{2gpyn, ωq

is bounded uniformly on ω. Therefore, by the Dominated Convergence Theorem, we
have

[H.15] η´1{2
n EΞynrgpyn, ωqs “ µ ´ ρpσq `

z2

2
ϕ2

pxq ` γxϕ1
pxq ´ rϕpxq

Dividing both sides of [H.12] by ?
ηn and sending n Ñ 8, we obtain

[H.16] 0 ě µ ´ ρpσq ` 1
2
z2ϕ2

pxq ` γxϕ1
pxq ´ rϕpxq

where σ P Σ and z ě λσ are arbitrary. Taking supremum over σ P Σ and z ě λσ, we
obtain

[H.17] 0 ě sup
σPΣ
zěλσ

!z2

2
ϕ2

pxq ` µ ´ ρpσq

)

` γxϕ1
pxq ´ rϕpxq

or equivalently ´Hpϕ2pxqq ´ γxϕ1pxq ` rϕpxq ě 0, as desired.
(ii) At the boundary point x “ 0, we have F p0q “ 0. We shall show that F˚p0q “ 0.

To see this, notice that F˚ ď F implies F˚p0q ď 0. Now by Lemma H.2, F˚p0q “

lim infyÑ0 F pyq ě limyÑ0p´yq “ 0, which establishes the claim.
(iii) Consider a smooth test function ϕ such that 0 “ F ˚pxq ´ϕpxq “ maxyě0pF

˚pyq

´ ϕpyqq. Without loss of generality, we can assume that x is the unique maximizer of
F ˚pyq ´ ϕpyq, ϕpyq ą F ˚pyq for y ‰ x. We shall show that at least one of the inequalities

57



below holds:

0 ě ´Hpϕ2
pxqq ´ γxϕ1

pxq ` rϕpxq or 0 ě 1 ` ϕ1
pxq[H.18]

We assume that both inequalities above are violated and provide a contradiction with the
dynamic programming principle, Touzi (2013, Theorem 3.3), which requires that

[H.19] F pynq ď sup
Ztěσputqλ

utPU
C: nondecreasing

EΞyn

„
ż ν

0

e´rt
´

pµ ´ ρpσtqq dt ´ dCtq

¯

` e´rνF ˚
pXνq

ȷ

Towards a contradiction, we assume that there exists ε-neighborhood of x, Nεpxq, such
that for all y P Nεpxq, we have

[H.20] 1 ` ϕ1
pyq ą ε and ´ Hpϕ2

pyqq ´ γyϕ1
pyq ` rϕpyq ą ε

Because BNεpxq, the boundary of Nεpxq, is a finite set, the maximum of F ˚ ´ ϕ on
BNεpxq is attained and, because x is the unique global maximizer of F ˚ ´ ϕ on Nεpxq, the
maximum on BNεpxq is negative. Set η :“ ´maxBNεpxq F

˚pyq ´ϕpyq ą 0. As in to part (i),
we consider a sequence pynq such that limnÑ8 yn “ x and limnÑ8 F pynq “ F ˚pxq “ ϕpxq.
Let νn :“ inftt ě 0 : Xt R Nεpxq, X0 “ ynu. Then, by applying Itô’s formula on
e´rνnϕpXνnq

EΞyn
“

e´rνnϕpXνnq
‰

“ ϕpynq ` EΞyn

„
ż νn

0

e´rt

ˆ

´Z⊺
t Zt

2
ϕ2

pXtq ` γXtϕ
1
pXtq

´ rϕpXtq

¯

dt ´ ϕ1
pXtq dCtq

˙ȷ[H.21]

Therefore, for any arbitrary σt, Zt, and Ct with Zt ě λσt, we have

EΞyn

„
ż νn

0

e´rt
`

pµ ´ ρpσtqq dt ´ dCt

˘

` e´rνnϕpXνnq

ȷ

“ ϕpynq ` EΞyn

„
ż νn

0

e´rt
´

`

µ ´ ρpσtq `
Z⊺

t Zt

2
ϕ2

pXtq ` γXtϕ
1
pXtq

´ rϕpXtq
˘

dt ´ p1 ` ϕ1
pXtqq dPt

¯

ȷ

ă ϕpynq

[H.22]

By definition of νn and using [H.20], we have

[H.23] max
!

