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Spin(7)-Orbifolds



Riemanian Orbifolds

Definition

Let X be an n-dimensional, real orbifold and let X sing denote the union of its

singular strata. Let S be a connected component of X sing .

• X is of singularity type (I ) at S, if X at S ⊂ X is locally modelled on

Rn/Γ ∼= Rn−m × Rm/Γ

such that Γ acts freely on Rm\{0}.

• X is of singularity type (IIa) at S, if X at S ⊂ X is locally modelled on

Rn/Γ ∼= Rn−
∑

i mi ××
i

Rmi /Γi

such that Γi acts freely on Rmi \{0}.

• X is of singularity type (IIb) at S, if it is neither type (I ) nor type (IIa)
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Spin(7)-Orbifold Resolutions

Definition

Let (X ,Ω) be a Spin(7)-orbifold. A torsion-free resolution is given by a

smooth family of Spin(7)-manifold (X t , Ω̃t) and a map

ρt : X t 99K X

that restricts to a diffeomorphism onto X\X sing such that the exceptional set

E t = (ρt)−1(X sing ) is of codimension > 0.

Furthermore, the family

(X t , Ω̃t)
t→0−−→ (X ,Ω) in a ”Gromov-Hausdorff sense”, i.e.

ρt∗Ω̃
t t→0−−→

C∞
loc

Ω

and

volΩ̃t (E
t)

t→0−−→ 0.
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Normal Cone Bundles and CF Spin(7)-Structures

• let i : (S , gS) ↪→ (X ,Ω, g) be a connected singular stratum of type (i) of

codimension four and whose isotropy group is Γ ⊂ Sp(1) ⊂ Spin(7). Let

further

0 TS i∗TX NS 0

be its normal bundle

• think of NS as a vector bundle ν : NS → S with a fiberwise Γ-action

(action by Isot(S))

• normal cone bundle of S is given by the quotient orbifold

ν0 : NS/Isot(S) = X0 → S
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Normal Cone Bundles and CF Spin(7)-Structures

• Riemannian orbifold structure g induces a splitting

TX0
∼= H0 ⊕ ν∗

0NS ∼= ν∗
0TS ⊕ ν∗

0NS

and a CF-Spin(7)-orbifold structure

Ω0 = Ω4,0
0 +Ω2,2

0 +Ω0,4
0 ∈ Ω4(X0)

and

g0 = ν∗
0 gS + g0;V ∈ Γ

(
X0, Sym

2ν∗
0T

∨S ⊕ Sym2ν∗
0NS

)
.



Normal Cone Bundle and CF Spin(7)-Structures

Remark

Notice, that there exists an R≥0-action on X0

Ψt : X0 → X0

such that

Ψ∗
t Ω0 = Ω4,0

0 + t2 · Ω2,2
0 + t4 · Ω0,4

0 and Ψ∗
t g0 = ν∗

0 gS + t2g0;V

Remark

Notice, that on S there exists a natural reduction of the Spin(7)-frame bundle

FrSpin(7),X |S → S to a NΓ = Norm(Γ, Spin(7))-principal bundle

FS → S .

Moreover, FS is a torsion-free extension of the SO(4)-frame bundle FrSO,S of

S. Let in the following φ denote Levi-Civita connection on FS .
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Spin(7)-Structures on Tubular Neighbourhoods

• given a tubular neighbourhood

j : Tub2ϵ(S) ↪→ X

we expand the Spin(7)-structure

j∗Ω = Ω0 +Ωhot |Ωhot |g0 = O(r)

where r = distg (S)

Remark

We will later need to C 0-estimate of the higher order terms. In order to get

them ”small” with respect to the gluing parameter, we need to choose

ϵ ∼ tλ, for 0 ≤ λ < 1.
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(Pre-)Resolving Spin(7)-Orbifolds



