Resolutions of (Compact) Spin(7)-Orbifolds

Viktor Majewski
May 15, 2024
Humboldt Universität zu Berlin

Spin(7)-Orbifolds

Riemanian Orbifolds

Definition

Let X be an n-dimensional, real orbifold and let $X^{\text {sing }}$ denote the union of its singular strata. Let S be a connected component of $X^{\text {sing }}$.

- X is of singularity type (I) at S, if X at $S \subset X$ is locally modelled on

$$
\mathbb{R}^{n} / \Gamma \cong \mathbb{R}^{n-m} \times \mathbb{R}^{m} / \Gamma
$$

such that Γ acts freely on $\mathbb{R}^{m} \backslash\{0\}$.

Riemanian Orbifolds

Definition

Let X be an n-dimensional, real orbifold and let $X^{\text {sing }}$ denote the union of its singular strata. Let S be a connected component of $X^{\text {sing }}$.

- X is of singularity type (I) at S, if X at $S \subset X$ is locally modelled on

$$
\mathbb{R}^{n} / \Gamma \cong \mathbb{R}^{n-m} \times \mathbb{R}^{m} / \Gamma
$$

such that Γ acts freely on $\mathbb{R}^{m} \backslash\{0\}$.

- X is of singularity type (Ila) at S, if X at $S \subset X$ is locally modelled on

$$
\mathbb{R}^{n} / \Gamma \cong \mathbb{R}^{n-\sum_{i} m_{i}} \times \underset{i}{\times \mathbb{R}^{m_{i}} / \Gamma_{i}}
$$

such that Γ_{i} acts freely on $\mathbb{R}^{m_{i}} \backslash\{0\}$.

Definition

Let X be an n-dimensional, real orbifold and let $X^{\text {sing }}$ denote the union of its singular strata. Let S be a connected component of $X^{\text {sing }}$.

- X is of singularity type (I) at S, if X at $S \subset X$ is locally modelled on

$$
\mathbb{R}^{n} / \Gamma \cong \mathbb{R}^{n-m} \times \mathbb{R}^{m} / \Gamma
$$

such that Γ acts freely on $\mathbb{R}^{m} \backslash\{0\}$.

- X is of singularity type (Ila) at S, if X at $S \subset X$ is locally modelled on

$$
\mathbb{R}^{n} / \Gamma \cong \mathbb{R}^{n-\sum_{i} m_{i}} \times \underset{i}{\times \mathbb{R}^{m_{i}} / \Gamma_{i}}
$$

such that Γ_{i} acts freely on $\mathbb{R}^{m_{i}} \backslash\{0\}$.

- X is of singularity type (IIb) at S, if it is neither type (I) nor type (Ila)

Definition

Let (X, Ω) be a Spin(7)-orbifold. A torsion-free resolution is given by a smooth family of Spin(7)-manifold $\left(X^{t}, \widetilde{\Omega}^{t}\right)$ and a map

$$
\rho^{t}: X^{t} \rightarrow X
$$

that restricts to a diffeomorphism onto $X \backslash X^{\text {sing }}$ such that the exceptional set $E^{t}=\left(\rho^{t}\right)^{-1}\left(X^{\text {sing }}\right)$ is of codimension >0.

Definition

Let (X, Ω) be a Spin(7)-orbifold. A torsion-free resolution is given by a smooth family of Spin(7)-manifold $\left(X^{t}, \widetilde{\Omega}^{t}\right)$ and a map

$$
\rho^{t}: X^{t} \rightarrow X
$$

that restricts to a diffeomorphism onto $X \backslash X^{\text {sing }}$ such that the exceptional set $E^{t}=\left(\rho^{t}\right)^{-1}\left(X^{\text {sing }}\right)$ is of codimension >0.Furthermore, the family $\left(X^{t}, \widetilde{\Omega}^{t}\right) \xrightarrow{t \rightarrow 0}(X, \Omega)$ in a "Gromov-Hausdorff sense", i.e.

$$
\rho_{*}^{t} \widetilde{\Omega}^{t} \xrightarrow[c_{\text {loc }}^{\infty}]{t \rightarrow 0} \Omega
$$

and

$$
\operatorname{vol}_{\Omega^{t}}\left(E^{t}\right) \xrightarrow{t \rightarrow 0} 0 .
$$

- let $i:\left(S, g_{S}\right) \hookrightarrow(X, \Omega, g)$ be a connected singular stratum of type (i) of codimension four and whose isotropy group is $\Gamma \subset \operatorname{Sp}(1) \subset \operatorname{Spin}(7)$. Let further

$$
0 \rightarrow T S \rightarrow i^{*} T X \rightarrow N S \rightarrow 0
$$

be its normal bundle

- let $i:\left(S, g_{s}\right) \hookrightarrow(X, \Omega, g)$ be a connected singular stratum of type (i) of codimension four and whose isotropy group is $\Gamma \subset \operatorname{Sp}(1) \subset \operatorname{Spin}(7)$. Let further

$$
0 \rightarrow T S \rightarrow i^{*} T X \rightarrow N S \rightarrow 0
$$

be its normal bundle

- think of $N S$ as a vector bundle $\nu: N S \rightarrow S$ with a fiberwise Γ-action (action by Isot(S))
- let $i:\left(S, g_{S}\right) \hookrightarrow(X, \Omega, g)$ be a connected singular stratum of type (i) of codimension four and whose isotropy group is $\Gamma \subset \operatorname{Sp}(1) \subset \operatorname{Spin}(7)$. Let further

$$
0 \rightarrow T S \rightarrow i^{*} T X \rightarrow N S \rightarrow 0
$$

be its normal bundle

- think of $N S$ as a vector bundle $\nu: N S \rightarrow S$ with a fiberwise Γ-action (action by Isot(S))
- normal cone bundle of S is given by the quotient orbifold

$$
\nu_{0}: N S / \operatorname{lsot}(S)=X_{0} \rightarrow S
$$

- Riemannian orbifold structure g induces a splitting

$$
T X_{0} \cong H_{0} \oplus \nu_{0}^{*} N S \cong \nu_{0}^{*} T S \oplus \nu_{0}^{*} N S
$$

and a CF-Spin(7)-orbifold structure

$$
\Omega_{0}=\Omega_{0}^{4,0}+\Omega_{0}^{2,2}+\Omega_{0}^{0,4} \in \Omega^{4}\left(X_{0}\right)
$$

and

$$
g_{0}=\nu_{0}^{*} g_{S}+g_{0 ; V} \in \Gamma\left(X_{0}, \operatorname{Sym}^{2} \nu_{0}^{*} T^{\vee} S \oplus \operatorname{Sym}^{2} \nu_{0}^{*} N S\right)
$$

