Resolutions of (Compact) Spin(7)-Orbifolds

Viktor Majewski

May 15, 2024

Humboldt Universität zu Berlin

Spin(7)-Orbifolds

Let X be an n-dimensional, real orbifold and let X^{sing} denote the union of its singular strata. Let S be a connected component of X^{sing} .

• X is of singularity type (1) at S, if X at $S \subset X$ is locally modelled on

 $\mathbb{R}^n/\Gamma\cong\mathbb{R}^{n-m}\times\mathbb{R}^m/\Gamma$

such that Γ acts freely on $\mathbb{R}^m \setminus \{0\}$.

Let X be an n-dimensional, real orbifold and let X^{sing} denote the union of its singular strata. Let S be a connected component of X^{sing} .

• X is of singularity type (1) at S, if X at $S \subset X$ is locally modelled on

 $\mathbb{R}^n/\Gamma\cong\mathbb{R}^{n-m}\times\mathbb{R}^m/\Gamma$

such that Γ acts freely on $\mathbb{R}^m \setminus \{0\}$.

• X is of singularity type (IIa) at S, if X at $S \subset X$ is locally modelled on

$$\mathbb{R}^n/\Gamma \cong \mathbb{R}^{n-\sum_i m_i} \times \underset{i}{\times} \mathbb{R}^{m_i}/\Gamma_i$$

such that Γ_i acts freely on $\mathbb{R}^{m_i} \setminus \{0\}$.

Let X be an n-dimensional, real orbifold and let X^{sing} denote the union of its singular strata. Let S be a connected component of X^{sing} .

• X is of singularity type (1) at S, if X at $S \subset X$ is locally modelled on

 $\mathbb{R}^n/\Gamma \cong \mathbb{R}^{n-m} \times \mathbb{R}^m/\Gamma$

such that Γ acts freely on $\mathbb{R}^m \setminus \{0\}$.

• X is of singularity type (IIa) at S, if X at $S \subset X$ is locally modelled on

$$\mathbb{R}^n/\Gamma \cong \mathbb{R}^{n-\sum_i m_i} \times \underset{i}{\times} \mathbb{R}^{m_i}/\Gamma_i$$

such that Γ_i acts freely on $\mathbb{R}^{m_i} \setminus \{0\}$.

• X is of singularity type (IIb) at S, if it is neither type (I) nor type (IIa)

Let (X, Ω) be a Spin(7)-orbifold. A torsion-free resolution is given by a smooth family of Spin(7)-manifold $(X^t, \widetilde{\Omega}^t)$ and a map

$$\rho^t: X^t \dashrightarrow X$$

that restricts to a diffeomorphism onto $X \setminus X^{sing}$ such that the exceptional set $E^t = (\rho^t)^{-1}(X^{sing})$ is of codimension > 0.

Let (X, Ω) be a Spin(7)-orbifold. A torsion-free resolution is given by a smooth family of Spin(7)-manifold $(X^t, \widetilde{\Omega}^t)$ and a map

$$\rho^t: X^t \dashrightarrow X$$

that restricts to a diffeomorphism onto $X \setminus X^{sing}$ such that the exceptional set $E^t = (\rho^t)^{-1}(X^{sing})$ is of codimension > 0. Furthermore, the family $(X^t, \tilde{\Omega}^t) \xrightarrow{t \to 0} (X, \Omega)$ in a "Gromov-Hausdorff sense", i.e.

$$\rho_*^t \widetilde{\Omega}^t \xrightarrow[]{t \to 0}{C_{loc}^\infty} \Omega$$

and

$$\operatorname{vol}_{\widetilde{\Omega}^t}(E^t) \xrightarrow{t \to 0} 0.$$

let i : (S, g_S) → (X, Ω, g) be a connected singular stratum of type (i) of codimension four and whose isotropy group is Γ ⊂ Sp(1) ⊂ Spin(7). Let further

$$0 \rightarrow TS \rightarrow i^*TX \rightarrow NS \rightarrow 0$$

be its normal bundle

let i : (S, g_S) → (X, Ω, g) be a connected singular stratum of type (i) of codimension four and whose isotropy group is Γ ⊂ Sp(1) ⊂ Spin(7). Let further

$$0 \rightarrow TS \rightarrow i^*TX \rightarrow NS \rightarrow 0$$

be its normal bundle

 think of NS as a vector bundle ν : NS → S with a fiberwise Γ-action (action by Isot(S)) let i : (S, g_S) → (X, Ω, g) be a connected singular stratum of type (i) of codimension four and whose isotropy group is Γ ⊂ Sp(1) ⊂ Spin(7). Let further

$$0 \rightarrow TS \rightarrow i^*TX \rightarrow NS \rightarrow 0$$

be its normal bundle

- think of NS as a vector bundle ν : NS → S with a fiberwise Γ-action (action by Isot(S))
- normal cone bundle of S is given by the quotient orbifold

 $u_0: NS/Isot(S) = X_0 \rightarrow S$

• Riemannian orbifold structure g induces a splitting

 $TX_0 \cong H_0 \oplus \nu_0^* NS \cong \nu_0^* TS \oplus \nu_0^* NS$

and a CF-Spin(7)-orbifold structure

$$\Omega_0 = \Omega_0^{4,0} + \Omega_0^{2,2} + \Omega_0^{0,4} \in \Omega^4(X_0)$$

and

$$g_0 = \nu_0^* g_S + g_{0;V} \in \Gamma\left(X_0, \operatorname{Sym}^2 \nu_0^* T^{\vee} S \oplus \operatorname{Sym}^2 \nu_0^* NS\right).$$

Notice, that there exists an $\mathbb{R}_{>0}$ -action on X_0

$$\Psi_t: X_0 \to X_0$$

such that

 $\Psi_t^*\Omega_0 = \Omega_0^{4,0} + t^2 \cdot \Omega_0^{2,2} + t^4 \cdot \Omega_0^{0,4} \qquad \text{ and } \qquad \Psi_t^* g_0 = \nu_0^* g_S + t^2 g_{0;V}$

Notice, that there exists an $\mathbb{R}_{>0}$ -action on X_0

 $\Psi_t:X_0\to X_0$

such that

 $\Psi_t^* \Omega_0 = \Omega_0^{4,0} + t^2 \cdot \Omega_0^{2,2} + t^4 \cdot \Omega_0^{0,4} \qquad \text{and} \qquad \Psi_t^* g_0 = \nu_0^* g_5 + t^2 g_{0;V}$

Remark

Notice, that on S there exists a natural reduction of the Spin(7)-frame bundle $Fr_{Spin(7),X}|_S \rightarrow S$ to a $N_{\Gamma} = Norm(\Gamma, Spin(7))$ -principal bundle

 $F_S \rightarrow S.$

Notice, that there exists an $\mathbb{R}_{>0}$ -action on X_0

 $\Psi_t: X_0 \to X_0$

such that

 $\Psi_t^* \Omega_0 = \Omega_0^{4,0} + t^2 \cdot \Omega_0^{2,2} + t^4 \cdot \Omega_0^{0,4} \qquad \text{ and } \qquad \Psi_t^* g_0 = \nu_0^* g_5 + t^2 g_{0;V}$

Remark

Notice, that on S there exists a natural reduction of the Spin(7)-frame bundle $Fr_{Spin(7),X}|_S \rightarrow S$ to a $N_{\Gamma} = Norm(\Gamma, Spin(7))$ -principal bundle

 $F_S \rightarrow S$.

Moreover, F_S is a torsion-free extension of the SO(4)-frame bundle $F_{SO,S}$ of S. Let in the following φ denote Levi-Civita connection on F_S .