Parameter Spaces of Orbifold Resolutions

Remark

• construction is based on ideas of Barbosa [Bar19] and unpublished notes

of Walpuski on (adiabatic) resolutions of singular G2-fibrations

• interpretation as Cameral/spectral covers of the singular strata/special

solutions of GSW-type equations

• extends to Spin(7)-fibrations and (conjecturally) to isotropy groups

Γ ⊂ SU(m/2) acting freely on Cm/2\{0}

• today only H/Γ
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Parameter Space of Orbifold Resolutions

Remark

• Kronheimer [Kro90] described hyperkähler resolutions of H/Γ for finite

subgroups of Sp(1) using a hyperkähler quotient/GIT construction

• there exists a fibre bundle κ : M → ΘIm(H) = Im(H)⊗ hΓ

Proposition ([Kro90])

There exists a vertical Im(H)-valued two form ω on M κ−→ ΘIm(H) and

codimension three walls W ⊂ ΘIm(H) such that for all ζ ∈ ΘIm(H)\W,

(κ−1(ζ), ω) = (Mζ , ωζ) 99K (H/Γ, ω0) is a hyperkähler ALE space of rate −4.
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Parameter Space of Orbifold Resolutions

Remark

• H2(Mζ) = hΓ, intersection form is given by Cartan matrix associated with

the ADE type (McKay Duality)

• ζ ∈ W\0, (Mζ , ωζ) is a hyperkähler orbifolds with a singular stratum

modelled on H/Z2

• distance to W corresponds to ”size” of exceptional divisor

The group NΓ → Norm(Γ,SO(4))⋉Weyl(Γ) acts on M such that

• permutes Weyl chambers

• κ is equivariant

• universal vertical hyperkähler structure is invariant
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Harmonic Sections and Adiabatic Spin(7)-Structures

Definition

Let C ⊂ Com(im(NΓ),Norm(Γ, SO(4))⋉Weyl(Γ)) and C → S a C-principal

bundle. We define the twisted vector bundle

H = (FS ×S C)×NΓ×C ΘIm(C) and H2
+ = (FS ×S C)×NΓ×C ΘIm(H).

• let ζ ∈ Ω2
+(S ,H), define the fibration

ζ
∗M M

Xζ FS ×S C ΘIm(H)

S

κζ

ζ̃

ψζ
κ

νζ

ζ

ϕS
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Harmonic Sections and Adiabatic Spin(7)-Structures

Lemma ([Majc])

Define the four form

Ω̂ζ = Ω̂4,0,0
ζ + Ω̂2,2,0

ζ + Ω̂0,4,0
ζ ∈ Ω4,0(ζ

∗M)NΓ×C

by

Ω̂4,0,0
ζ =(κζ ◦ ϕS)

∗volgS

Ω̂2,2,0
ζ =− 1

3

〈
κ∗
ζθ

S
+ ∧ ζ̃∗ω0,2,0

〉
Ω̂0,4,0
ζ =

1

6

〈
ζ̃∗ω0,2,0 ∧ ζ̃∗ω0,2,0

〉
The space

πζ : (Xζ ,Ωζ , gζ) 99K (X0,Ω0, g0)

is a Spin(7)-resolution.



Harmonic Sections and Adiabatic Spin(7)-Structures

Lemma ([Majc])

There exists a ”scaling map” lift

(Xζ ,Ω
t
ζ) (Xt2·ζ ,Ωt2·ζ)

(X0,Ω
t
0) (X0,Ω0)

Ψt

πζ π
t2·ζ

Ψt

where Ψ∗
t Ωt2ζ = Ω4,0

ζ + t2 · Ω2,2
ζ + t4 · Ω0,4

ζ



Harmonic Sections and Adiabatic Spin(7)-Structures

Remark

Let W ⊂ H2
+ denote the set of walls.

• if ζ does not intersect W then (Xζ ,Ωζ , gζ) is a Spin(7)-ACF space of rate

−4 and Eζ is given by bundles of intersecting spheres over S

• if ζ ⋔ W\0 , Xζ conically singular over S7/Z2

• if ζ ⋔ 0 conically singular over S7/Γ
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Harmonic Sections and Adiabatic Spin(7)-Structures

Theorem ([Majc])

If dφζ = 0 then

dΩζ = d2,−1(Ω2,2
ζ +Ω0,4

ζ )

In particular, dΩt2·ζ = (Ψt)∗dΩ
t
ζ = t · dΩζ and hence Ωt2·ζ defines an

adiabatic Spin(7)-structure.