Remark

Notice, that there exists an $\mathbb{R}_{\geq 0 \text {-action on }} X_{0}$

$$
\Psi_{t}: X_{0} \rightarrow X_{0}
$$

such that

$$
\Psi_{t}^{*} \Omega_{0}=\Omega_{0}^{4,0}+t^{2} \cdot \Omega_{0}^{2,2}+t^{4} \cdot \Omega_{0}^{0,4} \quad \text { and } \quad \psi_{t}^{*} g_{0}=\nu_{0}^{*} g_{S}+t^{2} g_{0 ; V}
$$

Remark

Notice, that there exists an $\mathbb{R}_{\geq 0 \text {-action on }} X_{0}$

$$
\Psi_{t}: X_{0} \rightarrow X_{0}
$$

such that

$$
\Psi_{t}^{*} \Omega_{0}=\Omega_{0}^{4,0}+t^{2} \cdot \Omega_{0}^{2,2}+t^{4} \cdot \Omega_{0}^{0,4} \quad \text { and } \quad \Psi_{t}^{*} g_{0}=\nu_{0}^{*} g_{S}+t^{2} g_{0 ; V}
$$

Remark

Notice, that on S there exists a natural reduction of the Spin(7)-frame bundle $\operatorname{Fr}_{\text {Spin(7), }} \mid s \rightarrow S$ to a $N_{\Gamma}=\operatorname{Norm}(\Gamma$, Spin(7))-principal bundle

$$
F_{S} \rightarrow S
$$

Remark

Notice, that there exists an $\mathbb{R}_{\geq 0}$-action on X_{0}

$$
\Psi_{t}: X_{0} \rightarrow X_{0}
$$

such that

$$
\Psi_{t}^{*} \Omega_{0}=\Omega_{0}^{4,0}+t^{2} \cdot \Omega_{0}^{2,2}+t^{4} \cdot \Omega_{0}^{0,4} \quad \text { and } \quad \psi_{t}^{*} g_{0}=\nu_{0}^{*} g_{S}+t^{2} g_{0 ; V}
$$

Remark

Notice, that on S there exists a natural reduction of the Spin(7)-frame bundle $\operatorname{Fr}_{\text {Spin(7), }} \mid s \rightarrow S$ to a $N_{\Gamma}=\operatorname{Norm}(\Gamma$, Spin(7))-principal bundle

$$
F_{S} \rightarrow S .
$$

Moreover, F_{S} is a torsion-free extension of the SO(4)-frame bundle Fr $_{\text {SO,S }}$ of S. Let in the following φ denote Levi-Civita connection on F_{S}.

- given a tubular neighbourhood

$$
j: \operatorname{Tub}_{2 \epsilon}(S) \hookrightarrow X
$$

we expand the $\operatorname{Spin}(7)$-structure

$$
j^{*} \Omega=\Omega_{0}+\Omega_{h o t} \quad\left|\Omega_{h o t}\right|_{g_{0}}=\mathcal{O}(r)
$$

where $r=\operatorname{dist}_{g}(S)$

- given a tubular neighbourhood

$$
j: \operatorname{Tub}_{2 \epsilon}(S) \hookrightarrow X
$$

we expand the $\operatorname{Spin}(7)$-structure

$$
j^{*} \Omega=\Omega_{0}+\Omega_{h o t} \quad\left|\Omega_{h o t}\right|_{g_{0}}=\mathcal{O}(r)
$$

where $r=\operatorname{dist}_{g}(S)$

Remark

We will later need to C^{0}-estimate of the higher order terms. In order to get them "small" with respect to the gluing parameter, we need to choose $\epsilon \sim t^{\lambda}$, for $0 \leq \lambda<1$.
(Pre-)Resolving Spin(7)-Orbifolds

```
Parameter Spaces of Orbifold Resolutions
```


Remark

- construction is based on ideas of Barbosa [Bar19] and unpublished notes of Walpuski on (adiabatic) resolutions of singular G_{2}-fibrations

Remark

- construction is based on ideas of Barbosa [Bar19] and unpublished notes of Walpuski on (adiabatic) resolutions of singular G_{2}-fibrations
- interpretation as Cameral/spectral covers of the singular strata/special solutions of GSW-type equations

Remark

- construction is based on ideas of Barbosa [Bar19] and unpublished notes of Walpuski on (adiabatic) resolutions of singular G_{2}-fibrations
- interpretation as Cameral/spectral covers of the singular strata/special solutions of GSW-type equations
- extends to Spin(7)-fibrations and (conjecturally) to isotropy groups $\Gamma \subset S U(m / 2)$ acting freely on $\mathbb{C}^{m / 2} \backslash\{0\}$

Remark

- construction is based on ideas of Barbosa [Bar19] and unpublished notes of Walpuski on (adiabatic) resolutions of singular G_{2}-fibrations
- interpretation as Cameral/spectral covers of the singular strata/special solutions of GSW-type equations
- extends to Spin(7)-fibrations and (conjecturally) to isotropy groups $\Gamma \subset S U(m / 2)$ acting freely on $\mathbb{C}^{m / 2} \backslash\{0\}$
- today only \mathbb{H} / Γ

Remark

- Kronheimer [Kro90] described hyperkähler resolutions of \mathbb{H} / Γ for finite subgroups of $S p(1)$ using a hyperkähler quotient/GIT construction

Remark

- Kronheimer [Kro90] described hyperkähler resolutions of \mathbb{H} / Γ for finite subgroups of $\operatorname{Sp}(1)$ using a hyperkähler quotient/GIT construction
- there exists a fibre bundle $\kappa: \mathbb{M} \rightarrow \Theta_{\operatorname{Im}(\mathbb{H})}=\operatorname{Im}(\mathbb{H}) \otimes \mathfrak{h}_{\Gamma}$

Remark

- Kronheimer [Kro90] described hyperkähler resolutions of \mathbb{H} / Γ for finite subgroups of $\operatorname{Sp}(1)$ using a hyperkähler quotient/GIT construction
- there exists a fibre bundle $\kappa: \mathbb{M} \rightarrow \Theta_{\operatorname{Im}(\mathbb{H})}=\operatorname{Im}(\mathbb{H}) \otimes \mathfrak{h}_{\Gamma}$

Proposition ([Kro90])

There exists a vertical $\operatorname{Im}(\mathbb{H})$-valued two form $\underline{\omega}$ on $\mathbb{M} \xrightarrow{\kappa} \Theta_{\operatorname{Im}(\mathbb{H})}$ and codimension three walls $\mathcal{W} \subset \Theta_{\operatorname{Im}(\mathbb{H})}$ such that for all $\zeta \in \Theta_{\operatorname{Im}(\mathbb{H})} \backslash \mathcal{W}$, $\left(\kappa^{-1}(\zeta), \underline{\omega}\right)=\left(M_{\zeta}, \underline{\omega}_{\zeta}\right) \rightarrow\left(\mathbb{H} / \Gamma, \underline{\omega}_{0}\right)$ is a hyperkähler ALE space of rate -4 .

