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Introduction
Infinite-Time Singularities of Lagrangian Mean Curvature Flow

Subject: Lagrangian mean curvature flow - the name given to the fact that in a
Calabi-Yau manifold M, the class of Lagrangian submanifolds L ⊂ M is preserved
by mean curvature flow: a popular volume-decreasing flow of submanifolds.

Our Aim: To understand singularities of Lagrangian mean curvature flow in the
Thomas-Yau semistable case, explicitly infinite-time singularities corresponding to
a decomposition of a Lagrangian L into two special Lagrangians L1 ∪ L2.
Reason: We hope that Lagrangian mean curvature flow may be used to prove the
Thomas-Yau conjecture, that Lagrangians can be represented (in a suitable class)
by unions of special Lagrangians - minimal Lagrangian submanifolds. However,
singularities occur, so we must understand them.
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Preliminaries
Mean Curvature Flow

Mean curvature flow is the gradient descent for the volume functional of
submanifolds of Riemannian manifolds.

Let Nn be a smooth manifold, and Mm a smooth Riemannian manifold. A family
of immersions Ft : N

n → (Mm, g) is a mean curvature flow if

dF

dt
= H⃗,

where H⃗ is the trace of the vector-valued second fundamental form of the
embedding,

H⃗ := trace(g−1A⃗).

Since MCF decreases volume, one
might hope that the flow exists for all time and converges to a minimal submanifold:

Albert Wood (KCL) Infinite-Time Singularities of LMCF May 15, 2024 3 / 29



Preliminaries
Mean Curvature Flow

Mean curvature flow is the gradient descent for the volume functional of
submanifolds of Riemannian manifolds.
Let Nn be a smooth manifold, and Mm a smooth Riemannian manifold. A family
of immersions Ft : N

n → (Mm, g) is a mean curvature flow if

dF

dt
= H⃗,

where H⃗ is the trace of the vector-valued second fundamental form of the
embedding,

H⃗ := trace(g−1A⃗).

Since MCF decreases volume, one
might hope that the flow exists for all time and converges to a minimal submanifold:

Albert Wood (KCL) Infinite-Time Singularities of LMCF May 15, 2024 3 / 29



Preliminaries
Mean Curvature Flow

Mean curvature flow is the gradient descent for the volume functional of
submanifolds of Riemannian manifolds.
Let Nn be a smooth manifold, and Mm a smooth Riemannian manifold. A family
of immersions Ft : N

n → (Mm, g) is a mean curvature flow if

dF

dt
= H⃗,

where H⃗ is the trace of the vector-valued second fundamental form of the
embedding,

H⃗ := trace(g−1A⃗).

Since MCF decreases volume, one
might hope that the flow exists for all time and converges to a minimal submanifold:

Albert Wood (KCL) Infinite-Time Singularities of LMCF May 15, 2024 3 / 29



Preliminaries
Examples of Mean Curvature Flow

Shrinking Sphere in Rn:

dr

dt
= −n

r

=⇒ r =
√
R − 2nt.
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Preliminaries
Singularities of Mean Curvature Flow

Consider a mean curvature flow Ft : N → M, t ∈ [0,T ] for T the maximal time of
existence. If T <∞ then we say Ft has a finite-time singularity at T .

It may be
proven that

lim
t→T

sup
x∈N

|A(x , t)| = ∞.

To analyse the singularity, we may consider Type I and Type II blowups.
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Preliminaries
Singularities of Mean Curvature Flow: Type I

Type I: If (x ,T ) is a singular space-time point for the flow Ft : N → M, then
define Type I rescalings:

Fλi
s := λi (Fλ−2

i s+T − x).

The differing scalings in space and time ensure that Fλi
s is a mean curvature flow.

Theorem (Huisken)

If there exists C such that maxLt |A|2 ≤ C
T−t for all t ∈ [0,T ) (a Type I

singularity), then these rescalings converge subsequentially locally smoothly to a
self-similarly shrinking mean curvature flow (a Type I blowup or tangent flow).
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Preliminaries
Singularities of Mean Curvature Flow: Type II

If the curvature bound maxLt |A|2 ≤ C
T−t for all t ∈ [0,T ) doesn’t hold (a Type II

singularity), then the above process does not necessarily converge (smoothly) to
a smooth mean curvature flow.

By instead carefully choosing a sequence of points (xk , tk) → (x ,T ) maximising
the value of the second fundamental form, and defining the quantity
Ak := |A(xk , tk)| and the Type II rescalings:

F (xk ,tk )
s := Ak(FA−2

k s+tk
− xk),

we can ensure subsequential local smooth convergence to a smooth mean
curvature flow. This is known as a Type II blowup or singularity model.
Remark: For embedded hypersurface mean curvature flow, Type I singularities are
expected to be generic. The Type I and Type II Blowups are (as far as we know)
always self-similar solitons of mean curvature flow.
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Preliminaries
Singularities of Mean Curvature Flow: Type II example
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Preliminaries
Infinite-time Singularities of MCF

A fundamental question in mean curvature flow is:

If we have long-time existence of the flow, do we have convergence to a
minimal submanifold? Or can infinite-time singularities occur?

