Spectrum of singular G_{2}-instantons

Yuanqi Wang

May 142024

Simons Meeting May 2024, Durham, NC

Based on joint project with Henrique Sá Earp and Thomas Walpuski Wore colleogues mignt join

- Background/motivation.
- results.
- More detail.

Point: Eigenvalues/spectrum of

the link operator P :

$\left(C^{\infty}\right)$ Dirac operator $\left.\right|_{\text {Dom } \rightarrow \mathbb{S}^{5}}$
and corollaries.

Donaldson-Thomas and Donaldson-Segal program.

Walpuski: Gluing construction of G_{2}-instantons with $1-\mathrm{dim}$ singularities.

Tian, Tao-Tian: compactness and removability of singularityes.
Jacob-Walpuski: building blocks.
Jacob-Sá Earp-Walpuski. Chen-Sun.

singular lows is an indep variable in the problem.

Recent singular perturbations, dim of singular locus ≥ 1 :
Donaldson, Takahashi, He, Parker, He-Walpuski

Donaldson-Segal, Haydys-Walpuski,
Doan-Walpuski:

Associatives

Fueter Sections

Seiberg-Witten (multiple spinors)

Local model of 1-dim singularities:

proj G_{2}-instanton singular along $O \times \mathbb{S}^{1}$
stable Hermitian Yang-Mills, rank ≥ 2

Gauge theoretic analogue of
closed
$\forall \times \dot{m}^{\prime}$ in
in Rm Geom minimal surface
Mazzeo-Small

Serre duality: (Digression).
$H^{1}\left[\mathbb{P}^{2},(E n d E)(I)\right]=H^{1}\left[\mathbb{P}^{2},(E n d E)(-I-3)\right]$

Reflection w.r.t $-\frac{3}{2}$

$$
\mu \longleftrightarrow-\mu-3
$$

$$
\mu^{2}+2 \mu-3 \longleftrightarrow \mu^{2}+4 \mu
$$

Dom $=(a d E)^{\oplus 4} \oplus\left(D^{\star} \otimes a d E\right)$
 (5-components)

\exists isometries (quaternion str) I, K on Dom s.t. (model) linearization of instanton with 1 -dimensional singularities is

$$
\begin{aligned}
L= & \frac{\partial}{\partial s} \cdot I+\underbrace{K \cdot\left(\frac{\partial}{\partial r}-\frac{P}{r}\right)} \\
\Delta_{\mathbb{R}^{2}}= & \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} \\
& \mathbb{R}^{2}-0=\left(0 \vee \ell\left(S^{1}\right)\right.
\end{aligned}
$$

$\frac{\partial}{\partial s} \cdot I=I \cdot \frac{\partial}{\partial s}$, but $K P=-P K-3 K$.

Need

Analysis of (singular) linearized operators

Lockhart-McOwen, Melrose-Mendoza (isolated singularities). Mazzeo (edge singularities, general dimension), etc.

Indicial weights of

$$
\begin{array}{ll}
L: \quad & \text { Weighted Sobolev } \text { Space }_{0} \longrightarrow \\
& \text { Weighted Sobolev } \text { Space }_{1}
\end{array}
$$

is determined by
eigenvalues of P.

$$
\begin{gathered}
0<\left.\left.\nabla^{\star} \nabla\right|_{\mathbb{S}^{5}} \sim\right|_{\mathbb{S}^{5}} ^{a d E} \\
\mu^{2}+2 \mu-3 \\
S_{\nabla^{\star} \nabla}=U_{\left.\lambda \in \operatorname{Spec} \nabla^{\star} \nabla\right|_{\mathbb{S}^{5}}} / / \quad=\lambda \\
\{-1+\sqrt{4+\lambda},-1-\sqrt{4+\lambda} \\
-2+\sqrt{4+\lambda},-2-\sqrt{4+\lambda}\} \\
\mu^{2}+4 \mu=\lambda
\end{gathered}
$$

$$
S_{c o h}=\left\{I \in \mathbb{Z} \mid H^{1}\left[\mathbb{P}^{2},(E n d E)(I)\right] \neq 0\right\} .
$$

Thm [2019]:

$$
S p e c P=S_{\nabla^{\star} \nabla} \cup S_{c o h} .
$$

Multiplicities and eigen-sections "explicit".
Symmetric w.r.t $-\frac{3}{2}$.