Parameter Space of Orbifold Resolutions

Remark

- $H^{2}\left(M_{\zeta}\right)=\mathfrak{h}_{\ulcorner }$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)

Remark

- $H^{2}\left(M_{\zeta}\right)=\mathfrak{h}_{\ulcorner }$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- $\zeta \in \mathcal{W} \backslash 0,\left(M_{\zeta}, \underline{\omega}_{\zeta}\right)$ is a hyperkähler orbifolds with a singular stratum modelled on $\mathbb{H} / \mathbb{Z}_{2}$

Remark

- $H^{2}\left(M_{\zeta}\right)=\mathfrak{h}_{\ulcorner }$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- $\zeta \in \mathcal{W} \backslash 0,\left(M_{\zeta}, \underline{\omega}_{\zeta}\right)$ is a hyperkähler orbifolds with a singular stratum modelled on $\mathbb{H} / \mathbb{Z}_{2}$
- distance to \mathcal{W} corresponds to "size" of exceptional divisor

Remark

- $H^{2}\left(M_{\zeta}\right)=\mathfrak{h}_{\ulcorner }$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- $\zeta \in \mathcal{W} \backslash 0,\left(M_{\zeta}, \underline{\omega}_{\zeta}\right)$ is a hyperkähler orbifolds with a singular stratum modelled on $\mathbb{H} / \mathbb{Z}_{2}$
- distance to \mathcal{W} corresponds to "size" of exceptional divisor

The group $N_{\Gamma} \rightarrow \operatorname{Norm}(\Gamma, S O(4)) \ltimes$ Weyl (Γ) acts on \mathbb{M} such that

- permutes Weyl chambers

Remark

- $H^{2}\left(M_{\zeta}\right)=\mathfrak{h}_{\ulcorner }$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- $\zeta \in \mathcal{W} \backslash 0,\left(M_{\zeta}, \underline{\omega}_{\zeta}\right)$ is a hyperkähler orbifolds with a singular stratum modelled on $\mathbb{H} / \mathbb{Z}_{2}$
- distance to \mathcal{W} corresponds to "size" of exceptional divisor

The group $N_{\Gamma} \rightarrow \operatorname{Norm}(\Gamma, S O(4)) \ltimes$ Weyl (Γ) acts on \mathbb{M} such that

- permutes Weyl chambers
- κ is equivariant

Remark

- $H^{2}\left(M_{\zeta}\right)=\mathfrak{h}_{\ulcorner }$, intersection form is given by Cartan matrix associated with the ADE type (McKay Duality)
- $\zeta \in \mathcal{W} \backslash 0,\left(M_{\zeta}, \underline{\omega}_{\zeta}\right)$ is a hyperkähler orbifolds with a singular stratum modelled on $\mathbb{H} / \mathbb{Z}_{2}$
- distance to \mathcal{W} corresponds to "size" of exceptional divisor

The group $N_{\Gamma} \rightarrow \operatorname{Norm}(\Gamma, S O(4)) \ltimes$ Weyl (Γ) acts on \mathbb{M} such that

- permutes Weyl chambers
- κ is equivariant
- universal vertical hyperkähler structure is invariant

Harmonic Sections and Adiabatic Spin(7)-Structures

Definition

Let $C \subset \operatorname{Com}\left(i m\left(N_{\Gamma}\right), \operatorname{Norm}(\Gamma, S O(4)) \ltimes W e y l(\Gamma)\right)$ and $\mathfrak{C} \rightarrow S$ a C-principal bundle. We define the twisted vector bundle

$$
\mathfrak{H}=\left(F_{S} \times{ }_{S} \mathfrak{C}\right) \times N_{\Gamma} \times C \Theta_{\operatorname{Im}(\mathbb{C})} \quad \text { and } \quad \mathfrak{H}_{+}^{2}=\left(F_{S} \times{ }_{S} \mathfrak{C}\right) \times N_{\Gamma} \times C \text { } \Theta_{\operatorname{Im}(H)} .
$$

Definition

Let $C \subset \operatorname{Com}\left(i m\left(N_{\Gamma}\right), \operatorname{Norm}(\Gamma, S O(4)) \ltimes W e y l(\Gamma)\right)$ and $\mathfrak{C} \rightarrow S$ a C-principal bundle. We define the twisted vector bundle

$$
\mathfrak{H}=\left(F_{S} \times{ }_{S} \mathfrak{C}\right) \times N_{\Gamma} \times C \Theta_{\operatorname{Im}(\mathbb{C})} \quad \text { and } \quad \mathfrak{H}_{+}^{2}=\left(F_{S} \times{ }_{S} \mathfrak{C}\right) \times N_{\Gamma} \times C \text { } \Theta_{\operatorname{Im}(H)} .
$$

- let $\zeta \in \Omega_{+}^{2}(S, \mathfrak{H})$, define the fibration

Lemma ([Majc])

Define the four form

$$
\hat{\Omega}_{\zeta}=\hat{\Omega}_{\zeta}^{4,0,0}+\hat{\Omega}_{\zeta}^{2,2,0}+\hat{\Omega}_{\zeta}^{0,4,0} \in \Omega^{4,0}\left(\bar{\zeta}^{*} \mathbb{M}\right)^{N_{\Gamma} \times C}
$$

by

$$
\begin{aligned}
& \hat{\Omega}_{\zeta}^{4,0,0}=\left(\kappa_{\zeta} \circ \phi_{S}\right)^{*} \operatorname{vol}_{g S} \\
& \hat{\Omega}_{\zeta}^{2,2,0}=-\frac{1}{3}\left\langle\kappa_{\zeta}^{*} \theta_{+}^{S} \wedge \tilde{\zeta}^{*} \underline{\omega}^{0,2,0}\right\rangle \\
& \hat{\Omega}_{\zeta}^{0,4,0}=\frac{1}{6}\left\langle\tilde{\zeta}^{*} \underline{\omega}^{0,2,0} \wedge \tilde{\zeta}^{*} \underline{\omega}^{0,2,0}\right\rangle
\end{aligned}
$$

The space

$$
\pi_{\zeta}:\left(X_{\zeta}, \Omega_{\zeta}, g_{\zeta}\right) \rightarrow\left(X_{0}, \Omega_{0}, g_{0}\right)
$$

is a $\operatorname{Spin}(7)$-resolution.