Pregluing the Spin(7)-Structures



Pregluing the Spin(7)-Structures

• the composition of maps

Γt
ζ : B2t−1ϵ(Xζ)\U t

0 B2ϵ(Xt2·ζ)\U0 Tub2ϵ(S)\S X
Ψt

π
t2·ζ j

• define

ρt : X t = U t
2ϵ ∪Γt

ζ
X\Uϵ 99K X

and

Ωt =Ωt
ζ + χt

2 · (Ωt
0 − Ωt

ζ +Ωt
hot)

dΩt =(1− χt
2)dΩ

t
ζ + dχt

2 ∧ (Ωt
0 − Ωt

ζ +Ωt
hot)

• ρt : (X t ,Ωt) 99K (X ,Ω) converges in a Gromov-Hausdorff sense
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Pregluing of Spin(7)-Structures

Can we find a torsion-free Spin(7)-structure close to Ωt?



Existence of Torsion-Free Resolutions of

Spin(7)-Orbifolds



Existence of Torsion-free Spin(7)-Structures

• the preglued Spin(7)-structure Ωt has ”small torsion”

• condition of a Spin(7)-structure in a small neighbourhood of Ωt to be

torsion free is given by

0 = dΘ(Ωt + η) = dΩt + dπτ,Ωt (η) + dQΩt (η)

• instead of constructing a Diff0(X
t)-orbit full of solutions it is more

convenient to construct a solution in Spin(7)[X t ] ⇒ Diff0(X
t)-gauge slice

0 =dΩt + dπτ,Ωt (η) + dQΩt (η)

0 =π1⊕7,Ωtη.
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Existence of Torsion-free Spin(7)-Structures

• the gauge-fixed equations are equivalent to

− dη =dΩt + dQΩt (η) (1)

− d∗η = ∗ dΩt + ∗dQΩt (η). (2)

or equivalently

−(d+ d∗t )η = (d+ d∗t )π−,Ωt {QΩt (η)}+ (d− d∗t )
(
Ωt + π+,Ωt {QΩt (η)}

)
.

• let Rd+d∗t denote a right inverse to (d+ d∗t )

η = −(d+ d∗t )π−,Ωt

{
QΩt (Rd+d∗t η)

}
− (d− d∗)

(
Ωt + π+,Ωt

{
QΩt (Rd+d∗t η)

})
.

(3)
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Gluing Spin(7)-Structures

• let in the following denote Dt = d+ d∗Ωt the Hodge-de Rham operator

• to find RDt we need to understand the kernel of Dt

• to bound RDt we need to understand its t-dependence

• ”usual” Hodge theory yields weak estimates, as Dt becomes singular near

the adiabatic limit along S

• need to understand Dt2·ζ and D to gain insides on Dt

Remark

This behaviour of Dt is share by Dirac operators on orbifold resolutions (more

general set-up in upcoming paper [Majb]).
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Adiabatic Families of Dirac Operators

• we are interested in the operator Dt2·ζ on Xt2·ζ

• problems: no Fredholm theory and no insides into the adiabatic limit t → 0

• instead consider the operator Dt
ζ = Ψ∗

t ◦ Dt2·ζ ◦Ψ∗
−t = Dt

ζ;H + t−1 · Dζ;V
where Dζ;V is the vertical Hodge-de Rham-operator

• Dt
ζ is the Dirac operator of an adiabatic family of Dirac bundles

(∧•T∨Xζ , cl
g tζ , g t

ζ ,∇g tζ ) (see [Goe14])

• ”harmonic forms on (Xζ , g
t
ζ) concentrate along vertically harmonic

forms”[Bis86, BC89, BL91, BL95, Goe14]
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The Adiabatic Residue and Isentropic Dirac Operators

• the push forward along νζ allows us to view the operator Dt
ζ as an operator

Ω•
β(Xζ) Ω•

β(Xζ)