• given a tubular neighbourhood

$$j: \mathrm{Tub}_{2\epsilon}(S) \hookrightarrow X$$

we expand the Spin(7)-structure

$$j^*\Omega = \Omega_0 + \Omega_{hot}$$
 $|\Omega_{hot}|_{g_0} = \mathcal{O}(r)$

where $r = \operatorname{dist}_g(S)$

• given a tubular neighbourhood

$$j: \mathrm{Tub}_{2\epsilon}(S) \hookrightarrow X$$

we expand the Spin(7)-structure

$$j^*\Omega = \Omega_0 + \Omega_{hot}$$
 $|\Omega_{hot}|_{g_0} = \mathcal{O}(r)$

where $r = \operatorname{dist}_g(S)$

Remark

We will later need to C⁰-estimate of the higher order terms. In order to get them "small" with respect to the gluing parameter, we need to choose $\epsilon \sim t^{\lambda}$, for $0 \leq \lambda < 1$.

(Pre-)Resolving Spin(7)-Orbifolds

• construction is based on ideas of Barbosa [Bar19] and unpublished notes of Walpuski on (adiabatic) resolutions of singular G₂-fibrations

- construction is based on ideas of Barbosa [Bar19] and unpublished notes of Walpuski on (adiabatic) resolutions of singular G₂-fibrations
- interpretation as Cameral/spectral covers of the singular strata/special solutions of GSW-type equations

- construction is based on ideas of Barbosa [Bar19] and unpublished notes of Walpuski on (adiabatic) resolutions of singular G₂-fibrations
- interpretation as Cameral/spectral covers of the singular strata/special solutions of GSW-type equations
- extends to Spin(7)-fibrations and (conjecturally) to isotropy groups $\Gamma \subset SU(m/2)$ acting freely on $\mathbb{C}^{m/2} \setminus \{0\}$

- construction is based on ideas of Barbosa [Bar19] and unpublished notes of Walpuski on (adiabatic) resolutions of singular G₂-fibrations
- interpretation as Cameral/spectral covers of the singular strata/special solutions of GSW-type equations
- extends to Spin(7)-fibrations and (conjecturally) to isotropy groups $\Gamma \subset SU(m/2)$ acting freely on $\mathbb{C}^{m/2} \setminus \{0\}$
- today only \mathbb{H}/Γ

• Kronheimer [Kro90] described hyperkähler resolutions of ℍ/Γ for finite subgroups of Sp(1) using a hyperkähler quotient/GIT construction

- Kronheimer [Kro90] described hyperkähler resolutions of ℍ/ℾ for finite subgroups of Sp(1) using a hyperkähler quotient/GIT construction
- there exists a fibre bundle $\kappa : \mathbb{M} \to \Theta_{\mathrm{Im}(\mathbb{H})} = \mathrm{Im}(\mathbb{H}) \otimes \mathfrak{h}_{\Gamma}$

- Kronheimer [Kro90] described hyperkähler resolutions of ℍ/ℾ for finite subgroups of Sp(1) using a hyperkähler quotient/GIT construction
- there exists a fibre bundle κ : M → Θ_{Im(H)} = Im(H) ⊗ h_Γ

Proposition ([Kro90])

There exists a vertical Im(H)-valued two form $\underline{\omega}$ on $\mathbb{M} \xrightarrow{\kappa} \Theta_{Im(\mathbb{H})}$ and codimension three walls $\mathcal{W} \subset \Theta_{Im(\mathbb{H})}$ such that for all $\zeta \in \Theta_{Im(\mathbb{H})} \setminus \mathcal{W}$, $(\kappa^{-1}(\zeta), \underline{\omega}) = (M_{\zeta}, \underline{\omega}_{\zeta}) \dashrightarrow (\mathbb{H}/\Gamma, \underline{\omega}_0)$ is a hyperkähler ALE space of rate -4.

• $H^2(M_{\zeta}) = \mathfrak{h}_{\Gamma}$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)

- $H^2(M_{\zeta}) = \mathfrak{h}_{\Gamma}$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- ζ ∈ W\0, (M_ζ, <u>ω_ζ</u>) is a hyperkähler orbifolds with a singular stratum modelled on ℍ/ℤ₂

- $H^2(M_{\zeta}) = \mathfrak{h}_{\Gamma}$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- ζ ∈ W\0, (M_ζ, <u>ω_ζ</u>) is a hyperkähler orbifolds with a singular stratum modelled on ℍ/ℤ₂
- distance to $\mathcal W$ corresponds to "size" of exceptional divisor

- $H^2(M_{\zeta}) = \mathfrak{h}_{\Gamma}$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- ζ ∈ W\0, (M_ζ, ω_ζ) is a hyperkähler orbifolds with a singular stratum modelled on ℍ/ℤ₂
- distance to $\mathcal W$ corresponds to "size" of exceptional divisor

The group $N_{\Gamma} \rightarrow Norm(\Gamma, SO(4)) \ltimes Weyl(\Gamma)$ acts on \mathbb{M} such that

• permutes Weyl chambers

- $H^2(M_{\zeta}) = \mathfrak{h}_{\Gamma}$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- ζ ∈ W\0, (M_ζ, ω_ζ) is a hyperkähler orbifolds with a singular stratum modelled on H/Z₂
- distance to ${\mathcal W}$ corresponds to "size" of exceptional divisor

The group $N_{\Gamma} \rightarrow Norm(\Gamma, SO(4)) \ltimes Weyl(\Gamma)$ acts on \mathbb{M} such that

- permutes Weyl chambers
- κ is equivariant

- H²(M_ζ) = h_Γ, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- ζ ∈ W\0, (M_ζ, ω_ζ) is a hyperkähler orbifolds with a singular stratum modelled on ℍ/ℤ₂
- distance to ${\mathcal W}$ corresponds to "size" of exceptional divisor

The group $N_{\Gamma} \rightarrow Norm(\Gamma, SO(4)) \ltimes Weyl(\Gamma)$ acts on \mathbb{M} such that

- permutes Weyl chambers
- κ is equivariant
- universal vertical hyperkähler structure is invariant

Let $C \subset Com(im(N_{\Gamma}), Norm(\Gamma, SO(4)) \ltimes Weyl(\Gamma))$ and $\mathfrak{C} \to S$ a C-principal bundle. We define the twisted vector bundle

 $\mathfrak{H} = (F_S \times_S \mathfrak{C}) \times_{N_{\Gamma} \times C} \Theta_{\mathrm{Im}(\mathbb{C})} \quad \text{and} \quad \mathfrak{H}^2_+ = (F_S \times_S \mathfrak{C}) \times_{N_{\Gamma} \times C} \Theta_{\mathrm{Im}(\mathbb{H})}.$

Let $C \subset Com(im(N_{\Gamma}), Norm(\Gamma, SO(4)) \ltimes Weyl(\Gamma))$ and $\mathfrak{C} \to S$ a C-principal bundle. We define the twisted vector bundle

 $\mathfrak{H} = (F_S \times_S \mathfrak{C}) \times_{N_{\Gamma} \times C} \Theta_{\mathrm{Im}(\mathbb{C})} \quad and \quad \mathfrak{H}^2_+ = (F_S \times_S \mathfrak{C}) \times_{N_{\Gamma} \times C} \Theta_{\mathrm{Im}(\mathbb{H})}.$

• let $\zeta \in \Omega^2_+(S,\mathfrak{H})$, define the fibration

Lemma ([Majc])

Define the four form

$$\hat{\Omega}_{\zeta} = \hat{\Omega}^{4,0,0}_{\zeta} + \hat{\Omega}^{2,2,0}_{\zeta} + \hat{\Omega}^{0,4,0}_{\zeta} \in \Omega^{4,0}(\overline{\zeta}^*\mathbb{M})^{N_{\Gamma} imes C}$$

by

$$\begin{split} \hat{\Omega}_{\zeta}^{4,0,0} &= (\kappa_{\zeta} \circ \phi_{S})^{*} \mathrm{vol}_{g_{S}} \\ \hat{\Omega}_{\zeta}^{2,2,0} &= -\frac{1}{3} \left\langle \kappa_{\zeta}^{*} \theta_{+}^{S} \wedge \tilde{\zeta}^{*} \underline{\omega}^{0,2,0} \right\rangle \\ \hat{\Omega}_{\zeta}^{0,4,0} &= \frac{1}{6} \left\langle \tilde{\zeta}^{*} \underline{\omega}^{0,2,0} \wedge \tilde{\zeta}^{*} \underline{\omega}^{0,2,0} \right\rangle \end{split}$$

The space

$$\pi_{\zeta}: (X_{\zeta}, \Omega_{\zeta}, g_{\zeta}) \dashrightarrow (X_0, \Omega_0, g_0)$$

is a Spin(7)-resolution.