Lemma ([Majc])

There exists a "scaling map" lift

$$
\begin{gathered}
\left(X_{\zeta}, \Omega_{\zeta}^{t}\right) \xrightarrow{\Psi_{t}}\left(X_{t^{2} \cdot \zeta}, \Omega_{t^{2} \cdot \zeta}\right) \\
\pi_{\zeta} \vdots \\
\vdots \\
\left(X_{0}, \Omega_{0}^{t}\right) \xrightarrow{\Psi_{t}}\left(X_{0}, \Omega_{0}\right)
\end{gathered}
$$

$$
\text { where } \psi_{t}^{*} \Omega_{t^{2} \zeta}=\Omega_{\zeta}^{4,0}+t^{2} \cdot \Omega_{\zeta}^{2,2}+t^{4} \cdot \Omega_{\zeta}^{0,4}
$$

Remark

Let $\mathfrak{W} \subset \mathfrak{H}_{+}^{2}$ denote the set of walls.

Remark

Let $\mathfrak{W} \subset \mathfrak{H}_{+}^{2}$ denote the set of walls.

- if ζ does not intersect \mathfrak{W} then $\left(X_{\zeta}, \Omega_{\zeta}, g_{\zeta}\right)$ is a Spin(7)-ACF space of rate -4 and E_{ζ} is given by bundles of intersecting spheres over S

Remark

Let $\mathfrak{W} \subset \mathfrak{H}_{+}^{2}$ denote the set of walls.

- if ζ does not intersect \mathfrak{W} then $\left(X_{\zeta}, \Omega_{\zeta}, g_{\zeta}\right)$ is a Spin(7)-ACF space of rate -4 and E_{ζ} is given by bundles of intersecting spheres over S
- if $\zeta \pitchfork \mathfrak{W} \backslash 0, X_{\zeta}$ conically singular over $\mathbb{S}^{7} / \mathbb{Z}_{2}$

Remark

Let $\mathfrak{W} \subset \mathfrak{H}_{+}^{2}$ denote the set of walls.

- if ζ does not intersect \mathfrak{W} then $\left(X_{\zeta}, \Omega_{\zeta}, g_{\zeta}\right)$ is a Spin(7)-ACF space of rate -4 and E_{ζ} is given by bundles of intersecting spheres over S
- if $\zeta \pitchfork \mathfrak{W} \backslash 0, X_{\zeta}$ conically singular over $\mathbb{S}^{7} / \mathbb{Z}_{2}$
- if $\zeta \pitchfork 0$ conically singular over \mathbb{S}^{7} / Γ

Theorem ([Majc])

If $\mathrm{d}_{\varphi} \zeta=0$ then

$$
\mathrm{d} \Omega_{\zeta}=\mathrm{d}^{2,-1}\left(\Omega_{\zeta}^{2,2}+\Omega_{\zeta}^{0,4}\right)
$$

In particular, $\mathrm{d} \Omega_{t^{2} \cdot \zeta}=\left(\Psi_{t}\right)_{*} \mathrm{~d} \Omega_{\zeta}^{t}=t \cdot \mathrm{~d} \Omega_{\zeta}$ and hence $\Omega_{t^{2} \cdot \zeta}$ defines an adiabatic Spin(7)-structure.

Pregluing the Spin(7)-Structures

- the composition of maps

$$
\Gamma_{\zeta}^{t}: B_{2 t-1}\left(X_{\zeta}\right) \backslash U_{0}^{t} \xrightarrow{\psi_{t}} B_{2 \epsilon}\left(X_{t^{2} \cdot \zeta}\right) \backslash U_{0} \stackrel{\pi_{t^{2}} \cdot \zeta}{\rightarrow \rightarrow} \operatorname{Tub}_{2 \epsilon}(S) \backslash S \stackrel{j}{\hookrightarrow} X
$$

- the composition of maps

$$
\Gamma_{\zeta}^{t}: B_{2 t-1}\left(X_{\zeta}\right) \backslash U_{0}^{t} \xrightarrow{\Psi_{t}} B_{2 \epsilon}\left(X_{t^{2} \cdot \zeta}\right) \backslash U_{0} \stackrel{\pi_{t^{2}} \cdot \zeta}{\rightarrow} \operatorname{Tub}_{2 \epsilon}(S) \backslash S \stackrel{j}{\hookrightarrow} X
$$

- define

$$
\rho^{t}: X^{t}=U_{2 \epsilon}^{t} \cup_{\Gamma_{\zeta}^{t}} X \backslash U_{\epsilon} \rightarrow X
$$

and

$$
\begin{aligned}
\Omega^{t} & =\Omega_{\zeta}^{t}+\chi_{2}^{t} \cdot\left(\Omega_{0}^{t}-\Omega_{\zeta}^{t}+\Omega_{h o t}^{t}\right) \\
\mathrm{d} \Omega^{t} & =\left(1-\chi_{2}^{t}\right) \mathrm{d} \Omega_{\zeta}^{t}+\mathrm{d} \chi_{2}^{t} \wedge\left(\Omega_{0}^{t}-\Omega_{\zeta}^{t}+\Omega_{h o t}^{t}\right)
\end{aligned}
$$

- the composition of maps

$$
\Gamma_{\zeta}^{t}: B_{2 t-1}\left(X_{\zeta}\right) \backslash U_{0}^{t} \xrightarrow{\Psi_{t}} B_{2 \epsilon}\left(X_{t^{2} \cdot \zeta}\right) \backslash U_{0} \stackrel{\pi_{t^{2}} \cdot \zeta}{\rightarrow} \operatorname{Tub}_{2 \epsilon}(S) \backslash S \stackrel{j}{\hookrightarrow} X
$$

- define

$$
\rho^{t}: X^{t}=U_{2 \epsilon}^{t} \cup_{\Gamma_{\zeta}^{t}} X \backslash U_{\epsilon} \rightarrow X
$$

and

$$
\begin{aligned}
\Omega^{t} & =\Omega_{\zeta}^{t}+\chi_{2}^{t} \cdot\left(\Omega_{0}^{t}-\Omega_{\zeta}^{t}+\Omega_{h o t}^{t}\right) \\
\mathrm{d} \Omega^{t} & =\left(1-\chi_{2}^{t}\right) \mathrm{d} \Omega_{\zeta}^{t}+\mathrm{d} \chi_{2}^{t} \wedge\left(\Omega_{0}^{t}-\Omega_{\zeta}^{t}+\Omega_{h o t}^{t}\right)
\end{aligned}
$$

- $\rho^{t}:\left(X^{t}, \Omega^{t}\right) \rightarrow(X, \Omega)$ converges in a Gromov-Hausdorff sense

Can we find a torsion-free $\operatorname{Spin}(7)$-structure close to Ω^{t} ?