$$
\begin{gathered}
\left.L: \begin{array}{c}
B=O\left(\frac{1}{r^{p}}\right) \\
\nabla_{A} B=O\left(\frac{1}{r^{p+1}}\right)
\end{array}\right\} \longrightarrow O\left(\frac{1}{r^{p+1}}\right) \\
\sim P \in \mathbb{R} .
\end{gathered}
$$

Quadratic nonlinearity

$$
\begin{aligned}
F_{A} & =d A+\frac{1}{2}[A, A] \\
\frac{1}{r^{p}} \cdot \frac{1}{r^{p}} & =O\left(\frac{1}{r^{p+1}}\right) \text { if } \quad p \leq 1
\end{aligned}
$$

Need solution B to lin equ with $|B|=O\left(\frac{1}{r}\right)$.
$p=1$ is interesting

Thm continued:
$\operatorname{Spec} P \cap(-3,0)=\{-1,-2\}$.

When $j=0,-1,-2,-3$,

Eigen $_{j} P=H^{1}\left[\mathbb{P}^{2},(E n d E)(j)\right]$

Diffeomorphisms χ_{t}. Solve

$$
\star_{t}\left(F_{A+a}^{0} \wedge \chi_{t}^{\star} \psi\right)+\text { monopole term }=0
$$

with gauge fixing (A is instanton).

$$
\left.\operatorname{Aux}(X)=\star\left[F_{A}^{0} \wedge d(X\lrcorner \psi\right)\right]
$$

if $d \psi=0$.

Partial analytic obstruction

$$
\frac{H^{1}\left[\mathbb{P}^{2},(\text { EndE })(-1)\right]}{\{\text { Atiyah Classes }\}}
$$

vanishes iff $E=T^{1,0} \mathbb{P}^{2}(k)$.
$\{$ Atiyah Classes $\left.\}=\left\{r(Y\lrcorner F_{A}^{0}\right) \mid Y \in \mathbb{R}^{6}\right\}$.

Proposition

Under model data, local universal linearized equation

$$
\tilde{L} B=f
$$

has $O\left(\frac{1}{r}\right)$-right inverse/ Green's function with $C_{O\left(\frac{1}{r}\right)}^{0}$-apriori estimate \Longrightarrow

$$
\begin{aligned}
\left.A\right|_{E}= & \text { twisted Fubini-Study connection } \\
& \left.\right|_{T^{1,0} \mathbb{P}^{2}(k)}
\end{aligned}
$$

\exists global version, no extension assumption anymore.

Proposition

Model data

Clos)

Fubini-Study tan cone connection.
$L \alpha=0$,
$\langle\alpha, L \xi\rangle \in L^{1}\left[\right.$ (-0 $\left.0 \times S^{1}\right]$
$\alpha \perp$ RangeAux \Longrightarrow
$\alpha=$ section pulled back from \mathbb{C}^{3}
+non pullback with \mathbb{I}_{μ} but not \mathbb{K}_{μ}

Corollary

$$
\begin{aligned}
\alpha= & \frac{1}{r}\left(\text { Eigen }_{-1} \text { components }\right) \\
& +O(1)
\end{aligned}
$$

$$
L b=0 \text { on } C Y^{3} \times \mathbb{S}^{1}
$$

$$
b=\Sigma_{k \in \in \frac{2 \pi}{\rho_{0}} \mathbb{Z}} e^{i k s} b_{k}
$$

$$
\square_{C Y^{3}} b_{k}=k b_{k} .
$$

We can adjust length of circle to construct non-pullback harmonic sections.

On spectrum:
Moroianu-Semmelmann (deformation of nearly Kähler structures).
Charbonneau-Harland (deformation of nearly Kähler instantons).
Ikeda-Taniguchi $\left(\operatorname{Spec} \Delta_{\text {Hodge }}\right.$ on \mathbb{P}^{n} and $\left.\mathbb{S}^{n}\right)$.
Examples of G_{2}-instantons multiple approaches, deformations/local structure of moduli:
Sá Earp-Walpuski, Sá Earp, Walpuski, Sá Earp-Menet-Nordström, Platt, Gutwein. Clarke, Oliveira, Oliveira-Lotay, Ball-Oliveira, Alonso, Waldron, Driscoll, Singhal, Fadel-Nagy-Oliveira etc.

