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Riemanian Orbifolds

Definition
Let X be an n-dimensional, real orbifold and let X*"8 denote the union of its
singular strata. Let

e X is of singularity at S, if X at S C X is locally modelled on
R"/T2R"™" xR"/T
such that I acts freely on R™\{0}.
e X is of at S, if X at S C X is locally modelled on
R/I 22 R"Z0™ X R™ /T

such that T acts freely on R™\{0}.
e X is of at S, if it is neither type (1) nor type (lla)
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Spin(7)-Orbifold Resolutions

Definition
Let be a LA is given by a
smooth family of and a map

that restricts to a diffeomorphism onto X\X*"€ such that the exceptional set
Et = (p*)"1(X*) is of codimension > 0.Furthermore, the family
(X1, Q%) 2% (X, Q) in a " Gromov-Hausdorff sense”, i.e.

and
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Normal Cone Bundles and CF Spin(7)-Structures

o let i:(S,gs) — (X,€,g) be a connected singular stratum of type (i) of
codimension four and whose isotropy group is [ C Sp(1) C Spin(7). Let
further

0 — TS —i"TX — NS — 0
be its normal bundle

e think of NS as a vector bundle v : NS — S with a fiberwise -action
(action by Isot(S))

e normal cone bundle of S is given by the quotient orbifold

vy : NS/Isot(S) = Xo — S



Normal Cone Bundles and CF Spin(7)-Structures

e Riemannian orbifold structure g induces a splitting
TXo =2 Ho @y NS =215 TS © g NS
and a CF-Spin(7)-orbifold structure
Qo = Q0% + Q5% + Q0 € Q*(Xo)
and

g =vygs +gov el (Xo. Sym’vi TV S @ Sym?; I\/5> .
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Normal Cone Bundle and CF Spin(7)-Structures

Remark

Notice, that there exists an R>q-action on Xo

such that

and

Remark

Notice, that on S there exists a natural reduction of the Spin(7)-frame bundle
Fr_gp,-,,(7)’x|5 — S toa

Moreover, Fs is a torsion-free extension of the SO(4)-frame bundle Frso.s of
S. Let in the following on Fs.
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e given a tubular neighbourhood
J i Tub(S) = X
we expand the Spin(7)-structure
J Q= Qo+ Qo [Qhot| gy = O(r)

where r = distg(S)



Spin(7)-Structures on Tubular Neighbourhoods

e given a tubular neighbourhood
J i Tubze(S) — X
we expand the Spin(7)-structure
72 = Qo+ Qpot [Qhot| gy = O(r)
where r = distg(S)

Remark
We will later need to C°-estimate of the higher order terms. In order to get
them "small” with respect to the gluing parameter, we need to choose
A
e~t", for0 < \<1.



(Pre-)Resolving Spin(7)-Orbifolds
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Parameter Space of Orbifold Resolutions

Remark

e Kronheimer [Kro90] described for finite
subgroups of Sp(1) using a hyperkahler quotient/GIT construction

e there exists a fibre bundle k : Ml — Opy@y = Im(H) ® br

Proposition ([Kro90])

There exists a on M = Om( and
codimension three walls VW C Oy such that for all { € Opym)\W,
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Harmonic Sections and Adiabatic Spin(7)-Structures

Definition
Let C C Com(im(Nr), Norm(I', SO(4)) x Weyl(T')) and € — S a C-principal
bundle. We define the twisted vector bundle

= . ~ 2 .
9 = (Fs X5 €) Xprxc Oy and $H5 = (Fs X5 €) Xnrxc Otmmy)-

o let ¢ € Q%(S, $), define the fibration

M — M

R I+

Fs xs € = O1m(e)

N



Harmonic Sections and Adiabatic Spin(7)-Structures

Lemma ([Maijc])
Define the four form

by
{-‘22,0,0 :(I{C o (]55)*V01g5
1 * e
G220 _ _ = <"€<9i N g0,2,o>
A i f e
924 0 = <<*£0,2 0 A C*QO 2 0>
The space

is a Spin(7)-resolution.