Lemma ([Majc])

There exists a "scaling map" lift

$$egin{aligned} & (X_{\zeta},\Omega^t_{\zeta}) \stackrel{\Psi_t}{\to} (X_{t^2\cdot\zeta},\Omega_{t^2\cdot\zeta}) \ & \pi_{\zeta} & \downarrow^{\pi_{t^2\cdot\zeta}} \ & \chi^{\pi_{t^2\cdot\zeta}} \ & (X_0,\Omega^t_0) \stackrel{\Psi_t}{\longrightarrow} (X_0,\Omega_0) \end{aligned}$$

where $\Psi_t^*\Omega_{t^2\zeta} = \Omega_\zeta^{4,0} + t^2\cdot\Omega_\zeta^{2,2} + t^4\cdot\Omega_\zeta^{0,4}$

Let $\mathfrak{W} \subset \mathfrak{H}^2_+$ denote the set of walls.

Let $\mathfrak{W} \subset \mathfrak{H}^2_+$ denote the set of walls.

 if ζ does not intersect 𝕮 then (X_ζ, Ω_ζ, g_ζ) is a Spin(7)-ACF space of rate -4 and E_ζ is given by bundles of intersecting spheres over S
Remark

Let $\mathfrak{W} \subset \mathfrak{H}^2_+$ denote the set of walls.

- if ζ does not intersect 𝕮 then (X_ζ, Ω_ζ, g_ζ) is a Spin(7)-ACF space of rate

 -4 and E_ζ is given by bundles of intersecting spheres over S
- if $\zeta \pitchfork \mathfrak{W} \backslash 0$, X_{ζ} conically singular over $\mathbb{S}^7 / \mathbb{Z}_2$

Remark

Let $\mathfrak{W} \subset \mathfrak{H}^2_+$ denote the set of walls.

- if ζ does not intersect 𝕮 then (X_ζ, Ω_ζ, g_ζ) is a Spin(7)-ACF space of rate -4 and E_ζ is given by bundles of intersecting spheres over S
- if $\zeta \pitchfork \mathfrak{W} \backslash 0$, X_{ζ} conically singular over $\mathbb{S}^7 / \mathbb{Z}_2$
- if $\zeta \pitchfork 0$ conically singular over \mathbb{S}^7/Γ

Theorem ([Majc])

If $d_{\varphi}\zeta = 0$ then

$$\mathrm{d}\Omega_{\zeta}=\mathrm{d}^{2,-1}(\Omega^{2,2}_{\zeta}+\Omega^{0,4}_{\zeta})$$

In particular, $d\Omega_{t^2,\zeta} = (\Psi_t)_* d\Omega_{\zeta}^t = t \cdot d\Omega_{\zeta}$ and hence $\Omega_{t^2,\zeta}$ defines an adiabatic Spin(7)-structure.

Pregluing the Spin(7)-Structures

• the composition of maps

$$\Gamma^t_{\zeta}: B_{2t^{-1}\epsilon}(X_{\zeta}) \backslash U_0^t \stackrel{\Psi_t}{\to} B_{2\epsilon}(X_{t^{2} \cdot \zeta}) \backslash U_0^{\frac{\pi_t 2 \cdot \zeta}{- \rightarrow}} \operatorname{Tub}_{2\epsilon}(S) \backslash S \stackrel{j}{\hookrightarrow} X$$

• the composition of maps

$$\Gamma^t_\zeta: B_{2t^{-1}\epsilon}(X_\zeta) \backslash U_0^t \stackrel{\Psi_t}{\to} B_{2\epsilon}(X_{t^{2}\cdot \zeta}) \backslash U_0 \stackrel{\pi_{t^{2}\cdot \zeta}}{\dashrightarrow} \mathrm{Tub}_{2\epsilon}(S) \backslash S \stackrel{j}{\hookrightarrow} X$$

• define

$$\rho^t: X^t = U_{2\epsilon}^t \cup_{\Gamma_{\zeta}^t} X \setminus U_{\epsilon} \dashrightarrow X$$

and

$$\begin{split} \Omega^{t} = & \Omega^{t}_{\zeta} + \chi_{2}^{t} \cdot \left(\Omega^{t}_{0} - \Omega^{t}_{\zeta} + \Omega^{t}_{hot}\right) \\ \mathrm{d}\Omega^{t} = & (1 - \chi_{2}^{t}) \mathrm{d}\Omega^{t}_{\zeta} + \mathrm{d}\chi_{2}^{t} \wedge \left(\Omega^{t}_{0} - \Omega^{t}_{\zeta} + \Omega^{t}_{hot}\right) \end{split}$$

• the composition of maps

$$\Gamma^t_\zeta:B_{2t^{-1}\epsilon}(X_\zeta)\backslash U_0^t \stackrel{\Psi_t}{\to} B_{2\epsilon}(X_{t^2\cdot\zeta})\backslash U_0 \stackrel{\pi_{t^2\cdot\zeta}}{\dashrightarrow} \mathrm{Tub}_{2\epsilon}(S)\backslash S \stackrel{j}{\hookrightarrow} X$$

• define

$$\rho^t: X^t = U_{2\epsilon}^t \cup_{\Gamma_{\zeta}^t} X \setminus U_{\epsilon} \dashrightarrow X$$

and

$$\begin{split} \Omega^{t} = & \Omega^{t}_{\zeta} + \chi_{2}^{t} \cdot \left(\Omega^{t}_{0} - \Omega^{t}_{\zeta} + \Omega^{t}_{hot}\right) \\ \mathrm{d}\Omega^{t} = & (1 - \chi_{2}^{t}) \mathrm{d}\Omega^{t}_{\zeta} + \mathrm{d}\chi_{2}^{t} \wedge \left(\Omega^{t}_{0} - \Omega^{t}_{\zeta} + \Omega^{t}_{hot}\right) \end{split}$$

• $\rho^t : (X^t, \Omega^t) \dashrightarrow (X, \Omega)$ converges in a Gromov-Hausdorff sense

Can we find a torsion-free Spin(7)-structure close to Ω^t ?