Γ(S , (νζ)∗βT
∨Xζ) Γ(S , (νζ)∗βT

∨Xζ)

Dt
ζ

Dt
ζ

• to stay consistent with the literature (see [Wal17, Pla20], etc.) we will

work with (weighted) Hölder norms on X t

• using Hölder-completions of the fibres of the push forward

t−1 · Dζ;V : (νζ)∗k+1,α
β

T∨Xζ → (νζ)∗k,α
β−1

T∨Xζ

and split

(νζ)∗k+1,α
β

∧• T∨Xζ = Ik,α
AC ;β(Xζ/S)⊕KAC (Xζ/S)
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The Adiabatic Residue and Isentropic Dirac Operators

• we decompose the Dirac operator

Dt
ζ =

(
Dt
ζ;II Dt

ζ;KI

Dt
ζ;IK Dt

ζ;KK

)
=

(
Dt
ζ;H;II + t−1 · Dζ;V ;II Dt

ζ;H;KI

Dt
ζ;H;IK Dt

ζ;H;KK

)

• ”harmonic forms on (Xζ , g
t
ζ) concentrate along vertically harmonic

forms” ⇒ understand Dt
ζ;KK

Proposition ([Majb])

The vertical kernel bundles are isomorphic to

KAC (Xζ/S) ∼= ∧•T∨S ⊗H•(Xζ/S)

where H•(Xζ/S) consist of vertically harmonic (anti-self dual) two forms that

decay with rate −4. Moreover, this is again a Hermitian Cl(TS , gS)-module,

whose Hermitian structure is given by the fiberwise L2
t -norm.
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The Adiabatic Residue and Isentropic Operators

Definition

The effective Dirac operator of Dt
ζ is the induced operator

Dt
ζ;KK = DK + t · clgζ (FHζ )KK

and the adiabatic residue of

Dζ = lim
t→0

Dt
ζ;KK = DGM

is given by the Gauß-Manin-Hodge-de Rham operator. The adiabatic kernel is

defined by

Ker(Dt
ζ) = ker(DGM)



The Adiabatic Residue and Isentropic Dirac Operators

Definition

We say Dt
ζ is isentropic (i.e. adiabatic and reversible) if ker(Dt

ζ) ∼= Ker(Dt
ζ)

Remark

There exist topological obstructions on the isentropicity of Dt
ζ that can be

computed using spectral sequences.
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Adiabatic Norms and Uniform Estimates

Definition

Let define the projection

π̃t : Ω•(X t) → Ω• (S ,H•(Xζ/S)) : ι̃
t

and a section of π̃t . We further define the maps

π̃K = ι̃t π̃t : Ω•;l,α
β;t (X t) → Ω•;l,α

β;t (X t).

and π̃I = 1− π̃K.

Let κ > 0 and α, β and λ be fixed. We define the

Dt-adiabatic norms

||γ||Xt = ||π̃Iγ||C1,α
β;t

+ t−κ
∣∣∣∣π̃tγ

∣∣∣∣
C
1,α
t

(4)

||γ||Yt = ||π̃Iγ||C0,α
β−1;t

+ t−κ
∣∣∣∣π̃tγ

∣∣∣∣
C
0,α
t

. (5)
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Uniform Estimates for Dt

Theorem ([Majb])

Assume that Dt is isentropic. We can choose α, β, λ and κ in a reasonable

way. Then there exists a right-inverse RDt to Dt satisfying

||RDtη||Xt ≲ ||η||Yt



Existence of Resolutions of Spin(7)-Orbifolds

Theorem ([Majc])

Assume that Dt is isentropic. We can choose α, β, λ and κ such that there

exists a torsion-free Spin(7)-structure Ω̃t such that∣∣∣∣∣∣Ωt − Ω̃t
∣∣∣∣∣∣

Xt
≲ tϑ

whereby ϑ depends on all the choices.

codim(S) α β λ κ lj ϑζ ϑ

4 0.01 −1.0 0.4 1.0 1 0.8

- - −0.67 0.428 - 2 1.14

- - - 0.01 - ∞ ∞ 3.96

Table 1: Good choice of parameters for Xt -norms.
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Choice of Parameters

codim(S) α β λ κ lj ϑζ ϑ

4 0.01 −0.5 0.444 0.5 1 0.656

- - - - - 2 1.1

- - - 0.4 - ∞ ∞ 2.6

Table 2: Good choice of parameters for C1,α
β;t -norms.