Harmonic Sections and Adiabatic Spin(7)-Structures

Lemma ([Maijc])

There exists a "scaling map” lift

Vs
(XC7 QE) — (th-cﬁ Qtlg)
{‘/ A

(X0, 26) —2 (X0, Q)

S

where
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Harmonic Sections and Adiabatic Spin(7)-Structures

Remark
Let W C $H2 denote the set of walls.
e if ¢ does not intersect 20 then (X¢, ¢, g¢) is a
and E¢ is given by bundles of intersecting spheres over S
o if ¢ MAW\O , X¢ conically singular over S" /7,
e if ¢ O conically singular over S7/T



Harmonic Sections and Adiabatic Spin(7)-Structures

Theorem ([Majc])
If then

In particular, and hence
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Pregluing the Spin(7)-Structures

e the composition of maps

[ Byt (XO\UE 25 Boe(Xeo.c)\Uo —o¥ Tubac(S)\S <> X

e define
p' i X" = Uz Upe X\Uc -——» X
and

Q° =Q¢ + x5 - (% — Qb + Qhor)
dQ" =(1 — x5)dQ¢ + dxs A (0 — Q6 + Dhor)



Pregluing the Spin(7)-Structures

e the composition of maps

[ Byo1 (XO)\US 25 Boe(Xe.)\Uo ¥ Tuba(S)\S <5 X

e define
/)L:XL7U§( Ure X\Ue --» X
and

Q°F =Q¢ + x5 - (0 — Q + Qhor)
dQ* =(1 — x5)dQE + dxb A (25 — QF + Qbor)

e p': (X5, Q) --» (X, Q) converges in a Gromov-Hausdorff sense



Pregluing of Spin(7)-Structures

Can we find a torsion-free Spin(7)-structure close to Q°?



Existence of Torsion-Free Resolutions of
Spin(7)-Orbifolds
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Existence of Torsion-free Spin(7)-Structures

e the preglued Spin(7)-structure Q° has "small torsion”

e condition of a Spin(7)-structure in a small neighbourhood of Q* to be
torsion free is given by

0=dO(Q" +n) = dQ" + dm, (1) + dQq: (1)

e instead of constructing a Diffo(X")-orbit full of solutions it is more
convenient to construct a solution in Spin(7)[X*] = Diffo(X")-gauge slice

0 =dQ" + dm, ot () + dQu:(n)

0 =mig7,0t7-



Existence of Torsion-free Spin(7)-Structures

e the gauge-fixed equations are equivalent to

~ dn=d9' + dQue(n) o)
—d"n = *dQ" + *xdQq:(n). (2)

or equivalently

7((l+(l j)l/ = ((l’(l C)T Qt {QQ.’(//)} -+ ((l —d J) (Qr —+ 7 Ot { QQ?(//)}’) o



Existence of Torsion-free Spin(7)-Structures

e the gauge-fixed equations are equivalent to

~ dn=d9' + dQue(n) o)
—d"n = *dQ" + *xdQq:(n). (2)

or equivalently

t

—(d+d" )p=(d+d )7 ot {Qat(n)} + (d —d J)(:Qr+7 ot {Qar(n)}) -

e let R, ,.c denote a right inverse to (d + d*')

d+d*

n=—(d+d r)ﬁ,_gs {Qat(Ry, gutm)} — (d—d7) (Q" + 7, o { Qur (Ryia=tm)}) -
3)
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Gluing Spin(7)-Structures

e let in the following denote D* = d + d*o* the Hodge-de Rham operator

to find Rp: we need to understand the kernel of D*

to bound Rp: we need to understand its t-dependence

"usual” Hodge theory yields weak estimates, as D' becomes singular near

the adiabatic limit along S

e need to understand D2 and D to gain insides on D*

Remark
This behaviour of D' is share by Dirac operators on orbifold resolutions (more

general set-up in upcoming paper [Majb]).
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Adiabatic Families of Dirac Operators

e we are interested in the operator Dy2.. on Xp2.,
e problems: no Fredholm theory and no insides into the adiabatic limit t — 0
e instead consider the operator D) = W, 0 Do oW, = DEy+t 5 Dey
where D,y is the vertical Hodge-de Rham-operator
e D is the Dirac operator of an adiabatic family of Dirac bundles
t t
(A TV X, cléc, gf, V&) (see [Goeld])

e "harmonic forms on (X, gf) concentrate along vertically harmonic
forms" [Bis86, BC89, BL91, BL95, Goel4]
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The Adiabatic Residue and Isentropic Dirac Operators

e the push forward along v¢ allows us to view the operator D{ as an operator

t

Q8(X) ———— Q3(X)