Existence of Torsion-Free Resolutions of Spin(7)-Orbifolds

- the preglued $\operatorname{Spin}(7)$-structure Ω^{t} has "small torsion"
- the preglued $\operatorname{Spin}(7)$-structure Ω^{t} has "small torsion"
- condition of a $\operatorname{Spin}(7)$-structure in a small neighbourhood of Ω^{t} to be torsion free is given by

$$
0=\mathrm{d} \Theta\left(\Omega^{t}+\eta\right)=\mathrm{d} \Omega^{t}+\mathrm{d} \pi_{\tau, \Omega^{t}}(\eta)+\mathrm{d} Q_{\Omega^{t}}(\eta)
$$

- the preglued $\operatorname{Spin}(7)$-structure Ω^{t} has "small torsion"
- condition of a $\operatorname{Spin}(7)$-structure in a small neighbourhood of Ω^{t} to be torsion free is given by

$$
0=\mathrm{d} \Theta\left(\Omega^{t}+\eta\right)=\mathrm{d} \Omega^{t}+\mathrm{d} \pi_{\tau, \Omega^{t}}(\eta)+\mathrm{d} Q_{\Omega^{t}}(\eta)
$$

- instead of constructing a $\operatorname{Diff}_{0}\left(X^{t}\right)$-orbit full of solutions it is more convenient to construct a solution in $\mathfrak{S p i n}(7)\left[X^{t}\right] \Rightarrow$ Diff $0\left(X^{t}\right)$-gauge slice

$$
\begin{aligned}
& 0=\mathrm{d} \Omega^{t}+\mathrm{d} \pi_{\tau, \Omega^{t}}(\eta)+\mathrm{d} Q_{\Omega^{t}}(\eta) \\
& 0=\pi_{1 \oplus 7, \Omega^{t}} \eta
\end{aligned}
$$

- the gauge-fixed equations are equivalent to

$$
\begin{align*}
-\mathrm{d} \eta & =\mathrm{d} \Omega^{t}+\mathrm{d} Q_{\Omega^{t}}(\eta) \tag{1}\\
-\mathrm{d}^{*} \eta & =* \mathrm{~d} \Omega^{t}+* \mathrm{~d} Q_{\Omega^{t}}(\eta) . \tag{2}
\end{align*}
$$

or equivalently
$-\left(\mathrm{d}+\mathrm{d}^{*^{t}}\right) \eta=\left(\mathrm{d}+\mathrm{d}^{*^{t}}\right) \pi_{-, \Omega^{t}}\left\{Q_{\Omega^{t}}(\eta)\right\}+\left(\mathrm{d}-\mathrm{d}^{*^{t}}\right)\left(\Omega^{t}+\pi_{+, \Omega^{t}}\left\{Q_{\Omega^{t}}(\eta)\right\}\right)$.

- the gauge-fixed equations are equivalent to

$$
\begin{align*}
-\mathrm{d} \eta & =\mathrm{d} \Omega^{t}+\mathrm{d} Q_{\Omega^{t}}(\eta) \tag{1}\\
-\mathrm{d}^{*} \eta & =* \mathrm{~d} \Omega^{t}+* \mathrm{~d} Q_{\Omega^{t}}(\eta) \tag{2}
\end{align*}
$$

or equivalently

$$
-\left(\mathrm{d}+\mathrm{d}^{*^{t}}\right) \eta=\left(\mathrm{d}+\mathrm{d}^{*^{t}}\right) \pi_{-, \Omega^{t}}\left\{Q_{\Omega^{t}}(\eta)\right\}+\left(\mathrm{d}-\mathrm{d}^{*^{t}}\right)\left(\Omega^{t}+\pi_{+, \Omega^{t}}\left\{Q_{\Omega^{t}}(\eta)\right\}\right) .
$$

- let $R_{\mathrm{d}+\mathrm{d}^{t}}$ denote a right inverse to $\left(\mathrm{d}+\mathrm{d}^{*^{t}}\right)$

$$
\begin{equation*}
\eta=-\left(\mathrm{d}+\mathrm{d}^{*^{t}}\right) \pi_{-, \Omega^{t}}\left\{Q_{\Omega^{t}}\left(R_{\mathrm{d}+\mathrm{d}^{*} t} \eta\right)\right\}-\left(\mathrm{d}-\mathrm{d}^{*}\right)\left(\Omega^{t}+\pi_{+, \Omega^{t}}\left\{Q_{\Omega^{t}}\left(R_{\mathrm{d}+\mathrm{d}^{*}} \eta\right)\right\}\right) . \tag{3}
\end{equation*}
$$

Gluing Spin(7)-Structures

- let in the following denote $D^{t}=\mathrm{d}+\mathrm{d}^{*} \Omega^{t}$ the Hodge-de Rham operator