Existence of Torsion-Free G2-Structures

Corollary ([Majc])

Assume that Dt is isentropic. We can choose α, β, λ and κ such that there

exists a torsion-free G2-structure φ̃t such that∣∣∣∣φt − φ̃t
∣∣∣∣

Xt ≲ tϑ

whereby ϑ depends on all the choices.



Examples



Improved Estimates for Generalised Kummer Spaces

Theorem ([Majc])

Let X̃ t 99K T8/Γ be one of the Joyce manifolds constructed in [Joy96] and Ω̃t

its torsion-free Spin(7)-structure. Let Ωt be the Spin(7)-structure on X t

constructed from the pregluing process. Then∣∣∣∣∣∣Ω̃t − Ωt
∣∣∣∣∣∣

Xt
≲ t∼4.

Theorem ([Majc])

Let X̃ t 99K CP[a0,...,a4] be one of the manifolds constructed in [Joy99] and Ω̃t

its torsion-free Spin(7)-structure. Let Ωt be the Spin(7)-structure on X t

constructed from the pregluing process. Then∣∣∣∣∣∣Ω̃t − Ωt
∣∣∣∣∣∣

Xt
≲ t∼4
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Complete Intersections

Definition

Let (X̂ , ω̂, θ̂, ĝ) be a Calabi-Yau four-fold given by a complete intersection.

Assume that the real locus S of X̂ is of real codimension four and is smooth.

Proposition ([Majc])

Let Z2 → S be a two-fold, unramnified cover of S. If there exists a harmonic,

self-dual, Z2-twisted, non vanishing two form ζ, then the quotient X̂/Z2

admits a resolution

πζ : X t 99K X̂/Z2.

Moreover, if Dt is isentropic the resolution carries a family of torsion-free

Spin(7)-structure Ω̃t resolving the natural one on (X̂/Z2,Ω, gΩ) induced by

the Calabi-Yau structure.
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New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

• pick the same K3 surface as in [JK21], that admits a branched double

cover

K3 → CP2

whose branching set is given by a sixtic C of genus 10

• define an involution

αK3 : K3 → K3

by swapping the sheets of the branched covering and consequently

Fix(αK3) = C

• the Z2 action on CP2 by complex conjugation can be lifted to an action

K3 K3

CP2 CP2

βK3

.

• non-tivial argument one can show that Fix(βK3) = S2 and

Fix(αK3βK3) = ∅
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New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

• set

S1 = [0, 4]/ ∼

an define the Z3
2-action

αT4 : (x1, x2, x3, x4) 7→ (−x1, 2− x2, x3, x4)

βT4 : (x1, x2, x3, x4) 7→ (2− x1, x2,−x3, x4)

γT4 : (x1, x2, x3, x4) 7→ (−x1,−x2, 2− x3, 2− x4)

on the four torus T4, with

Fix(αT4) =

{(
0

2

)
,

(
1

3

)
, S1, S1

}

Fix(βT4) =

{(
1

3

)
, S1,

(
0

2

)
, S1

}

Fix(γT4) =

{(
0

2

)
,

(
0

2

)
,

(
1

3

)
,

(
1

3

)}
.



New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

• lift the action of Z3
2 to T4 × K3 via α = αT4 × αK3, β = βT4 × βK3 and

γ = γT4 × idK3, whose fix point sets are given by

Fix(α) =

{(
0

2

)
,

(
1

3

)
, S1, S1

}
× C

Fix(β) =

{(
1

3

)
, S1,

(
0

2

)
, S1

}
× S2

Fix(γ) =

{(
0

2

)
,

(
1

3

)
,

(
0

2

)
,

(
1

3

)}
× K3.

and

αβ, αγ, βγ, αβγ

act freely on T4 × K3

• this Z3
2 action preserves the torsion-free Spin(7)-structure

Ω̂ = volT4 + volK3 − tr+ (ωT4 ∧ ωK3)

on T4 × K3 and hence the torsion-free structure Ω̂ descends to a

torsion-free Spin(7)-structure Ω on the orbifold

(T4 × K3)/Z3
2.