µ ´ ρpσtq `
Z⊺

t Zt

2
ϕ2

pXtq ` γXtϕ
1
pXtq ´ rϕpXtq,´p1 ` ϕ1

pXtqq

)

ă ´ε
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Combining the above inequalities with [H.22] yields

EΞyn

„
ż νn

0

e´rt
`

pµ ´ ρpσtqq dt ´ dCt

˘

` e´rνnϕpXνnq

ȷ

ď ϕpynq ´ εEΞyn

„
ż νn

0

e´rt
´

dt ` dCt

¯

ȷ

ă ϕpynq

[H.24]

Note that because Xν P BNεpxq, we have ϕpXνnq ě F ˚pXνnq ` η. Set ηn :“ ϕpynq ´

F pynq. Therefore, from [H.22], we obtain

[H.25] EΞyn

„
ż νn

0

e´rt
`

pµ ´ ρpσtqq dt ´ dCt

˘

` e´rνnpF ˚
pXνnq ` ηq

ȷ

ď F pynq ` ηn

Note that η is independent of yn. Thus, for n sufficiently large, we have εn :“ EΞynre´rνnsη´

ηn ą 0 and

[H.26] EΞyn

„
ż νn

0

e´rt
`

pµ ´ ρpσtqq dt ´ dCt

˘

` e´rνnF ˚
pXνnq

ȷ

ď F pynq ´ εn

Because the σt, Ct, and Zt ě λσt are arbitrary, we have

sup
Ztěλσt
σtPΣ

Cnondecreasing

EΞyn

„
ż νn

0

e´rt
`

pµ ´ ρpσtqq dt ´ dCt

˘

` e´rνnF ˚
pXνnq

ȷ

ď F pynq ´ εn ă F pynq

[H.27]

which contradicts [H.19].
(iv) For the boundary point x “ 0, we shall show F ˚p0q ď 0. By Lemma H.2,

F pxq ď upxq for all x ě 0. Because u is a continuous function with up0q “ 0, we have
F ˚p0q ď up0q “ 0.

Corollary H.4. The value function F is concave.

Proof. By combining Lemma G.2, Theorem 5, Lemma H.2, and Lemma H.3, we imme-
diately obtain the concavity of F . Note that by Oberman (2007, Theorem 1), all subjets
of F are concave.

H.2. Smoothness of F

In this section, we show that the value function is C2. First, we need to have an improved
version of Lemma H.2.
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Lemma H.5. For all x ě 0, we have

[H.28] ´x ă u0pxq ď F pxq ď unpxq ď µ{r ´ x

where u0 and un are C2 solutions of

[H.29] min
!

´ 1
2
λ2σ2

ju
2

´ γxu1
´ µ ` ru, u1

` 1
)

“ 0, up0q “ 0,

where j P t0, nu. In addition, both functions u0 and un are C2.

Proof. The function un is the value function where ρpσnq “ 0. This is the value function
from DS, is C2, and clearly satisfies F pxq ď unpxq ď µ{r ´ x. The function u0 is DS’s
value function when σ “ σ0, and so is C2. It corresponds to the case where no monitoring
is allowed, and so it follows that ´x ă u0pxq ď F pxq, which proves the claim.

We recall that the value function F is the concave viscosity solution of [A.1].
As a result of concavity, the right and left derivatives F 1px`q and F 1px´q, exist, are
nonincreasing, and satisfy F 1px´q ě F 1px`q ě ´1. When F 1px`q ą ´1, then F must
satisfy

[H.30] 0 “ ru ´ xγu1
´ Hpu2

q

Lemma H.6. Set I :“ tx : F 1px´q ą ´1u. Then, one of the following holds:
(i) there exists x‹ P p0,8q such that I “ r0, x‹s and F 1px‹`q “ ´1, or
(ii) I “ r0,8q and F has a asymptote with slope ´1.

Proof. Because µ ą 0, we have F 1p0`q ą ´1. The concavity of F implies that x ÞÑ

F 1px˘q is decreasing and F 1px´q ě F 1px`q. The viscosity solution property of F implies
that F 1px`q ě ´1 for all x ě 0. If there exist a point, x‹, such that F 1px‹`q “ ´1, then
F 1px˘q “ ´1 for x ą x‹ and thus I “ r0, x‹s, and so (i) holds. Otherwise, we have
F 1px`q ą ´1 for all x ě 0 and thus, I “ r0,8q. Then, by Lemma H.2, F has a asymptote
with slope ´1, and so (ii) holds.