Explicit info on Sasakian $\mathbb{S}^{5} \Longrightarrow$

P is 5×5 "matrix":

Block-diagonal Bochner formulas for

$$
\begin{gathered}
P^{2}+2 P-3\left(\text { row } 1,2=\nabla^{\star} \nabla\right) \\
P^{2}+4 P(\text { row } 3,4)
\end{gathered}
$$

$$
\mu^{2}+2 \mu-3=\lambda
$$

AdE-component (row 1 and 2) of an eigen-section of μ of P must also be λ-eigensection of $\nabla^{\star} \nabla$ or 0 . But if μ is not a root, it can not be eigen-section. \qquad
it must be 0 .

ODEs of Fourier co-efficients

$$
x^{\prime \prime}+\frac{3 x^{\prime}}{r}-\frac{\beta(\beta+2) x}{r^{2}}-k^{2} x=h .
$$

Solutions to homogeneous equ:

$$
\frac{K_{\beta+1}(k r)}{r}, \frac{I_{\beta+1}(k r)}{r}
$$

$$
\begin{gathered}
\ln \operatorname{Spec} P \cap\left(-\frac{3}{2}, \infty\right) \\
\text { only } \beta=-1 \text { could cause problem. } \\
\underbrace{\frac{\beta_{0}}{2} \quad \beta_{1}}_{-1} \underbrace{\beta_{2}}_{\beta_{3}} \beta_{4}^{\beta_{4}}
\end{gathered}
$$

$\exists h_{k}(r)$ (forcing terms) supported away from 0

 s.t. $O(1)$-Fourier co-efficient must be$$
\begin{aligned}
& 0 \cdot \frac{I_{0}(k r)}{r}+0 \cdot \frac{K_{0}(k r)}{r} \\
& + \text { a good term } \\
+ & \frac{I_{0}(k r)}{r} \int_{0}^{r} K_{0}(k y) y^{2} h_{k}(y) d y
\end{aligned}
$$

$$
I_{0}(k r) \sim \frac{e^{k r}}{\sqrt{2 \pi k r}}
$$

But

$$
\int_{0}^{r} K_{0}(k y) \ldots \ldots .
$$

decays at most polynomially in k, norms of the forcing terms grow at most polynomially in k.

Weight shift: $\left|\phi_{\beta}\right|_{\mathbb{C}^{3}}=\frac{1}{r}\left|\phi_{\beta}\right|_{\mathbb{S}^{5}}$ (1-form nature).
$O(1)$-Fourier coefficient $x_{\beta} \Longrightarrow$
$O\left(\frac{1}{r}\right)$-Fourier modes $x_{\beta} \phi_{\beta}$.

Hopf fibration $\mathbb{S}^{5} \longrightarrow \mathbb{P}^{2}$ has Sasakian Quaternion structure.

$\xi:$ Reeb vector field $\left.\right|_{\mathbb{S} 5}$.

η : contact 1 -form $\left.\right|_{\mathbb{S}}$.

$$
\begin{aligned}
& \left.\left[\frac{1}{2 r^{3}}\left(r \frac{\partial}{\partial r}-i \xi\right)\right]\right\lrcorner d z_{1} d z_{2} d z_{3} \\
& =H-i G
\end{aligned}
$$

$$
P=\left[\begin{array}{ccccc}
1 & -L_{\xi} & 0 & 0 & \left.-\left(d_{0} \cdot\right)\right\lrcorner H \\
L_{\xi} & 1 & 0 & 0 & \left.\left(d_{0} \cdot\right)\right\lrcorner G \\
0 & 0 & -4 & -L_{\xi} & d_{0}^{\star 0} \\
0 & 0 & L_{\xi} & -4 & \left.-\left(d_{0} \cdot\right)\right\lrcorner \frac{d \eta}{2} \\
J_{H} d_{0} & -J_{G} d_{0} & d_{0} & J_{0} d_{0} & -L_{\xi} J_{0}
\end{array}\right]
$$

B is P-eigen-section, but not of $S_{\nabla \star \nabla} \Longrightarrow$

$$
B=b \text { is semi-basic } 1 \text {-form on } \mathbb{S}^{5} \Longrightarrow
$$

$$
\begin{aligned}
& \left.\left.d_{0} b\right\lrcorner H=d_{0} b\right\lrcorner G= \\
& \left.d_{0} b\right\lrcorner \frac{d \eta}{2}=d_{0}^{\star 0} b=0
\end{aligned}
$$

$$
\begin{gathered}
G, H^{\prime \prime}(2,0) \text { ", } \\
\frac{d \eta}{2} \text { pullback Fubini-Study " }(1,1) \text { " }
\end{gathered}
$$

$$
b^{0,1} \text { is } \bar{\partial}_{0}-\text { harmonic }
$$

EndE(I): Fourier Series twisted by $O(I)$.