I

(S, (V)es TV Xe) = T(S, (ve)es TV Xc)

e to stay consistent with the literature (see [Wall7, Pla20], etc.) we will
work with (weighted) Hélder norms on X*

e using Holder-completions of the fibres of the push forward
=il . v Vv
t - Dg;\/ : (Vg)*kﬂ,a T X( — (l/g)*k,a T X(
B B—1
and split

(ve) kit A° TV Xe = ThE5(Xe/S) ® Kac(Xc/S)
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The Adiabatic Residue and Isentropic Dirac Operators

e we decompose the Dirac operator
t t t 1 t
Dt — Dizz  Dexcr - Dipyzzr +t " - Devizz Depxr
¢ t t - t t
D\:T/\' D':/\/\ D\‘//"/'/\ D\ H; KK

e "harmonic forms on (X, gf) concentrate along vertically harmonic
forms” = understand Df jx

Proposition ([Majb])

The vertical kernel bundles are isomorphic to
Kac(Xc/S) 2N TS @ H*(X:/S)

where H*(Xc/S) consist of vertically harmonic (anti-self dual) two forms that
decay with rate —4. Moreover, this is again a Hermitian CI(TS, gs)-module,

. . . .2
whose Hermitian structure is given by the fiberwise L;-norm.



The Adiabatic Residue and Isentropic Operators

Definition
The is the induced operator
DE;ICIC =D+t C1g<(FH<)’C’C
and the of
is given by the GauB-Manin-Hodge-de Rham operator. The is

defined by



The Adiabatic Residue and Isentropic Dirac Operators

Definition
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The Adiabatic Residue and Isentropic Dirac Operators

Definition

We say D{ is (i.e. adiabatic and reversible) if ker(D{) = Rer(Df)
Remark

There exist on the isentropicity of Dé that can be

computed using spectral sequences.
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Adiabatic Norms and Uniform Estimates

Definition
Let define the

7 Q%(XY) — Q° (S, H(X:/S)) : It

t

and a of it*. We further define the maps

and . Let k > 0 and «, 3 and \ be fixed. We define the

llee =IlFzvll e + €7 |7 o (4)

||’YH2)! = ||7?I’Y|‘cgvf1;t +t" Hﬁ't’YHCE-ﬂ . (5)



Uniform Estimates for D?

Theorem ([Majb])

Assume that . We can choose a, 8, A and k in a reasonable
way. Then there exists a satisfying
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Existence of Resolutions of Spin(7)-Orbifolds

Theorem ([Maijc])

Assume that
exists a

. We can choose a, 5, \ and k such that there

such that
whereby 9 depends on all the choices.
| codim(S) | a B8 A PR
4 0.01 | —-1.0 0.4 1.0 |1 0.8
- - —0.67 | 0.428 | - 2 1.14
- - - 0.01 - o | oo | 3.96
Table 1: Good choice of parameters for Xt-norms.



Choice of Parameters

codim(S) | «a B A K i | 9¢ |9

4 0.01 | —0.5 | 0.444 | 05 | 1 0.656
- - - - - ]2 1.1

- - - 0.4 - oo | oo | 2.6

Table 2: Good choice of parameters for Céf?—norms.