In Lemma H.6, if (2) holds, we define x‹ :“ 8. Recall the definition of function H
in [A.2] and Lemma A.1. For the sake of the proof of the following theorem, we extend
H to R by

[H.31] H̃pΓq :“

#

HpΓq Γ ď 0

Hp0q ` H 1p0´qΓ Γ ą 0

Inheriting its properties from H, the function H̃ is convex, Lipschitz, and strictly increas-
ing. In particular, H̃ is invertible and we denote G :“ H̃´1. The function G is therefore
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concave, Lipschitz, and strictly increasing. We shall use these properties of G in the
proof of the following theorem.

Theorem 6. Let x‹ be as in Lemma H.6 and let x0 P p0, x‹s, with x0 ă 8. Then, the
second order ODE [H.30] with boundary condition up0q “ 0 and upx0q “ F px0q has a
solution in C2pr0, x0sq.

Proof. We first write equation [H.30], as an ODE:

[H.32] u2
“ Gpru ´ γxu1

q, up0q “ 0, upx0q “ F px0q

where G “ H̃´1 defined in [H.31]. Using Lemma H.3, one can easily verify that F
is a viscosity solution of [H.32] on r0, x‹s. Note that boundary value problem [H.32]
is a Dirichlet problem that satisfies the conditions of Crandall, Ishii, and Lions (1992,
Theorem 3.3). Therefore, it has a unique continuous viscosity solution. Because a classical
solution is also a viscosity solution, it suffices to show that [H.32] has a classical solution
in C2pr0, x0sq.

To show the existence of a classical solution to [H.32], we establish the Schauder
estimates, which relies on a priori estimates and the Schauder fixed point theorem; see,
for example, Gilbarg and Trudinger (2001, Chapter 11) for more details. By Gilbarg and
Trudinger (2001, Theorem 11.4), such a classical solution exists if we show that for any
β P r0, 1s, if uβ is a classical solution of

[H.33] u2
β “ βGpruβ ´ γxu1

βq, uβp0q “ 0, uβpx0q “ βF px0q

then supt|uβpxq| ` |u1
βpxq| : β P r0, 1s, x P r0, x0su ă K. In the following, the constant

K can be different line by line.
First, we show that supt|uβpxq| : β P r0, 1s, x P r0, x0su ă K. Consider the

boundary value problems

[H.34] u2
˘ “ ¯|Gpru˘ ´ γxu1

˘q|, u˘p0q “ 0, u˘px0q “ ˘|F px0q|

Continuous viscosity solutions u˘ to [H.34] exist by Crandall, Ishii, and Lions (1992,
Theorem 5.1). More over, by Lipschitz continuity of G, the boundary value problems for
u˘ satisfy comparison principle, i.e., Crandall, Ishii, and Lions (1992, Theorem 3.3). Note
that by Crandall, Ishii, and Lions (1992, Theorem 5.1), continuous viscosity solutions
u˘ exist. More over, by the Lipschitz continuity of G, the boundary value problems for
u˘ satisfy the comparison principle, i.e., Crandall, Ishii, and Lions (1992, Theorem 3.3).
In particular, because uβ satisfies [H.33], we have

[H.35] 0 “ ´u2
β ` βGpruβ ´ γxu1

βq ě ´u2
β ´ |Gpruβ ´ γxu1

βq|
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and uβpx0q “ βF px0q ď |F px0q|. Thus, uβ is a subsolution to the boundary value problem
in [H.34] for u`. Applying the comparison principle, we obtain uβ ď u`. Similarly,

[H.36] 0 “ ´u2
β ` βGpruβ ´ γxu1

βq ď ´u2
β ` |Gpruβ ´ γxu1

βq|

and uβpx0q “ βF px0q ě ´|F px0q| and, therefore, uβ ě u´. Because u˘ are continuous,
they are bounded on interval r0, x0s, independently of β and we have supt|uβpxq| : β P

r0, 1s, x P r0, x0su ď supxPr0,x0s |u˘pxq| ă 8.
Next, we establish uniform bounds for |u1

β| on r0, x0s. Let uβ be as described above.
By the mean value theorem, there exists xβ P p0, x0q, such that u1

βpxβq “ βF px0q{x0.
Integrating [H.33], we obtain

[H.37] u1
βpxq “ u1

βpxβq ` β

ż x

xβ

G
`

ruβpyq ´ γyu1
βpyq

˘

dy

Let I be the interval between xβ and x; we then have

|u1
βpxq| ď |u1

βpxβq| ` β

ˇ

ˇ

ˇ

ˇ

ż x

xβ

G
`

ruβpyq ´ γyu1
βpyq

˘

dy

ˇ

ˇ

ˇ

ˇ

ď β|F px0q{x0| ` β

ż

I

ˇ

ˇG
`

ruβpyq ´ γyu1
βpyq

˘ˇ

ˇ dy

[H.38]