Existence of Torsion-Free Resolutions of Spin(7)-Orbifolds

• the preglued Spin(7)-structure Ω^t has "small torsion"

- the preglued Spin(7)-structure Ω^t has "small torsion"
- condition of a Spin(7)-structure in a small neighbourhood of Ω^t to be torsion free is given by

 $0 = d\Theta(\Omega^{t} + \eta) = d\Omega^{t} + d\pi_{\tau,\Omega^{t}}(\eta) + dQ_{\Omega^{t}}(\eta)$

- the preglued Spin(7)-structure Ω^t has "small torsion"
- condition of a Spin(7)-structure in a small neighbourhood of Ω^t to be torsion free is given by

 $0 = d\Theta(\Omega^{t} + \eta) = d\Omega^{t} + d\pi_{\tau,\Omega^{t}}(\eta) + dQ_{\Omega^{t}}(\eta)$

 instead of constructing a Diff₀(X^t)-orbit full of solutions it is more convenient to construct a solution in Gpin(7)[X^t] ⇒ Diff₀(X^t)-gauge slice

$$0 = \mathrm{d}\Omega^{t} + \mathrm{d}\pi_{\tau,\Omega^{t}}(\eta) + \mathrm{d}Q_{\Omega^{t}}(\eta)$$
$$0 = \pi_{1\oplus 7,\Omega^{t}}\eta.$$

• the gauge-fixed equations are equivalent to

$$- d\eta = d\Omega^t + dQ_{\Omega^t}(\eta)$$
(1)

$$-d^*\eta = *d\Omega^t + *dQ_{\Omega^t}(\eta).$$
(2)

or equivalently

$$-(\mathrm{d}+\mathrm{d}^{*^{t}})\eta = (\mathrm{d}+\mathrm{d}^{*^{t}})\pi_{-,\Omega^{t}}\left\{Q_{\Omega^{t}}(\eta)\right\} + (\mathrm{d}-\mathrm{d}^{*^{t}})\left(\Omega^{t}+\pi_{+,\Omega^{t}}\left\{Q_{\Omega^{t}}(\eta)\right\}\right).$$

• the gauge-fixed equations are equivalent to

$$- d\eta = d\Omega^t + dQ_{\Omega^t}(\eta)$$
(1)

$$-d^*\eta = *d\Omega^t + *dQ_{\Omega^t}(\eta).$$
(2)

or equivalently

 $-(\mathrm{d}+\mathrm{d}^{*^{t}})\eta = (\mathrm{d}+\mathrm{d}^{*^{t}})\pi_{-,\Omega^{t}}\left\{Q_{\Omega^{t}}(\eta)\right\} + (\mathrm{d}-\mathrm{d}^{*^{t}})\left(\Omega^{t}+\pi_{+,\Omega^{t}}\left\{Q_{\Omega^{t}}(\eta)\right\}\right).$

• let $R_{d+d^{*t}}$ denote a right inverse to $(d + d^{*t})$ $\eta = -(d + d^{*t})\pi_{-,\Omega^{t}} \left\{ Q_{\Omega^{t}}(R_{d+d^{*t}}\eta) \right\} - (d - d^{*}) \left(\Omega^{t} + \pi_{+,\Omega^{t}} \left\{ Q_{\Omega^{t}}(R_{d+d^{*t}}\eta) \right\} \right).$ (3) • let in the following denote $D^t = d + d^{*_{\Omega^t}}$ the Hodge-de Rham operator

- let in the following denote $D^t = d + d^{*_{\Omega t}}$ the Hodge-de Rham operator
- to find R_{D^t} we need to understand the kernel of D^t

- let in the following denote $D^t = d + d^{*_{\Omega^t}}$ the Hodge-de Rham operator
- to find R_{D^t} we need to understand the kernel of D^t
- to bound R_{D^t} we need to understand its *t*-dependence

- let in the following denote $D^t = d + d^{*_{\Omega^t}}$ the Hodge-de Rham operator
- to find R_{D^t} we need to understand the kernel of D^t
- to bound R_{D^t} we need to understand its *t*-dependence
- "usual" Hodge theory yields weak estimates, as D^t becomes singular near the adiabatic limit along S

- let in the following denote $D^t = d + d^{*_{\Omega^t}}$ the Hodge-de Rham operator
- to find R_{D^t} we need to understand the kernel of D^t
- to bound R_{D^t} we need to understand its *t*-dependence
- "usual" Hodge theory yields weak estimates, as D^t becomes singular near the adiabatic limit along S
- need to understand $D_{t^2,\zeta}$ and D to gain insides on D^t

- let in the following denote $D^t = d + d^{*_{\Omega^t}}$ the Hodge-de Rham operator
- to find R_{D^t} we need to understand the kernel of D^t
- to bound R_{D^t} we need to understand its *t*-dependence
- "usual" Hodge theory yields weak estimates, as D^t becomes singular near the adiabatic limit along S
- need to understand $D_{t^2 \cdot c}$ and D to gain insides on D^t

Remark

This behaviour of D^t is share by Dirac operators on orbifold resolutions (more general set-up in upcoming paper [Majb]).

- we are interested in the operator $D_{t^2 \cdot \zeta}$ on $X_{t^2 \cdot \zeta}$

- we are interested in the operator $D_{t^2 \cdot \zeta}$ on $X_{t^2 \cdot \zeta}$
- problems: no Fredholm theory and no insides into the adiabatic limit t
 ightarrow 0

- we are interested in the operator $D_{t^2 \cdot \zeta}$ on $X_{t^2 \cdot \zeta}$
- problems: no Fredholm theory and no insides into the adiabatic limit t
 ightarrow 0
- instead consider the operator $D_{\zeta}^t = \Psi_t^* \circ D_{t^2 \cdot \zeta} \circ \Psi_{-t}^* = D_{\zeta;H}^t + t^{-1} \cdot D_{\zeta;V}$ where $D_{\zeta;V}$ is the vertical Hodge-de Rham-operator

- we are interested in the operator $D_{t^2 \cdot \zeta}$ on $X_{t^2 \cdot \zeta}$
- problems: no Fredholm theory and no insides into the adiabatic limit t
 ightarrow 0
- instead consider the operator $D_{\zeta}^t = \Psi_t^* \circ D_{t^2,\zeta} \circ \Psi_{-t}^* = D_{\zeta;H}^t + t^{-1} \cdot D_{\zeta;V}$ where $D_{\zeta;V}$ is the vertical Hodge-de Rham-operator
- D_{ζ}^{t} is the Dirac operator of an adiabatic family of Dirac bundles $(\wedge^{\bullet} T^{\vee} X_{\zeta}, \operatorname{cl}^{g_{\zeta}^{t}}, g_{\zeta}^{t}, \nabla^{g_{\zeta}^{t}})$ (see [Goe14])

- we are interested in the operator $D_{t^2 \cdot \zeta}$ on $X_{t^2 \cdot \zeta}$
- problems: no Fredholm theory and no insides into the adiabatic limit t
 ightarrow 0
- instead consider the operator $D_{\zeta}^t = \Psi_t^* \circ D_{t^2,\zeta} \circ \Psi_{-t}^* = D_{\zeta;H}^t + t^{-1} \cdot D_{\zeta;V}$ where $D_{\zeta;V}$ is the vertical Hodge-de Rham-operator
- D_{ζ}^{t} is the Dirac operator of an adiabatic family of Dirac bundles $(\wedge^{\bullet} T^{\vee} X_{\zeta}, \operatorname{cl}^{g_{\zeta}^{t}}, g_{\zeta}^{t}, \nabla^{g_{\zeta}^{t}})$ (see [Goe14])
- "harmonic forms on (X_ζ, g^t_ζ) concentrate along vertically harmonic forms" [Bis86, BC89, BL91, BL95, Goe14]

- the push forward along ν_{ζ} allows us to view the operator D_{ζ}^t as an operator

$$\Omega^{\bullet}_{\beta}(X_{\zeta}) \xrightarrow{D^{t}_{\zeta}} \Omega^{\bullet}_{\beta}(X_{\zeta})$$
$$\| \qquad \|$$
$$\Gamma(S, (\nu_{\zeta})_{*_{\beta}} T^{\vee} X_{\zeta}) \xrightarrow{D^{t}_{\zeta}} \Gamma(S, (\nu_{\zeta})_{*_{\beta}} T^{\vee} X_{\zeta})$$