Gluing Spin(7)-Structures

- let in the following denote $D^{t}=\mathrm{d}+\mathrm{d}^{*} \Omega^{t}$ the Hodge-de Rham operator
- to find $R_{D^{t}}$ we need to understand the kernel of D^{t}
- let in the following denote $D^{t}=\mathrm{d}+\mathrm{d}^{*} \Omega^{t}$ the Hodge-de Rham operator
- to find $R_{D^{t}}$ we need to understand the kernel of D^{t}
- to bound $R_{D^{t}}$ we need to understand its t-dependence
- let in the following denote $D^{t}=\mathrm{d}+\mathrm{d}^{*} \Omega^{t}$ the Hodge-de Rham operator
- to find $R_{D^{t}}$ we need to understand the kernel of D^{t}
- to bound $R_{D^{t}}$ we need to understand its t-dependence
- "usual" Hodge theory yields weak estimates, as D^{t} becomes singular near the adiabatic limit along S
- let in the following denote $D^{t}=\mathrm{d}+\mathrm{d}^{*} \Omega^{t}$ the Hodge-de Rham operator
- to find $R_{D^{t}}$ we need to understand the kernel of D^{t}
- to bound $R_{D^{t}}$ we need to understand its t-dependence
- "usual" Hodge theory yields weak estimates, as D^{t} becomes singular near the adiabatic limit along S
- need to understand $D_{t^{2} \cdot \zeta}$ and D to gain insides on D^{t}
- let in the following denote $D^{t}=\mathrm{d}+\mathrm{d}^{*} \Omega^{t}$ the Hodge-de Rham operator
- to find $R_{D^{t}}$ we need to understand the kernel of D^{t}
- to bound $R_{D^{t}}$ we need to understand its t-dependence
- "usual" Hodge theory yields weak estimates, as D^{t} becomes singular near the adiabatic limit along S
- need to understand $D_{t^{2} \cdot \zeta}$ and D to gain insides on D^{t}

Remark

This behaviour of D^{t} is share by Dirac operators on orbifold resolutions (more general set-up in upcoming paper [Majb]).

Adiabatic Families of Dirac Operators

- we are interested in the operator $D_{t^{2} \cdot \zeta}$ on $X_{t^{2} \cdot \zeta}$
- we are interested in the operator $D_{t^{2} \cdot \zeta}$ on $X_{t^{2} \cdot \zeta}$
- problems: no Fredholm theory and no insides into the adiabatic limit $t \rightarrow 0$
- we are interested in the operator $D_{t^{2} \cdot \zeta}$ on $X_{t^{2} \cdot \zeta}$
- problems: no Fredholm theory and no insides into the adiabatic limit $t \rightarrow 0$
- instead consider the operator $D_{\zeta}^{t}=\psi_{t}^{*} \circ D_{t^{2} \cdot \zeta} \circ \psi_{-t}^{*}=D_{\zeta ; H}^{t}+t^{-1} \cdot D_{\zeta ; V}$ where $D_{\zeta ; V}$ is the vertical Hodge-de Rham-operator
- we are interested in the operator $D_{t^{2} \cdot \zeta}$ on $X_{t^{2} \cdot \zeta}$
- problems: no Fredholm theory and no insides into the adiabatic limit $t \rightarrow 0$
- instead consider the operator $D_{\zeta}^{t}=\psi_{t}^{*} \circ D_{t^{2} \cdot \zeta} \circ \psi_{-t}^{*}=D_{\zeta ; H}^{t}+t^{-1} \cdot D_{\zeta ; V}$ where $D_{\zeta ; V}$ is the vertical Hodge-de Rham-operator
- D_{ζ}^{t} is the Dirac operator of an adiabatic family of Dirac bundles $\left(\wedge^{\bullet} T^{\vee} X_{\zeta}, \mathrm{c}^{\mathrm{g}_{\varsigma}^{t}}, g_{\zeta}^{t}, \nabla^{\mathrm{g}_{\varsigma}^{t}}\right.$) (see [Goe14])
- we are interested in the operator $D_{t^{2} \cdot \zeta}$ on $X_{t^{2} . \zeta}$
- problems: no Fredholm theory and no insides into the adiabatic limit $t \rightarrow 0$
- instead consider the operator $D_{\zeta}^{t}=\Psi_{t}^{*} \circ D_{t^{2} \cdot \zeta} \circ \psi_{-t}^{*}=D_{\zeta ; H}^{t}+t^{-1} \cdot D_{\zeta ; V}$ where $D_{\zeta ; v}$ is the vertical Hodge-de Rham-operator
- D_{ζ}^{t} is the Dirac operator of an adiabatic family of Dirac bundles $\left(\wedge^{\bullet} T^{\vee} X_{\zeta}, \mathrm{cl}^{\mathrm{l}_{\zeta}^{t}}, g_{\zeta}^{t}, \nabla^{g_{\zeta}^{t}}\right)$ (see [Goe14])
- "harmonic forms on $\left(X_{\zeta}, g_{\zeta}^{t}\right)$ concentrate along vertically harmonic forms" $[$ Bis86, BC89, BL91, BL95, Goe14]
- the push forward along ν_{ζ} allows us to view the operator D_{ζ}^{t} as an operator

$$
\begin{gathered}
\Omega_{\beta}^{\bullet}\left(X_{\zeta}\right) \xrightarrow{D_{\zeta}^{t}} \Omega_{\beta}^{\bullet}\left(X_{\zeta}\right) \\
\Gamma\left(S,\left(\nu_{\zeta}\right)_{*_{\beta}} T^{\vee} X_{\zeta}\right) \xrightarrow{D_{\zeta}^{t}} \Gamma\left(S,\left(\nu_{\zeta}\right)_{*_{\beta}} T^{\vee} X_{\zeta}\right)
\end{gathered}
$$

- the push forward along ν_{ζ} allows us to view the operator D_{ζ}^{t} as an operator

- to stay consistent with the literature (see [Wal17, Pla20], etc.) we will work with (weighted) Hölder norms on X^{t}
- the push forward along ν_{ζ} allows us to view the operator D_{ζ}^{t} as an operator

- to stay consistent with the literature (see [Wal17, Pla20], etc.) we will work with (weighted) Hölder norms on X^{t}
- using Hölder-completions of the fibres of the push forward

$$
t^{-1} \cdot D_{\zeta ; V}:\left(\nu_{\zeta}\right)_{*_{\beta}^{k+1, \alpha}} T^{\vee} X_{\zeta} \rightarrow\left(\nu_{\zeta}\right)_{*_{\beta-1}^{k, \alpha}} T^{\vee} X_{\zeta}
$$

and split

$$
\left(\nu_{\zeta}\right)_{*_{\beta}^{k+1, \alpha}} \wedge^{\bullet} T^{\vee} X_{\zeta}=\mathcal{I}_{A C ; \beta}^{k, \alpha}\left(X_{\zeta} / S\right) \oplus \mathcal{K}_{A C}\left(X_{\zeta} / S\right)
$$

The Adiabatic Residue and Isentropic Dirac Operators

- we decompose the Dirac operator

$$
D_{\zeta}^{t}=\left(\begin{array}{cc}
D_{\zeta ; \mathcal{I I}}^{t} & D_{\zeta ; \mathcal{K I}}^{t} \\
D_{\zeta ; \mathcal{I K}}^{t} & D_{\zeta ; \mathcal{K K}}^{t}
\end{array}\right)=\left(\begin{array}{cc}
D_{\zeta ; H ; \mathcal{I I}}^{t}+t^{-1} \cdot D_{\zeta ; V ; \mathcal{I I}} & D_{\zeta ; H ; \mathcal{K I}}^{t} \\
D_{\zeta ; H ; \mathcal{I K}}^{t} & D_{\zeta ; H ; \mathcal{K} \mathcal{K}}^{t}
\end{array}\right)
$$