Using the elementary inequality pa ` bq2 ď 2pa2 ` b2q, we find that

|u1
βpxq|

2
ď 2β2

ˆ

F 2px0q

x20
`

´

ż

I

ˇ

ˇG
`

ruβpyq ´ γyu1
βpyq

˘
ˇ

ˇ dy
¯2
˙

[H.39]

By the Cauchy-Schwartz inequality, for any integrable function f P RI , we have
ˆ
ż

I

fpyq dy

˙2

ď |x ´ xβ|

ż

I

|fpyq|
2 dy ď x0

ż

I

|fpyq|
2 dy

Because β P r0, 1s, we can write

[H.40] |u1
βpxq|

2
ď K ` K

ż

I

´

G
`

ruβpyq ´ γyu1
βpyq

˘

¯2

dy

where constant K does not depend on β. Because G is Lipschitz, we obtain the bound
ˇ

ˇG
`

ruβpyq ´ γyu1
βpyq

˘ˇ

ˇ ď KpGp0q ` |ruβpyq ´ γyu1
βpyq|q

ď Kp1 ` γy|u1
βpyq| ` r|uβpyq|q

ď Kp1 ` |u1
βpyq|q

[H.41]
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for some constantK that does not depend on β. The last inequality above is obtained from
the uniform boundedness of uβ. Once again, we apply the inequality pa` bq2 ď 2pa2 ` b2q

to find that
`

G
`

ruβpyq ´ γyu1
βpyq

˘˘2
ď Kp1 ` |u1

βpyq|2q. Therefore,

|u1
βpxq|

2
ď K

´

1 `

ż

I

|u1
βpyq|

2 dy
¯

Now, Grönwall’s inequality implies that |u1
βpxq| is bounded independently of β. This

completes the requirements of Gilbarg and Trudinger (2001, Theorem 13.8), which
provides for the existence of a second order continuous differentiable solution to [H.32].
Thus, F P C2pr0, x0sq for any finite x0 ď x‹. In particular, if x‹ “ 8, F P C2pr0,8qq.

It remains to show that for x‹ ă 8, F satisfies the C2-fit (high-contact) property at
x‹. First, we show C1-fit, ie, smooth pasting. Because F satisfies [H.32] at x‹, we have

[H.42] ´HpF 2
px‹

´qq ´ γx‹F 1
px‹

´q ` rF px‹
q “ 0

Consider a test function ϕ with superjet pβ, F 2px‹´qq, where β “ rF 1px‹´q ´ 1s{2 ď

F 1px‹´q. (Notice that β ă F 1px‹q if and only if F 1px‹q ą ´1.). By the subsolution
property, we have

[H.43] ´HpF 2
px‹

´qq ´ γx‹β ` rF px‹
q ď 0

Thus, we have

0 “ ´HpF 2
px˚

´qq ´ γx‹F 1
px‹

´q ` rF px‹
q by [H.42]

ď ´HpF 2
px˚

´qq ´ γx‹β ` rF px‹
q definition of β

ď 0 by [H.43]

which implies β “ F 1px˚´q “ ´1, and hence F 1px˚`q “ ´1, which establishes the
C1-fit property. Thus, we can rewrite [H.42] as

[H.44] ´HpF 2
px‹

´qq ` γx‹
` rF px‹

q “ 0

To establish the C2-fit property, consider a sequence tpβn, xnqu such that βn ă 0,
βn Ò 0, xn ą x‹, and xn Ó x‹. Let ϕnpxq “ F pxnq ` 1

2
βnpx ´ xnq2 ´ px ´ xnq be a test

function which yields a subjet p´1, βnq of F at xn. By the supersolution property of F ,
we must have

[H.45] ´Hpβnq ` γxn ` rF pxnq ě 0.
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By sending n Ñ 8, we obtain

[H.46] ´Hp0q ` γx‹
` rF px‹

q ě 0.

Thus, we find

0 “ ´HpF 2
px‹

´qq ` γx‹
` rF px‹

q by [H.44]

ě ´Hp0q ` γx‹
` rF px‹

q

ě 0 by [H.46]

where the first inequality is because F 2px‹´q ď 0 and H is strictly increasing. Thus,
F 2px‹´q “ 0, and in particular, F 2px‹q “ 0, ie, F is C2 at x‹, as claimed.