• the push forward along ν_{ζ} allows us to view the operator D_{ζ}^{t} as an operator

$$\Omega^{\bullet}_{\beta}(X_{\zeta}) \xrightarrow{D^{t}_{\zeta}} \Omega^{\bullet}_{\beta}(X_{\zeta})$$

$$\| \qquad \|$$

$$\Gamma(S, (\nu_{\zeta})_{*_{\beta}} T^{\vee} X_{\zeta}) \xrightarrow{D^{t}_{\zeta}} \Gamma(S, (\nu_{\zeta})_{*_{\beta}} T^{\vee} X_{\zeta})$$

• to stay consistent with the literature (see [Wal17, Pla20], etc.) we will work with (weighted) Hölder norms on X^t

• the push forward along ν_{ζ} allows us to view the operator D_{ζ}^{t} as an operator

$$\begin{array}{ccc} \Omega^{\bullet}_{\beta}(X_{\zeta}) & \xrightarrow{D^{t}_{\zeta}} & \Omega^{\bullet}_{\beta}(X_{\zeta}) \\ & & & \\ & & & \\ & & & \\ \Gamma(S, (\nu_{\zeta})_{*_{\beta}} T^{\vee} X_{\zeta}) & \xrightarrow{D^{t}_{\zeta}} \Gamma(S, (\nu_{\zeta})_{*_{\beta}} T^{\vee} X_{\zeta}) \end{array}$$

- to stay consistent with the literature (see [Wal17, Pla20], etc.) we will work with (weighted) Hölder norms on X^t
- using Hölder-completions of the fibres of the push forward

$$t^{-1} \cdot D_{\zeta;V} : (\nu_{\zeta})_{*^{k+1,\alpha}_{\beta}} T^{\vee} X_{\zeta} \to (\nu_{\zeta})_{*^{k,\alpha}_{\beta-1}} T^{\vee} X_{\zeta}$$

and split

$$(\nu_{\zeta})_{*^{k+1,\alpha}_{\beta}} \wedge^{\bullet} T^{\vee} X_{\zeta} = \mathcal{I}^{k,\alpha}_{AC;\beta}(X_{\zeta}/S) \oplus \mathcal{K}_{AC}(X_{\zeta}/S)$$

• we decompose the Dirac operator

$$D_{\zeta}^{t} = \begin{pmatrix} D_{\zeta;\mathcal{I}\mathcal{I}}^{t} & D_{\zeta;\mathcal{K}\mathcal{I}}^{t} \\ D_{\zeta;\mathcal{I}\mathcal{K}}^{t} & D_{\zeta;\mathcal{K}\mathcal{K}}^{t} \end{pmatrix} = \begin{pmatrix} D_{\zeta;\mathcal{H};\mathcal{I}\mathcal{I}}^{t} + t^{-1} \cdot D_{\zeta;\mathcal{V};\mathcal{I}\mathcal{I}} & D_{\zeta;\mathcal{H};\mathcal{K}\mathcal{I}}^{t} \\ D_{\zeta;\mathcal{H};\mathcal{I}\mathcal{K}}^{t} & D_{\zeta;\mathcal{H};\mathcal{K}\mathcal{K}}^{t} \end{pmatrix}$$

• we decompose the Dirac operator

$$D_{\zeta}^{t} = \begin{pmatrix} D_{\zeta;\mathcal{I}\mathcal{I}}^{t} & D_{\zeta;\mathcal{K}\mathcal{I}}^{t} \\ D_{\zeta;\mathcal{I}\mathcal{K}}^{t} & D_{\zeta;\mathcal{K}\mathcal{K}}^{t} \end{pmatrix} = \begin{pmatrix} D_{\zeta;\mathcal{H};\mathcal{I}\mathcal{I}}^{t} + t^{-1} \cdot D_{\zeta;\mathcal{V};\mathcal{I}\mathcal{I}} & D_{\zeta;\mathcal{H};\mathcal{K}\mathcal{I}}^{t} \\ D_{\zeta;\mathcal{H};\mathcal{I}\mathcal{K}}^{t} & D_{\zeta;\mathcal{H};\mathcal{K}\mathcal{K}}^{t} \end{pmatrix}$$

• "harmonic forms on (X_{ζ}, g_{ζ}^t) concentrate along vertically harmonic forms" \Rightarrow understand $D_{\zeta;\mathcal{KK}}^t$

• we decompose the Dirac operator

$$D_{\zeta}^{t} = \begin{pmatrix} D_{\zeta;\mathcal{I}\mathcal{I}}^{t} & D_{\zeta;\mathcal{K}\mathcal{I}}^{t} \\ D_{\zeta;\mathcal{I}\mathcal{K}}^{t} & D_{\zeta;\mathcal{K}\mathcal{K}}^{t} \end{pmatrix} = \begin{pmatrix} D_{\zeta;\mathcal{H};\mathcal{I}\mathcal{I}}^{t} + t^{-1} \cdot D_{\zeta;\mathcal{V};\mathcal{I}\mathcal{I}} & D_{\zeta;\mathcal{H};\mathcal{K}\mathcal{I}}^{t} \\ D_{\zeta;\mathcal{H};\mathcal{I}\mathcal{K}}^{t} & D_{\zeta;\mathcal{H};\mathcal{K}\mathcal{K}}^{t} \end{pmatrix}$$

• "harmonic forms on (X_{ζ}, g_{ζ}^t) concentrate along vertically harmonic forms" \Rightarrow understand $D_{\zeta;\mathcal{KK}}^t$

Proposition ([Majb])

The vertical kernel bundles are isomorphic to

 $\mathcal{K}_{AC}(X_{\zeta}/S)\cong\wedge^{\bullet}T^{\vee}S\otimes\mathcal{H}^{\bullet}(X_{\zeta}/S)$

where $\mathcal{H}^{\bullet}(X_{\zeta}/S)$ consist of vertically harmonic (anti-self dual) two forms that decay with rate -4. Moreover, this is again a Hermitian $Cl(TS, g_S)$ -module, whose Hermitian structure is given by the fiberwise L_t^2 -norm.

The effective Dirac operator of D_{ζ}^{t} is the induced operator

$$D_{\zeta;\mathcal{K}\mathcal{K}}^{t} = D_{\mathcal{K}} + t \cdot \mathrm{cl}^{g_{\zeta}}(F_{H_{\zeta}})_{\mathcal{K}\mathcal{K}}$$

and the adiabatic residue of

$$\mathfrak{D}_{\zeta} = \lim_{t \to 0} D^t_{\zeta;\mathcal{K}\mathcal{K}} = \mathfrak{D}_{GM}$$

is given by the Gauß-Manin-Hodge-de Rham operator. The adiabatic kernel is defined by

 $\mathfrak{Ker}(D^t_{\zeta}) = \ker(\mathfrak{D}_{GM})$

We say D_{ζ}^{t} is isentropic (i.e. adiabatic and reversible) if $\ker(D_{\zeta}^{t}) \cong \operatorname{ker}(D_{\zeta}^{t})$

We say D_{ζ}^{t} is isentropic (i.e. adiabatic and reversible) if $\ker(D_{\zeta}^{t}) \cong \mathfrak{Ker}(D_{\zeta}^{t})$

Remark

There exist topological obstructions on the isentropicity of D_{ζ}^{t} that can be computed using spectral sequences.