- we decompose the Dirac operator

$$
D_{\zeta}^{t}=\left(\begin{array}{cc}
D_{\zeta ; \mathcal{I I}}^{t} & D_{\zeta ; \mathcal{K I}}^{t} \\
D_{\zeta ; \mathcal{K} \mathcal{K}}^{t} & D_{\zeta ; \mathcal{K}}^{t}
\end{array}\right)=\left(\begin{array}{cc}
D_{\zeta ; H ; \mathcal{I I}}^{t}+t^{-1} \cdot D_{\zeta ; V ; I \mathcal{I}} & D_{\zeta ; H ; \mathcal{K I}}^{t} \\
D_{\zeta ; H ; \mathcal{I K}}^{t} & D_{\zeta ; H ; \mathcal{K} \mathcal{K}}^{t}
\end{array}\right)
$$

- "harmonic forms on $\left(X_{\zeta}, g_{\zeta}^{t}\right)$ concentrate along vertically harmonic forms" \Rightarrow understand $D_{\zeta ; \mathcal{K} \mathcal{K}}^{t}$
- we decompose the Dirac operator

$$
D_{\zeta}^{t}=\left(\begin{array}{cc}
D_{\zeta ; \mathcal{I I}}^{t} & D_{\zeta ; \mathcal{K I}}^{t} \\
D_{\zeta ; \mathcal{I K}}^{t} & D_{\zeta ; \mathcal{K K}}^{t}
\end{array}\right)=\left(\begin{array}{cc}
D_{\zeta ; H ; \mathcal{I I}}^{t}+t^{-1} \cdot D_{\zeta ; V ; \mathcal{I I}} & D_{\zeta ; H ; \mathcal{K I}}^{t} \\
D_{\zeta ; H ; \mathcal{I K}}^{t} & D_{\zeta ; H ; \mathcal{K} \mathcal{K}}^{t}
\end{array}\right)
$$

- "harmonic forms on $\left(X_{\zeta}, g_{\zeta}^{t}\right)$ concentrate along vertically harmonic forms" \Rightarrow understand $D_{\zeta ; \mathcal{K K}}^{t}$

Proposition ([Majb])

The vertical kernel bundles are isomorphic to

$$
\mathcal{K}_{A C}\left(X_{\zeta} / S\right) \cong \wedge^{\bullet} T^{\vee} S \otimes \mathcal{H}^{\bullet}\left(X_{\zeta} / S\right)
$$

where $\mathcal{H}^{\bullet}\left(X_{\zeta} / S\right)$ consist of vertically harmonic (anti-self dual) two forms that decay with rate -4 . Moreover, this is again a Hermitian $\mathrm{Cl}\left(T S, g_{S}\right)$-module, whose Hermitian structure is given by the fiberwise L_{t}^{2}-norm.

Definition

The effective Dirac operator of D_{ζ}^{t} is the induced operator

$$
D_{\zeta ; \mathcal{K} \mathcal{K}}^{t}=D_{\mathcal{K}}+t \cdot \operatorname{cl}^{g_{\zeta}}\left(F_{H_{\zeta}}\right)_{\mathcal{K} \mathcal{K}}
$$

and the adiabatic residue of

$$
\mathfrak{D}_{\zeta}=\lim _{t \rightarrow 0} D_{\zeta ; \mathcal{K K}}^{t}=\mathfrak{D}_{G M}
$$

is given by the Gauß-Manin-Hodge-de Rham operator. The adiabatic kernel is defined by

$$
\mathfrak{K e r}\left(D_{\zeta}^{t}\right)=\operatorname{ker}\left(\mathfrak{D}_{G M}\right)
$$

Definition

We say D_{ζ}^{t} is isentropic (i.e. adiabatic and reversible) if $\operatorname{ker}\left(D_{\zeta}^{t}\right) \cong \mathfrak{K e r}\left(D_{\zeta}^{t}\right)$

Definition

We say D_{ζ}^{t} is isentropic (i.e. adiabatic and reversible) if $\operatorname{ker}\left(D_{\zeta}^{t}\right) \cong \mathfrak{K e r}\left(D_{\zeta}^{t}\right)$

Remark

There exist topological obstructions on the isentropicity of D_{ζ}^{t} that can be computed using spectral sequences.

Adiabatic Norms and Uniform Estimates

Definition

Let define the projection

$$
\tilde{\pi}^{t}: \Omega^{\bullet}\left(X^{t}\right) \rightarrow \Omega^{\bullet}\left(S, \mathcal{H}^{\bullet}\left(X_{\zeta} / S\right)\right): \tilde{\iota}^{t}
$$

and a section of $\tilde{\pi}^{t}$. We further define the maps

$$
\tilde{\pi}_{\mathcal{K}}=\tilde{\iota}^{t} \tilde{\pi}^{t}: \Omega_{\beta ; t}^{\bullet: I, \alpha}\left(X^{t}\right) \rightarrow \Omega_{\beta ; t}^{\bullet \cdot /, \alpha}\left(X^{t}\right) .
$$

and $\tilde{\pi}_{\mathcal{I}}=1-\tilde{\pi}_{\mathcal{K}}$.

Adiabatic Norms and Uniform Estimates

Definition

Let define the projection

$$
\tilde{\pi}^{t}: \Omega^{\bullet}\left(X^{t}\right) \rightarrow \Omega^{\bullet}\left(S, \mathcal{H}^{\bullet}\left(X_{\zeta} / S\right)\right): \tilde{\iota}^{t}
$$

and a section of $\tilde{\pi}^{t}$. We further define the maps

$$
\tilde{\pi}_{\mathcal{K}}=\tilde{\iota}^{t} \tilde{\pi}^{t}: \Omega_{\beta ; t}^{\bullet: l, \alpha}\left(X^{t}\right) \rightarrow \Omega_{\beta ; t}^{\bullet \cdot l, \alpha}\left(X^{t}\right) .
$$

and $\tilde{\pi}_{\mathcal{I}}=1-\tilde{\pi}_{\mathcal{K}}$. Let $\kappa>0$ and α, β and λ be fixed. We define the D^{t}-adiabatic norms

$$
\begin{align*}
& \|\gamma\|_{\mathfrak{X}^{t}}=\left\|\tilde{\pi}_{\mathcal{I}} \gamma\right\|_{C_{\beta ; t}^{1, \alpha}}+t^{-\kappa}\left\|\tilde{\pi}^{t} \gamma\right\|_{C_{t}^{1, \alpha}} \tag{4}\\
& \|\gamma\|_{\mathfrak{Y}^{t}}=\left\|\tilde{\pi}_{\mathcal{I}} \gamma\right\|_{C_{\beta-1 ; t}^{0, \alpha}}+t^{-\kappa}\left\|\tilde{\pi}^{t} \gamma\right\|_{C_{t}^{0, \alpha}} . \tag{5}
\end{align*}
$$