Theorem (Chen-Sun 2024)

There exists a smooth mean curvature flow Ft ⊂ R3 for t ∈ [0,∞) forming an
infinite-time singularity.

Remarks:

This is a non-compact example. Therefore we may ask: are there
infinite-time singularities in the compact setting?

The construction shows convergence of Ft to a multiplicity two plane, but
doesn’t describe the rate of blowup of |A|, or the Type II blowup.
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Preliminaries
Lagrangian Submanifolds

Let (M2n, g , J, ω,Ω) be a Calabi-Yau manifold. A submanifold Ln ⊂ M2n is
Lagrangian if J : TL → TL⊥ is an isomorphism , or equivalently if ω|L = 0.

If V is a normal vector field on L, then there is a corresponding 1-form on L:

αV := ω(V , ·) = g(JV , ·).

αV closed =⇒ V is a Lagrangian variation field.
αV exact =⇒ V is a Hamiltonian variation field. Lagrangians related by
Hamiltonian variations are Hamiltonian isotopic.
e.g. The mean curvature vector H has a corresponding 1-form, αH . αH may
be shown to be closed, so the mean curvature is a Hamiltonian variation field.

Given an oriented Lagrangian L, the holomorphic volume form Ω may be used
to define a (multivalued) primitive called the Lagrangian angle:

Ω|L = e iθvolL, dθ = αH .
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Preliminaries
Special Lagrangians

L is special Lagrangian if it is minimal - this is equivalent to θ ≡ θ.

Harvey-Lawson =⇒ L is volume-minimising in its homology class.

e.g. In Cm with the standard structures ω =
∑m

i=1 dx
i ∧ dy i , Ω = dz1 ∧ . . .∧ dzm,

the following are special Lagrangian planes with θ = 0:

Π0 := {(x1, . . . , xm) : x j ∈ R}
Πϕ := {(e iϕ1x1, . . . , e iϕmxm) : x j ∈ R}

If
∑m

i=1 ϕi = π, then Lawlor, Joyce-Imagi-dos Santos =⇒ there is a unique
1-parameter family of special Lagrangians εL with asymptotes Π0 ∪ Πϕ, called the
Lawlor Neck.
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Preliminaries
Lagrangian Mean Curvature Flow

We’ve seen that the mean curvature vector is a Lagrangian variation. This
suggests the following:

Theorem (K. Smoczyk)

In a Calabi-Yau manifold, the class of closed Lagrangian submanifolds is preserved
under MCF.

If αH is exact, i.e. if θ is a single valued function, we say L is zero Maslov. In
this case, mean curvature flow is a Hamiltonian variation.
If L satisfies the stronger condition range(θ) < π, it is almost calibrated.
Both of these conditions are preserved by Lagrangian mean curvature flow:

Theorem
Under Lagrangian mean curvature flow, the Lagrangian angle satisfies the heat
equation: ∂θ

∂t = ∆θ.
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Preliminaries
Lagrangian Neighbourhood Theorem

Theorem (Lagrangian Neighbourhood Theorem)

If L ⊂ M is Lagrangian, there exist neighbourhoods V ⊂ M and U ⊂ T ∗L of L
and of the zero section 0 respectively, and a symplectomorphism Φ : V → U
mapping L to 0.

Then, in the Lagrangian neighbourhood:

Nearby Lagrangians to L map to graphs of closed 1-forms under Φ

Nearby Lagrangians Hamiltonian isotopic to L map to graphs of exact
1-forms under Φ.

In particular, given a zero-Maslov Lagrangian L with Lagrangian angle θ, the
mean curvature flow is a flow of exact Lagrangians graph(dut), and may be
expressed on the level of potentials:

dut
dt

= θ(dut).
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Preliminaries
The Thomas-Yau Conjecture

So we’ve seen that we can study Lagrangian MCF. But why do we want to?

Theorem (Thomas-Yau Uniqueness)

If L1, L2 are Hamiltonian isotopic special Lagrangians, then L1 = L2.

This suggests the question: does every Lagrangian Hamiltonian isotopy class
contain a unique special Lagrangian representative?

Furthermore, could we use
Lagrangian mean curvature flow to find it?

Conjecture (Thomas-Yau conjecture, approximate)

There is a class of ‘semi-stable’ Lagrangians such that a stable almost-calibrated
Lagrangian will flow under LMCF with surgeries to a union of special Lagrangians
of the same angle.