Let define the projection

$$ilde{\pi}^t: \Omega^ullet(X^t) o \Omega^ullet\left(S, \mathcal{H}^ullet(X_\zeta/S)
ight): ilde{\iota}^t$$

and a section of $\tilde{\pi}^t$. We further define the maps

 $\tilde{\pi}_{\mathcal{K}} = \tilde{\iota}^t \tilde{\pi}^t : \Omega_{\beta;t}^{\bullet;l,\alpha}(X^t) \to \Omega_{\beta;t}^{\bullet;l,\alpha}(X^t).$

and $\tilde{\pi}_{\mathcal{I}} = 1 - \tilde{\pi}_{\mathcal{K}}$.

Let define the projection

$$ilde{\pi}^t: \Omega^ullet(X^t) o \Omega^ullet(S, \mathcal{H}^ullet(X_\zeta/S)): ilde{\iota}^t$$

and a section of $\tilde{\pi}^t$. We further define the maps

 $\tilde{\pi}_{\mathcal{K}} = \tilde{\iota}^t \tilde{\pi}^t : \Omega_{\beta;t}^{\bullet;l,\alpha}(X^t) \to \Omega_{\beta;t}^{\bullet;l,\alpha}(X^t).$

and $\tilde{\pi}_{\mathcal{I}} = 1 - \tilde{\pi}_{\mathcal{K}}$. Let $\kappa > 0$ and α , β and λ be fixed. We define the D^t -adiabatic norms

$$||\gamma||_{\mathfrak{X}^{t}} = ||\tilde{\pi}_{\mathcal{I}}\gamma||_{\mathcal{C}^{1,\alpha}_{\beta,t}} + t^{-\kappa} \left| \left| \tilde{\pi}^{t}\gamma \right| \right|_{\mathcal{C}^{1,\alpha}_{t}}$$

$$\tag{4}$$

$$||\gamma||_{\mathfrak{Y}^{t}} = ||\tilde{\pi}_{\mathcal{I}}\gamma||_{\mathcal{C}^{0,\alpha}_{\beta-1;t}} + t^{-\kappa} \left| \left| \tilde{\pi}^{t}\gamma \right| \right|_{\mathcal{C}^{0,\alpha}_{t}}.$$
(5)
Theorem ([Majb])

Assume that D^t is isentropic. We can choose α, β, λ and κ in a reasonable way. Then there exists a right-inverse R_{D^t} to D^t satisfying

 $||R_{D^t}\eta||_{\mathfrak{X}^t} \lesssim ||\eta||_{\mathfrak{Y}^t}$

Theorem ([Majc])

Assume that D^t is isentropic. We can choose α, β, λ and κ such that there exists a torsion-free Spin(7)-structure $\widetilde{\Omega}^t$ such that

$$\left|\left|\Omega^t - \widetilde{\Omega}^t \right|
ight|_{\mathfrak{X}^t} \lesssim t^artheta$$

whereby ϑ depends on all the choices.

Theorem ([Majc])

Assume that D^t is isentropic. We can choose α, β, λ and κ such that there exists a torsion-free Spin(7)-structure $\widetilde{\Omega}^t$ such that

$$\left|\left|\Omega^t - \widetilde{\Omega}^t \right| \right|_{\mathfrak{X}^t} \lesssim t^{arepsilon}$$

whereby ϑ depends on all the choices.

$\operatorname{codim}(S)$	α	β	λ	κ	lj	ϑ_{ζ}	θ
4	0.01	-1.0	0.4	1.0	1		0.8
-	-	-0.67	0.428	-	2		1.14
-	-	-	0.01	-	∞	∞	3.96

Table 1: Good choice of parameters for \mathfrak{X}^t -norms.

$\operatorname{codim}(S)$	α	β	λ	κ	lj	ϑ_{ζ}	θ
4	0.01	-0.5	0.444	0.5	1		0.656
-	-	-	-	-	2		1.1
-	-	-	0.4	-	∞	∞	2.6

Table 2: Good choice of parameters for $C^{1,\alpha}_{\beta;t}$ -norms.

Corollary ([Majc])

Assume that D^t is isentropic. We can choose α, β, λ and κ such that there exists a torsion-free G_2 -structure $\tilde{\varphi}^t$ such that

 $\left|\left| arphi^t - \widetilde{arphi}^t
ight|
ight|_{\mathfrak{X}^t} \lesssim t^artheta$

whereby ϑ depends on all the choices.

Examples

Theorem ([Majc])

Let $\widetilde{X^t} \dashrightarrow \mathbb{T}^8/\Gamma$ be one of the Joyce manifolds constructed in [Joy96] and $\widetilde{\Omega}^t$ its torsion-free Spin(7)-structure. Let Ω^t be the Spin(7)-structure on X^t constructed from the pregluing process. Then

 $\left|\left|\widetilde{\Omega}^t - \Omega^t\right|\right|_{\mathfrak{X}^t} \lesssim t^{\sim 4}.$

Theorem ([Majc])

Let $\widetilde{X^t} \dashrightarrow \mathbb{T}^8/\Gamma$ be one of the Joyce manifolds constructed in [Joy96] and $\widetilde{\Omega}^t$ its torsion-free Spin(7)-structure. Let Ω^t be the Spin(7)-structure on X^t constructed from the pregluing process. Then

 $\left|\left|\widetilde{\Omega}^t - \Omega^t \right|\right|_{\mathfrak{X}^t} \lesssim t^{\sim 4}.$

Theorem ([Majc])

Let $\widetilde{X^t} \dashrightarrow \mathbb{CP}^{[a_0,...,a_4]}$ be one of the manifolds constructed in [Joy99] and $\overline{\Omega}^t$ its torsion-free Spin(7)-structure. Let Ω^t be the Spin(7)-structure on X^t constructed from the pregluing process. Then

 $\left|\left|\widetilde{\Omega}^t - \Omega^t\right|\right|_{\mathfrak{X}^t} \lesssim t^{\sim 4}$

Definition

Let $(\hat{X}, \hat{\omega}, \hat{\theta}, \hat{g})$ be a Calabi-Yau four-fold given by a complete intersection. Assume that the real locus S of \hat{X} is of real codimension four and is smooth.

Definition

Let $(\hat{X}, \hat{\omega}, \hat{\theta}, \hat{g})$ be a Calabi-Yau four-fold given by a complete intersection. Assume that the real locus S of \hat{X} is of real codimension four and is smooth.

Proposition ([Majc])

Let $\mathfrak{Z}_2 \to S$ be a two-fold, unramnified cover of S. If there exists a harmonic, self-dual, \mathfrak{Z}_2 -twisted, non vanishing two form ζ , then the quotient \hat{X}/\mathbb{Z}_2 admits a resolution

$$\pi_{\zeta}: X^t \dashrightarrow \hat{X}/\mathbb{Z}_2.$$

Moreover, if D^t is isentropic the resolution carries a family of torsion-free Spin(7)-structure $\tilde{\Omega}^t$ resolving the natural one on $(\hat{X}/\mathbb{Z}_2, \Omega, g_{\Omega})$ induced by the Calabi-Yau structure.