$$
b^{0,1}=b^{0,1}(k)\left(X_{0}, X_{1}, X_{2}\right)^{k}
$$

$\operatorname{EndE}(k)$-valued $\bar{\partial}$-harmonic
1 -form on \mathbb{P}^{2}
trivialization
of $\left.O(-k)\right|_{\mathbb{S}^{5}}$

Example:

$T \mathbb{P}^{2}(k)+$ representation theory/Peter Weyl formulation
\Rightarrow explicit spectrum.

Row 1: Eigenvalues in $[-4,1]$.

-4	$-2 \sqrt{2}-1$	-2	-1	$2 \sqrt{2}-2$	1
12	16	6	6	16	12

Row 2: Multiplicities.

Corollary

$\mathcal{F} \longrightarrow C Y^{3}$ non-locally free admissible reflexive sheaf. At an admissible Hermitian connection,

$$
\begin{aligned}
& \text { Index } \square_{C Y^{3}} \\
= & -2 \Sigma_{j} h^{1}\left[\mathbb{P}^{2}, \text { EndE }_{j}(-1)\right] \\
& -2 \Sigma_{j} h^{1}\left[\mathbb{P}^{2}, \text { EndE }_{j}\right] .
\end{aligned}
$$

Deformation of $\left.H Y_{M}\right|_{F \rightarrow C Y}$ (with Thomas Walpuski) of $s \sin (7)$-instantons with Fay (with Alex Waldron, and Thomas Walpuski). More colleague might join.

Clm: For any $I \in \mathbb{Z}_{+},(a, b)=(2, I-1)$ is the unique solution among $\mathbb{Z}_{\geq 0} \times \mathbb{Z}_{\geq 0}$ to

$$
\left\{\begin{array}{c}
a^{2}+b^{2}+a b+3 a+3 b=l^{2}+3 l+6, \\
3-a-2 b, b-a-3 \leq 1 \\
\leq 2 a+b-3,3+b-a
\end{array}\right.
$$

Putnam prob?

$$
\begin{aligned}
& \widetilde{L}_{\text {model }} \\
= & L_{\text {model }}- \\
& \left.\left.\left\{\frac{\partial X_{i}}{\partial s} \cdot\left[\left(J_{\mathbb{C}^{3}} e_{i}\right)\right\lrcorner F_{A}^{0}\right]+\frac{\partial X_{i}}{\partial r} \cdot J_{H}\left(e_{i}\right\lrcorner F_{A}^{0}\right)\right\} \\
& X=X_{s} \frac{\partial}{\partial s}+\sum_{i=1}^{6} X_{i} e_{i} .
\end{aligned}
$$

X_{s}, X_{i} only depend on r, s.

$$
\begin{aligned}
& \text { Supp near } O \times 5^{\prime} \\
& \int_{(\underset{\sigma}{6}) \times S^{\prime}}^{<\operatorname{Aux}(X), \text { hear sect } b=O\left(\frac{1}{r^{3}}\right)>} \\
= & \ldots \int_{\mathbb{S}^{1}}\left\langle X,\left(b \rightarrow \mathbb{R}^{6}\right)\right\rangle_{R^{6}} d s
\end{aligned}
$$

Formula: Let X be C^{1} vector field supported in $B_{O}(R) \times \mathbb{S}^{1}, L b=0, b=O\left(\frac{1}{r^{3}}\right) \Longrightarrow$

$$
\begin{aligned}
& \left.\int_{B_{O}(R) \times \mathbb{S}^{1}}<\star\left[F_{A} \wedge d(X\lrcorner \psi\right)\right], b> \\
= & -c_{0} \Sigma_{j} \int_{\mathbb{S}^{1}}<X\left(O_{j}, s\right), \\
& \boxminus^{-1} J_{H}\left[\lim _{r \rightarrow 0}\left(r^{2} P_{\text {Eigen }_{-2}} b\right)\right]>_{\mathbb{R}^{6}} d s,
\end{aligned}
$$