Existence of Torsion-Free G,-Structures

Corollary ([Majc])

Assume that . We can choose «, B, \ and k such that there
exists a torsion-free Gy-structure @' such that

whereby 9 depends on all the choices.
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Improved Estimates for Generalised Kummer Spaces

Theorem ([Majc])

Let be one of the Joyce manifolds constructed in [Joy96] and Q!
its torsion-free Spin(7)-structure. Let Q° be the Spin(7)-structure on X"
constructed from the pregluing process. Then

Theorem ([Maijc])

Let be one of the manifolds constructed in [Joy99] and Q!
its torsion-free Spin(7)-structure. Let Q° be the Spin(7)-structure on X*
constructed from the pregluing process. Then



Complete Intersections

Definition
Let ()A(,¢37 é7 g) be a Calabi-Yau four-fold given by a complete intersection.
Assume that the real locus S of X is of real codimension four and is smooth.



Complete Intersections

Definition
Let (X,&,0,8) be a Calabi-Yau four-fold given by a
Assume that the is of

Proposition ([Majc])
Let . If there exists a

, then the quotient X /7>
admits a resolution

Moreover, if the resolution carries a family of torsion-free
Spin(7)-structure Q' resolving the natural one on (X /Z2,, ga) induced by
the Calabi-Yau structure.
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New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

e pick the same K3 surface as in [JK21], that admits a branched double

cover
K3 — CP?

whose branching set is given by a sixtic C of genus 10

e define an involution
aks : K3 — K3

by swapping the sheets of the branched covering and consequently
l‘ﬂi\'((\;@) =G

e the Z, action on CP? by complex conjugation can be lifted to an action

K3 24 K3

]

CP? = CP?

.. N 2
e non-tivial argument one can show that Fix(fks3) = S°

F‘lX((b/\/g ’I)K'g) = (/]

and



New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

e set
S' =1[0,4]/ ~
an define the Z3-action

ars @ (x1, %0, X3, %) = (—x1,2 — X2, X3, Xa)
Bra : (x1, X2, X3, Xa) — (2 — X1, X2, —X3, X4)

yra (X1, X2, X3, Xa) — (—x1, —Xx2,2 — X3,2 — Xa)

on the four torus T*, with

{9

Fix(Br+) =

N

Fix(yp) =

—N



New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

e lift the action of Z3 to T* x K3 via o = arpa X a3, 8 = B+ X Pr3 and
v = yp4 X idks3, whose fix point sets are given by

{(a) () e
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af, avy, By, afy

Fix(c)

and

act freely on T* x K3
e this Z3 action preserves the torsion-free Spin(7)-structure

Q = volyps + volxs — try (wps A wys)

on T* x K3 and hence the torsion-free structure {2 descends to a
torsion-free Spin(7)-structure Q on the orbifold

(T* x K3)/Z3.
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e singular strata in (T* x K3)/7Z3 are non-intersecting and given by two

D)

copies of T2 x C, two copies of T? x S? and four copies of K3

e pick the resolution data on T? x C to be determined by ¢ = volg + volc,
the resolution data on T? x S? by ¢ = volp2 + vols2 and on the K3 we can
freely pick any combination of the hyperkahler triple as ¢

Lemma ([Majc])
There exists a torsion-free Spin(7)-structure Q on X! satisfying

- ,~2.6
t .
d,0

€L

HQL QL

Moreover, as b'(X*") = b3(X") = 0 the resolved Spin(7)-manifold has full
holonomy.
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Approximating Hyperkahler Metrics

Proposition ([Majc])
There exists a family of hyperkihler metrics g° on Hilb2( K3) satisfying

and A\ = 0.444 and Kk = 1/2.
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e correspondence between resolutions of Xo and harmonic ¢ € Q% (S, $)
e improved existence result for Spin(7)-orbifold resolutions

e new examples of compact Spin(7)-manifolds and approximations of
hyperkahler metrics on Hilb*(K3)
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Further Research

e new examples using classification of Nikulin-involutions on K3 surfaces

e construction of degenerating families of holonomy instantons (up-coming
[Majd])

e construction of degenerating families of calibrated submanifolds
(up-coming [Maja])

e generalise construction to all types of orbifold singularities using Mazzeo's
Edge calculus

e computing n-invariants of Gy-manifolds (extending work of [For])
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