• pick the same K3 surface as in [JK21], that admits a branched double cover

$$K3 \to \mathbb{CP}^2$$

whose branching set is given by a sixtic C of genus 10

• pick the same K3 surface as in [JK21], that admits a branched double cover

$$K3 \rightarrow \mathbb{CP}^2$$

whose branching set is given by a sixtic C of genus 10

• define an involution

 $\alpha_{K3}: K3 \rightarrow K3$

by swapping the sheets of the branched covering and consequently $Fix(\alpha_{K3}) = C$

• pick the same K3 surface as in [JK21], that admits a branched double cover

$$K3 \rightarrow \mathbb{CP}^2$$

whose branching set is given by a sixtic C of genus 10

• define an involution

 $\alpha_{K3}: K3 \rightarrow K3$

by swapping the sheets of the branched covering and consequently $Fix(\alpha_{K3}) = C$

• the \mathbb{Z}_2 action on \mathbb{CP}^2 by complex conjugation can be lifted to an action

$$\begin{array}{c} \mathsf{K3} \xrightarrow{\beta_{\mathsf{K3}}} \mathsf{K3} \\ \downarrow \qquad \qquad \downarrow \\ \mathbb{CP}^2 \xrightarrow{\tau} \mathbb{CP}^2 \end{array}$$

pick the same K3 surface as in [JK21], that admits a branched double cover

$$K3 \rightarrow \mathbb{CP}^2$$

whose branching set is given by a sixtic C of genus 10

• define an involution

 $\alpha_{K3}: K3 \rightarrow K3$

by swapping the sheets of the branched covering and consequently $Fix(\alpha_{K3}) = C$

• the \mathbb{Z}_2 action on \mathbb{CP}^2 by complex conjugation can be lifted to an action

$$\begin{array}{ccc} \mathsf{K3} \xrightarrow{\beta_{\mathsf{K3}}} \mathsf{K3} \\ \downarrow & \downarrow \\ \mathbb{CP}^2 \xrightarrow{\tau} \mathbb{CP}^2 \end{array}$$

• non-tivial argument one can show that $Fix(\beta_{\kappa_3}) = S^2$ and $Fix(\alpha_{\kappa_3}\beta_{\kappa_3}) = \emptyset$

• set

$$\mathbb{S}^1 = [0,4]/\sim$$

an define the $\mathbb{Z}_2^3\text{-action}$

$$\begin{aligned} &\alpha_{\mathbb{T}^4} : (x_1, x_2, x_3, x_4) \mapsto (-x_1, 2 - x_2, x_3, x_4) \\ &\beta_{\mathbb{T}^4} : (x_1, x_2, x_3, x_4) \mapsto (2 - x_1, x_2, -x_3, x_4) \\ &\gamma_{\mathbb{T}^4} : (x_1, x_2, x_3, x_4) \mapsto (-x_1, -x_2, 2 - x_3, 2 - x_4) \end{aligned}$$

on the four torus $\ensuremath{\mathbb{T}}^4,$ with

$$\begin{aligned} \operatorname{Fix}(\alpha_{\mathbb{T}^4}) &= \left\{ \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix}, \mathbb{S}^1, \mathbb{S}^1 \right\} \\ \operatorname{Fix}(\beta_{\mathbb{T}^4}) &= \left\{ \begin{pmatrix} 1\\3 \end{pmatrix}, \mathbb{S}^1, \begin{pmatrix} 0\\2 \end{pmatrix}, \mathbb{S}^1 \right\} \\ \operatorname{Fix}(\gamma_{\mathbb{T}^4}) &= \left\{ \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix} \right\}. \end{aligned}$$

New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

• lift the action of \mathbb{Z}_2^3 to $\mathbb{T}^4 \times K3$ via $\alpha = \alpha_{\mathbb{T}^4} \times \alpha_{K3}$, $\beta = \beta_{\mathbb{T}^4} \times \beta_{K3}$ and $\gamma = \gamma_{\mathbb{T}^4} \times \mathrm{id}_{K3}$, whose fix point sets are given by

$$\operatorname{Fix}(\alpha) = \left\{ \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix}, \mathbb{S}^1, \mathbb{S}^1 \right\} \times C$$
$$\operatorname{Fix}(\beta) = \left\{ \begin{pmatrix} 1\\3 \end{pmatrix}, \mathbb{S}^1, \begin{pmatrix} 0\\2 \end{pmatrix}, \mathbb{S}^1 \right\} \times \mathbb{S}^2$$
$$\operatorname{Fix}(\gamma) = \left\{ \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix}, \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix} \right\} \times K3$$

and

$$\alpha\beta,\alpha\gamma,\beta\gamma,\alpha\beta\gamma$$

act freely on $\mathbb{T}^4\times K3$

New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

• lift the action of \mathbb{Z}_2^3 to $\mathbb{T}^4 \times K3$ via $\alpha = \alpha_{\mathbb{T}^4} \times \alpha_{K3}$, $\beta = \beta_{\mathbb{T}^4} \times \beta_{K3}$ and $\gamma = \gamma_{\mathbb{T}^4} \times \mathrm{id}_{K3}$, whose fix point sets are given by

$$\begin{aligned} \operatorname{Fix}(\alpha) &= \left\{ \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix}, \mathbb{S}^1, \mathbb{S}^1 \right\} \times C \\ \operatorname{Fix}(\beta) &= \left\{ \begin{pmatrix} 1\\3 \end{pmatrix}, \mathbb{S}^1, \begin{pmatrix} 0\\2 \end{pmatrix}, \mathbb{S}^1 \right\} \times \mathbb{S}^2 \\ \operatorname{Fix}(\gamma) &= \left\{ \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix}, \begin{pmatrix} 0\\2 \end{pmatrix}, \begin{pmatrix} 1\\3 \end{pmatrix} \right\} \times K3 \end{aligned}$$

and

 $\alpha\beta,\alpha\gamma,\beta\gamma,\alpha\beta\gamma$

act freely on $\mathbb{T}^4 \times K3$

• this \mathbb{Z}_2^3 action preserves the torsion-free Spin(7)-structure

$$\hat{\Omega} = \operatorname{vol}_{\mathbb{T}^4} + \operatorname{vol}_{K3} - \operatorname{tr}_+ (\underline{\omega}_{\mathbb{T}^4} \wedge \underline{\omega}_{K3})$$

on $\mathbb{T}^4\times K3$ and hence the torsion-free structure $\hat\Omega$ descends to a torsion-free Spin(7)-structure Ω on the orbifold

 $(\mathbb{T}^4 \times K3)/\mathbb{Z}_2^3.$

- singular strata in (T⁴ × K3)/Z³₂ are non-intersecting and given by two copies of T² × C, two copies of T² × S² and four copies of K3
- pick the resolution data on T² × C to be determined by ζ = vol_{T²} + vol_C, the resolution data on T² × S² by ζ = vol_{T²} + vol_{S²} and on the K3 we can freely pick any combination of the hyperkähler triple as ζ

- singular strata in (T⁴ × K3)/Z³₂ are non-intersecting and given by two copies of T² × C, two copies of T² × S² and four copies of K3
- pick the resolution data on T² × C to be determined by ζ = vol_{T²} + vol_C, the resolution data on T² × S² by ζ = vol_{T²} + vol_{S²} and on the K3 we can freely pick any combination of the hyperkähler triple as ζ

Lemma ([Majc])

There exists a torsion-free Spin(7)-structure $\widetilde{\Omega}^t$ on X^t satisfying

$$\left|\left| ilde{\Omega}^t - \Omega^t \right| \right|_{\mathcal{C}^{1,lpha}_{eta;t}} \lesssim t^{\sim 2.6}.$$

Moreover, as $b^1(X^t) = b_7^2(X^t) = 0$ the resolved Spin(7)-manifold has full holonomy.