New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

• lift the action of Z3
2 to T4 × K3 via α = αT4 × αK3, β = βT4 × βK3 and

γ = γT4 × idK3, whose fix point sets are given by

Fix(α) =

{(
0

2

)
,

(
1

3

)
, S1, S1

}
× C

Fix(β) =

{(
1

3

)
, S1,

(
0

2

)
, S1

}
× S2

Fix(γ) =

{(
0

2

)
,

(
1

3

)
,

(
0

2

)
,

(
1

3

)}
× K3.

and

αβ, αγ, βγ, αβγ

act freely on T4 × K3

• this Z3
2 action preserves the torsion-free Spin(7)-structure

Ω̂ = volT4 + volK3 − tr+ (ωT4 ∧ ωK3)

on T4 × K3 and hence the torsion-free structure Ω̂ descends to a

torsion-free Spin(7)-structure Ω on the orbifold

(T4 × K3)/Z3
2.



New Example of Compact Spin(7)-Manifolds (joint work with D.Platt)

• singular strata in (T4 × K3)/Z3
2 are non-intersecting and given by two

copies of T2 × C , two copies of T2 × S2 and four copies of K3

• pick the resolution data on T2 × C to be determined by ζ = volT2 + volC ,

the resolution data on T2 × S2 by ζ = volT2 + volS2 and on the K3 we can

freely pick any combination of the hyperkähler triple as ζ

Lemma ([Majc])

There exists a torsion-free Spin(7)-structure Ω̃t on X t satisfying∣∣∣∣∣∣Ω̃t − Ωt
∣∣∣∣∣∣

C
1,α
β;t

≲ t∼2.6.

Moreover, as b1(X t) = b2
7(X

t) = 0 the resolved Spin(7)-manifold has full

holonomy.
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Approximating Hyperkähler Metrics

• Sym2(K3) = (K3× K3)/Z2 is a Spin(7)-orbifold whose torsion-free

Spin(7)-structure is induced by the product structure

Ω̂ = vol1 + vol2 − tr(ω1 ∧ ω2).

• singular strata of Sym2(K3) is the diagonal K3 and its normal bundle can

be identified with its tangent bundle, i.e.

0 TK3 TSym2(K3) NK3 0

splits by NK3 ∼= TK3 ∋ v 7→ (±v ⊕∓v)

• there exists a two sphere of non-vanishing, harmonic, self-dual two forms

corresponding to resolutions

XωI 99K NK3/Z2.

The spaces XωI are diffeomorphic to BlI (∆ : K3 ↪→ Sym2(K3)) and the

resolved space is diffeomorphic to

˜Sym2(K3)
t
∼= Hilb2(K3).
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Approximating Hyperkähler Metrics

Proposition ([Majc])

There exists a family of hyperkähler metrics g̃ t on Hilb2(K3) satisfying∣∣∣∣g̃ t − g t
∣∣∣∣

C
1,0.01
−0.5;t

≲ t1.1

and λ = 0.444 and κ = 1/2.
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Summary

• correspondence between resolutions of X0 and harmonic ζ ∈ Ω2
+(S ,H)

• improved existence result for Spin(7)-orbifold resolutions

• new examples of compact Spin(7)-manifolds and approximations of

hyperkähler metrics on Hilb2(K3)
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Further Research

• new examples using classification of Nikulin-involutions on K3 surfaces

• construction of degenerating families of holonomy instantons (up-coming

[Majd])

• construction of degenerating families of calibrated submanifolds

(up-coming [Maja])

• generalise construction to all types of orbifold singularities using Mazzeo‘s

Edge calculus

• computing η-invariants of G2-manifolds (extending work of [For])
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