Important remark: Even if there is a special Lagrangian representative, it may not
be smooth. Therefore, we should expect singularities along the flow.
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Preliminaries
An interesting example

Consider the special Lagrangian planes Π0,Πϕ ⊂ Cm from before, such that∑m
i=1 = π. There exists a ‘desingularisation’ of Π0 ∪ Πϕ - the Lawlor neck

Lϕ.

By choosing a suitable lattice Γ ⊂ Cm, Π0,Πϕ descend to tori
T 0,Tϕ ⊂ Cm/Γ. Define x∗ := T 0 ∩ Tϕ to be the intersection point.
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There is a harmonic function β on Lϕ which can be extended by constants on
Nε to give us an approximate harmonic function w : Nε → R. The
corresponding Hamiltonian perturbation corresponds to shrinking the neck,
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Main Result

Theorem (Su-Tsai-W., 2024)

There exists a Lagrangian mean curvature flow (Lt)
∞
t=0 in the complex torus Cm/Γ

such that Lt → T 0 ∪ Tϕ as t → ∞ - i.e. it forms an infinite-time singularity.
Moreover:

The convergence is smooth away from the immersed point.

Any Type II blowup is the Lawlor neck.

The blowup rate of the second fundamental form is |A| = O(t
1

m−2 ).
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m−2 ).

Remarks:

This is the first example to the authors knowledge of an infinite-time
singularity of mean curvature flow in the compact setting.

This gives an example of the ‘semistable’ case of Thomas-Yau - where a
Lagrangian is represented by a union of smooth special Lagrangians of the
same angle.
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Details of the Proof
Overview

The proof is via a gluing construction, inspired by the works of Joyce on
desingularising special Lagrangians with conical singularities, and by work of
Brendle-Kapouleas on a parabolic gluing construction for ancient Ricci flow.

Overview:

1. Start with T 0 ∪ Tϕ, and glue in a Lawlor neck at scale ε(t) for some
decreasing function ε : [Λ,∞) → R. Call the desingularised submanifold Nε.

2. Choose an appropriate Lagrangian neighbourhood Φ:Uε ⊂ T ∗Nε → Cm/Γ,
so that LMCF is represented as an equation on a potential function u.:

∂tu = θNε + ξ(0) + Lε[u] +Qε[u].

3. Understand the theory for the linearised operator, in particular invertibility
and estimates.

4. Use the linear theory to construct an iteration scheme to solve the nonlinear
equation.
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Details of the proof
1. Pre-gluing

Choose a ball BR2 around x∗, define X o := T 0 ∪ Tϕ \ BR2 the outer region.

Think of the ball BR2 as lying in Cm, consider the planes
C := Π0 ∪ Πϕ ⊂ Cm, and the Lawlor neck Lϕ asymptotic to C .

We wish to ’interpolate between’ Lϕ and C in BR2 . We do this using the
following ‘exact’ Lagrangian neighbourhood:
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Details of the Proof
1. Pregluing

Proposition

Let Σ be a Legendrian link in (S2m−1, λ0|S2m−1), and let C = Σ× (0,∞) be the
corresponding Lagrangian cone in (Cm \ {0}, ω0). There exists a Lagrangian
neighbourhood ΦC : UC ⊂ T ∗C = T ∗(Σ× (0,∞)) → Cm \ {0} such that

Φ∗
Cλ0 = λC − d

( rs
2

)
,

where λC is the tautological 1-form on T ∗C , r ∈ (0,∞), and s ∈ R ∼= T ∗
r (0,∞).

A Lagrangian L ⊂ Cm is called asymptotically conical with cone C and rate γ if
the following holds. Let Σ = C ∩ S2m−1 be the link of C . Then there exists a
compact subset K ⊂ L, a constant R1 > 0, and a diffeomorphism
φ : Σ× (R1,∞) → L \ K such that for any non-negative integer k,

|∇k(φ− ιC )|(, r) = O(r−1−k) as r → ∞ . (1)
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Details of the Proof
1. Pregluing

Theorem

Let L ⊂ (Cm, ω0) be an exact, connected, asymptotically conical Lagrangian
submanifold with cone C = Σ× (0,∞). Then there exists a Lagrangian
neighbourhood ΦL : UL ⊂ T ∗L → Cm and a function αL : UL → such that

Φ∗
Lλ0 = λL − dαL .

Moreover, ΦL can be chosen so that

(ΦL ◦ φ♯)(σ, r , ς, s) = ΦC (σ, r , ς + e1(σ, r), s + e2(σ, r)) (2)

for any (σ, r , ς, s) ∈ φ−1
♯ (UL) ⊂ T ∗(Σ× (R1,∞)), and some exact 1-form e = dE.

Thus, φ = ΦC ◦ dE.