 Sym²(K3) = (K3 × K3)/ℤ₂ is a Spin(7)-orbifold whose torsion-free Spin(7)-structure is induced by the product structure

$$\hat{\Omega} = \operatorname{vol}_1 + \operatorname{vol}_2 - \operatorname{tr}(\underline{\omega}_1 \wedge \underline{\omega}_2).$$

Sym²(K3) = (K3 × K3)/Z₂ is a Spin(7)-orbifold whose torsion-free Spin(7)-structure is induced by the product structure

$$\hat{\Omega} = \operatorname{vol}_1 + \operatorname{vol}_2 - \operatorname{tr}(\underline{\omega}_1 \wedge \underline{\omega}_2).$$

• singular strata of Sym²(K3) is the diagonal K3 and its normal bundle can be identified with its tangent bundle, i.e.

$$0 \rightarrow TK3 \rightarrow TSym^2(K3) \rightarrow NK3 \rightarrow 0$$

splits by $NK3 \cong TK3 \ni v \mapsto (\pm v \oplus \mp v)$

 Sym²(K3) = (K3 × K3)/Z₂ is a Spin(7)-orbifold whose torsion-free Spin(7)-structure is induced by the product structure

$$\hat{\Omega} = \operatorname{vol}_1 + \operatorname{vol}_2 - \operatorname{tr}(\underline{\omega}_1 \wedge \underline{\omega}_2).$$

• singular strata of Sym²(K3) is the diagonal K3 and its normal bundle can be identified with its tangent bundle, i.e.

$$0 \rightarrow TK3 \rightarrow TSym^2(K3) \rightarrow NK3 \rightarrow 0$$

splits by $NK3 \cong TK3 \ni v \mapsto (\pm v \oplus \mp v)$

• there exists a two sphere of non-vanishing, harmonic, self-dual two forms corresponding to resolutions

$$X_{\omega_1} \dashrightarrow NK3/\mathbb{Z}_2.$$

The spaces X_{ω_l} are diffeomorphic to $\operatorname{Bl}_l(\Delta : K3 \hookrightarrow \operatorname{Sym}^2(K3))$ and the resolved space is diffeomorphic to

$$\widetilde{\operatorname{Sym}^2(K3)}^t \cong \operatorname{Hilb}^2(K3).$$

 Sym²(K3) = (K3 × K3)/Z₂ is a Spin(7)-orbifold whose torsion-free Spin(7)-structure is induced by the product structure

$$\hat{\Omega} = \operatorname{vol}_1 + \operatorname{vol}_2 - \operatorname{tr}(\underline{\omega}_1 \wedge \underline{\omega}_2).$$

• singular strata of Sym²(K3) is the diagonal K3 and its normal bundle can be identified with its tangent bundle, i.e.

$$0 \rightarrow TK3 \rightarrow TSym^2(K3) \rightarrow NK3 \rightarrow 0$$

splits by $NK3 \cong TK3 \ni v \mapsto (\pm v \oplus \mp v)$

• there exists a two sphere of non-vanishing, harmonic, self-dual two forms corresponding to resolutions

$$X_{\omega_1} \dashrightarrow NK3/\mathbb{Z}_2.$$

The spaces X_{ω_l} are diffeomorphic to $\operatorname{Bl}_l(\Delta : K3 \hookrightarrow \operatorname{Sym}^2(K3))$ and the resolved space is diffeomorphic to

$$\widetilde{\operatorname{Sym}^2(K3)}^t \cong \operatorname{Hilb}^2(K3).$$

Proposition ([Majc])

There exists a family of hyperkähler metrics \tilde{g}^t on Hilb²(K3) satisfying

$$\left|\left|\widetilde{g}^{t} - g^{t}\right|\right|_{C^{1,0.01}_{-0.5;t}} \lesssim t^{1.1}$$

and $\lambda = 0.444$ and $\kappa = 1/2$.

Summary

• correspondence between resolutions of X_0 and harmonic $\zeta \in \Omega^2_+(\mathcal{S},\mathfrak{H})$

- correspondence between resolutions of X_0 and harmonic $\zeta \in \Omega^2_+(S,\mathfrak{H})$
- improved existence result for Spin(7)-orbifold resolutions

- correspondence between resolutions of X_0 and harmonic $\zeta \in \Omega^2_+(S,\mathfrak{H})$
- improved existence result for Spin(7)-orbifold resolutions
- new examples of compact Spin(7)-manifolds and approximations of hyperkähler metrics on *Hilb*²(*K*3)

Further Research

• new examples using classification of Nikulin-involutions on K3 surfaces

- new examples using classification of Nikulin-involutions on K3 surfaces
- construction of degenerating families of holonomy instantons (up-coming [Majd])

- new examples using classification of Nikulin-involutions on K3 surfaces
- construction of degenerating families of holonomy instantons (up-coming [Majd])
- construction of degenerating families of calibrated submanifolds (up-coming [Maja])

- new examples using classification of Nikulin-involutions on K3 surfaces
- construction of degenerating families of holonomy instantons (up-coming [Majd])
- construction of degenerating families of calibrated submanifolds (up-coming [Maja])
- generalise construction to all types of orbifold singularities using Mazzeo's Edge calculus

- new examples using classification of Nikulin-involutions on K3 surfaces
- construction of degenerating families of holonomy instantons (up-coming [Majd])
- construction of degenerating families of calibrated submanifolds (up-coming [Maja])
- generalise construction to all types of orbifold singularities using Mazzeo's Edge calculus
- computing η -invariants of G_2 -manifolds (extending work of [For])

References

- [Bar19] Rodrigo Barbosa. Harmonic higgs bundles and coassociative ale fibrations. *arXiv preprint arXiv:1910.10742*, 2019.
- [BC89] Jean-Michel Bismut and Jeff Cheeger. η-invariants and their adiabatic limits. Journal of the American Mathematical Society, 2(1):33–70, 1989.
- [Bis86] Jean-Michel Bismut. The Atiyah-Singer index theorem for families of Dirac operators: Two heat equation proofs. *Invent. Math.*, 83:91–151, 1986.
- [BL91] Jean-Michel Bismut and Gilles Lebeau. Complex immersions and Quillen metrics. Publ. Math., Inst. Hautes Étud. Sci., 74:1–297, 1991.
- [BL95] Jean-Michel Bismut and John Lott. Flat vector bundles, direct images and higher real analytic torsion. *Journal of the American Mathematical Society*, 8(2):291–363, 1995.
 - [For] Nelvis Fornasin. *[eta] invariants under degeneration to cone-edge singularities.* PhD thesis, Dissertation, Universität Freiburg, 2019.
- [Goe14] Sebastian Goette. Adiabatic limits of Seifert fibrations, Dedekind sums, and the diffeomorphism type of certain 7-manifolds. J. Eur. Math. Soc. (JEMS), 16(12):2499–2555, 2014.
 - [JK21] Dominic Joyce and Spiro Karigiannis. A new construction of compact torsion-free G₂-manifolds by gluing families of Eguchi-Hanson spaces. J. Differ. Geom., 117(2):255–343, 2021.
- [Joy96] Dominic D. Joyce. Compact 8-manifolds with holonomy Spin(7). Invent. Math., 123(3):507-552, 1996.
- [Joy99] Dominic D. Joyce. A new construction of compact 8-manifolds with holonomy Spin(7). *Journal of Differential Geometry*, 53(1):89–130, 1999.
- [Kro90] P. B. Kronheimer. Instantons and the geometry of the nilpotent variety. *Journal of Differential Geometry*, 32(2):473–490, 1990.
 - [Maja] Viktor F. Majewski. Cayley Submanifolds of Resolutions of Spin(7)-Orbifold. to appear.
 - [Majb] Viktor F. Majewski. Dirac Operators on Orbifold Resolutions. to appear.
 - [Majc] Viktor F. Majewski. Resolutions of Spin(7)-Orbifold. to appear.
 - [Majd] Viktor F. Majewski. Spin(7)-Instantons on Resolutions of Spin(7)-Orbifold. to appear.
- [Pla20] Daniel Platt. Improved Estimates for G₂-structures on the Generalised Kummer Construction, 2020.
- [Wal17] Thomas Walpuski. G₂-instantons, associative submanifolds and Fueter sections. Commun. Anal. Geom., 25(4):847–893, 2017.