Notice that Theorem 6 does not rely on x‹ ă 8. In the next result, we provide a
necessary and sufficient condition for x‹ ă 8.

Proposition H.7. The payment boundary x‹ is finite if and only if γ ą r.

Proof. Assume that x‹ “ 8. Thus, for all x ě 0, F satisfies

[H.47] ´HpF 2
pxqq ´ γxF 1

pxq ` rF pxq “ 0.

Recall that F is concave and is bounded by ´x ď F pxq ď K´x for someK. This implies
that F has a slant asymptote with equation y “ ´x ` c for some c ą 0. In particular,
limxÑ8

F pxq

x
“ ´1 and limxÑ8 F

1pxq “ ´1. Dividing [H.47] by x and sending x Ñ 8, we
obtain

0 “ ´ lim
xÑ8

HpF 2pxqq

x
` γ ´ r[H.48]

where limxÑ8 HpF 2pxqq{x in [H.48] exists because the other two limits do. Therefore,
γ “ r ` limxÑ8 HpF 2pxqq{x. Because r ď γ, it must be that limxÑ8 HpF 2pxqq{x ě 0.
On the other hand, H takes values in r´8, µs, which implies limxÑ8 HpF 2pxqq{x ď 0.
Therefore, limxÑ8 HpF 2pxqq{x “ 0 and γ “ r.

If γ “ r, by Lemma H.5 we have F ď un. It can be shown that when γ “ r, the
payment boundary without monitoring (so, the DS model) is at infinity. Thus,Lpxq “

µ
r
´x

is a slant asymptote for un with unpxq ă Lpxq, and supxě0runpxq ´ Lpxqs “ 0.
If F has a payment boundary, x‹ ă 8, then, we have ´Hp0q ` rx‹ ` rF px‹q “ 0.

Because Hp0q “ µ, F px‹q “
µ
r

´ x‹, and so px‹, F px‹qq lies on Lpxq “
µ
r

´ x. Because F
is C2, F 2px‹q “ 0, F 1px‹q “ ´1, and F 1 ě ´1, we conclude that F pxq “ Lpxq for x ě x‹.
But F pxq ď unpxq ă Lpxq, which is a contradiction.
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I. Proof of Proposition A.4

Proof. Recall that the dynamics of the process Mt is given by the stochastic differential
equation dMt “ γMt dt` σ̂pMtq dBt ´λ´1 dCt, whereMt ď m‹ for all t ě 0, τ “ inftt ě

0 :Mt “ 0u, and Ct “
şτ

0
1pMs “ m‹q dCs.

First consider the subsolution L v ď 0. By applying Itô’s formula on vpMτ q and
following the same steps as the proof of Proposition E.6, we obtain

e´rτvpMτ q “ vpmq `

ż τ

0

e´rs
´

1
2
σ̂2

pMsqv
2
pMsq ` γMsv

1
pMsq ´ rvpMsq

¯

´ L vě0

ds

´ λ´1

ż τ

0

e´rsv1
pMsq dC

˚
s `

ż τ

0

e´rsv1
pMsqσ̂pMsq dBs

[I.1]

By the subsolution property of v in [A.4], we have

e´rτvpMτ q ě vpmq ´ λ´1

ż τ

0

e´rsv1
pMsq dC

˚
s `

ż τ

0

e´rsv1
pMsqσ̂pMsq dBs[I.2]

From the boundary condition vp0q ď α in [A.4] and because v1 and σ̂ are bounded, we
obtain

vpmq ď e´rτα ` λ´1 E
„
ż τ

0

e´rsv1
pMsq dC

˚
s

ȷ

By the properties of the payment process C˚ (which is a local time) and because v1pm‹q ď

β in [A.4], we have

vpmq ď e´rτα ` v1
pm‹

qλ´1 E
„
ż τ

0

e´rs dC˚
s

ȷ

ď e´rτα ` βλ´1 E
„
ż τ

0

e´rs dC˚
s

ȷ

Next, using the fact that V is a supersolution, ie [A.5] holds, and by repeating the arguments
above for v, we obtain the inequality

V pmq ě e´rτα ` V 1
pm‹

qλ´1 E
„
ż τ

0

e´rs dC˚
s

ȷ

ě e´rτα ` βλ´1 E
„
ż τ

0

e´rs dC˚
s

ȷ

Combining the inequalities establishes the proposition.
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