Similarly, we get a potential Eε := ε2E(σ, ε−1r) and a Lagrangian neighbourhood
ΦεL for the scaled Lagrangian εL.
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Details of the Proof
1. Pre-gluing

By the above,
ΦC ◦ dEε(σ, r) : Σ× (εR1,R2) → Cm

maps the zero section to the Lawlor neck εL.

Moreover ΦC ◦ d(0) maps the zero section onto C = Π0 ∩ Πϕ.

So if Qε interpolates between 0 and Eε, then Φ ◦ dQε(Σ× (εR1,R2)) is a
Lagrangian interpolating between Lϕ and C .
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Details of the Proof
1. Pregluing

We now build an immersion ιε : N → Cm/Γ and its Lagrangian neighbourhood:

The domain N is the union of the three pieces:

P = Lϕ ∩ BR1 , Q = Σ× [R1,R2], X o = T 0 ∪ Tϕ \ BR2

The immersion is defined by:
▶ On P, ιε(x) = ε · x
▶ On Q, ιε(x) = ΦC ◦ dQε(x) ◦ κε(x)
▶ On X o , ιε(x) = x

We call the image of the immersion Nε ⊂ Cm/Γ.

The Lagrangian neighbourhood is built of the aforementioned Lagrangian
neighbourhoods, patched together:

Ψε : T ∗N → Cm/Γ.
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The Lagrangian neighbourhood is built of the aforementioned Lagrangian
neighbourhoods, patched together:

Ψε : T ∗N → Cm/Γ.
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Details of the Proof
2. The LMCF equation

We consider a decreasing neck parameter ε : [Λ,∞) → R, and construct a
time-dependent desingularisation Nε(t) as above.

Now, if u : N × [Λ,∞) → R, then Ψε ◦ du will be a time-dependent family of
Lagrangians nearby Nε(t).

By our choice of Lagrangian neighbourhoods, the LMCF equation descends
to an equation on the potential u:

∂tu = θε(du) + ξε(du),

⇐⇒ ∂tu = θNε + ξ(0) + Lε[u] + Qε[u].

Our aim now is to find functions u and ε such that this equation is satisfied.
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Details of the Proof
3. Linear Theory

Problem: Lε has a 2-dimensional eigenspace ⟨1,wε⟩. We can however invert on
the orthogonal complement of this space, working in suitable weighted Banach
spaces:

Theorem

Given µ > 0, ν ∈ (0,m− 2), α ∈ (0, 12 ), τ ∈ (0, 1
m+2 ), there exists Λ ≫ 1 with the

following significance. Given ψ ∈ P0,0,α
µ,ν+2,Λ, there exists a unique

u ∈ P1,2,α
µ,ν,Λ ∩ ⟨1,wε⟩⊥ and a, b : [Λ,∞) → R such that{

∂tu − Lε[u] = ψ + a(t) + b(t)wε, t ∈ [Λ,∞),

u(x ,Λ) = 0, x ∈ N,
(3)

and u satisfies the a priori estimate

∥u∥P1,2,α
µ,ν,Λ

≤ C∥ψ∥P0,0,α
µ,ν+2,Λ

(4)

for some C > 0 independent of t.
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Details of the Proof
3. Linear Theory

Some remarks on how this is proven:

The key is the apriori estimate (4). This is proven using a ‘blowup’
contradiction argument.

Taking a sequence of functions uk and a sequence of points at which (4)
doesn’t hold for a sequence Ck → ∞, we take a limit and extract a solution to
the heat equation on one of three ‘model spaces’. By establishing a Liouville
theorem for the heat equation on those spaces, we arrive at a contradiction.

In a general Calabi-Yau, the difference between the Laplacian and Lε has an
error of size O(1), which is too large for our scheme to work. This is one
reason why we restrict to the torus case.
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Details of the Proof
4. Iteration Scheme

Finally, we use the linear existence theory to create a Newton iteration map,
to find u and ε.

Given u, we define ψ := θNε + ξ(0)+Qε[u], and use the linear theory to solve

∂tv − Lε[v ] = ψ + a(t) + b(t)wε.

Problem: We need b(t) = 0 for a fixed point of our iteration. We carefully
choose ε(t) to minimise b. Integrating against wε:

b(t) =
1

|wε|2L2

(∫
N

(∂tv − Lε[v ]−Qε[du])wε +

∫
N

(θNε + ξε(0)) · wε

)

The second integral has dominant term ∂t(ε
2) + C · εm, so the solution

ε0 ≈ t
−1
m−2 to the corresponding ODE will minimise b(t).
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Details of the proof

So we define

ε(t) :=

(
ε0(t)

2−m +

∫ t

Λ

h(s)

) −1
m−2

≈ ε0(t)

and create an iteration for h:

k(t) := h(t)− ε−mb(t)

so that b(t) vanishes for a fixed point.

Finally, we prove that (u, h) 7→ (v , k) is a continuous contraction map, so
there exists a fixed point. And we are done!
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Thanks for listening!
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