Uniform Estimates for D^{t}

Theorem ([Majb])

Assume that D^{t} is isentropic. We can choose α, β, λ and κ in a reasonable way. Then there exists a right-inverse $R_{D^{t}}$ to D^{t} satisfying

$$
\left\|R_{D^{t}} \eta\right\|_{\mathfrak{X}^{t}} \lesssim\|\eta\|_{\mathfrak{Y}^{t}}
$$

Theorem ([Majc])

Assume that D^{t} is isentropic. We can choose α, β, λ and κ such that there exists a torsion-free $\operatorname{Spin}(7)$-structure $\widetilde{\Omega}^{t}$ such that

$$
\left|\mid \Omega^{t}-\widetilde{\Omega}^{t} \|_{x^{t}} \lesssim t^{\vartheta}\right.
$$

whereby ϑ depends on all the choices.

Theorem ([Majc])

Assume that D^{t} is isentropic. We can choose α, β, λ and κ such that there exists a torsion-free Spin(7)-structure $\widetilde{\Omega}^{t}$ such that

$$
\left\|\Omega^{t}-\widetilde{\Omega}^{t}\right\|_{\mathfrak{X}^{t}} \lesssim t^{\vartheta}
$$

whereby ϑ depends on all the choices.

$\operatorname{codim}(S)$	α	β	λ	κ	l_{j}	ϑ_{ζ}	ϑ
4	0.01	-1.0	0.4	1.0	1		0.8
-	-	-0.67	0.428	-	2		1.14
-	-	-	0.01	-	∞	∞	3.96

Table 1: Good choice of parameters for \mathfrak{X}^{t}-norms.

$\operatorname{codim}(S)$	α	β	λ	κ	l_{j}	ϑ_{ζ}	ϑ
4	0.01	-0.5	0.444	0.5	1		0.656
-	-	-	-	-	2		1.1
-	-	-	0.4	-	∞	∞	2.6

Table 2: Good choice of parameters for $C_{\beta ; t}^{1, \alpha}$-norms.

Corollary ([Majc])

Assume that D^{t} is isentropic. We can choose α, β, λ and κ such that there exists a torsion-free G_{2}-structure $\widetilde{\varphi}^{t}$ such that

whereby ϑ depends on all the choices.

Examples

Theorem ([Majc])

Let $\widetilde{X^{t}} \longrightarrow \mathbb{T}^{8} / \Gamma$ be one of the Joyce manifolds constructed in [Joy96] and $\widetilde{\Omega}^{t}$ its torsion-free $\operatorname{Spin}(7)$-structure. Let Ω^{t} be the $\operatorname{Spin}(7)$-structure on X^{t} constructed from the pregluing process. Then

$$
\left|\left|\widetilde{\Omega}^{t}-\Omega^{t}\right|_{x^{t}} \lesssim t^{\sim 4} .\right.
$$

Theorem ([Majc])

Let $\widetilde{X^{t}} \longrightarrow \mathbb{T}^{8} / \Gamma$ be one of the Joyce manifolds constructed in [Joy96] and $\widetilde{\Omega}^{t}$ its torsion-free $\operatorname{Spin}(7)$-structure. Let Ω^{t} be the $\operatorname{Spin}(7)$-structure on X^{t} constructed from the pregluing process. Then

$$
\left|\left|\widetilde{\Omega}^{t}-\Omega^{t}\right|_{x^{t}} \lesssim t^{\sim 4} .\right.
$$

Theorem ([Majc])

Let $\widetilde{X^{t}} \rightarrow \mathbb{C} \mathbb{P}^{\left[0_{0}, \ldots, a_{4}\right]}$ be one of the manifolds constructed in [Joy99] and $\widetilde{\Omega}^{t}$ its torsion-free $\operatorname{Spin}(7)$-structure. Let Ω^{t} be the $\operatorname{Spin}(7)$-structure on X^{t} constructed from the pregluing process. Then

$$
\left\|\widetilde{\Omega}^{t}-\Omega^{t}\right\|_{x^{t}} \lesssim t^{\sim 4}
$$

Definition

Let $(\hat{X}, \hat{\omega}, \hat{\theta}, \hat{g})$ be a Calabi-Yau four-fold given by a complete intersection. Assume that the real locus S of \hat{X} is of real codimension four and is smooth.

Definition

Let $(\hat{X}, \hat{\omega}, \hat{\theta}, \hat{g})$ be a Calabi-Yau four-fold given by a complete intersection. Assume that the real locus S of \hat{X} is of real codimension four and is smooth.

Proposition ([Majc])

Let $\mathcal{3}_{2} \rightarrow S$ be a two-fold, unramnified cover of S. If there exists a harmonic, self-dual, 3_{2}-twisted, non vanishing two form ζ, then the quotient \hat{X} / \mathbb{Z}_{2} admits a resolution

$$
\pi_{\zeta}: X^{t} \rightarrow \hat{X} / \mathbb{Z}_{2}
$$

Moreover, if D^{t} is isentropic the resolution carries a family of torsion-free Spin(7)-structure $\widetilde{\Omega}^{t}$ resolving the natural one on $\left(\hat{X} / \mathbb{Z}_{2}, \Omega, g_{\Omega}\right)$ induced by the Calabi-Yau structure.

- pick the same K3 surface as in [JK21], that admits a branched double cover

$$
K 3 \rightarrow \mathbb{C P}^{2}
$$

whose branching set is given by a sixtic C of genus 10

New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

- pick the same K3 surface as in [JK21], that admits a branched double cover

$$
K 3 \rightarrow \mathbb{C P}^{2}
$$

whose branching set is given by a sixtic C of genus 10

- define an involution

$$
\alpha_{K 3}: K 3 \rightarrow K 3
$$

by swapping the sheets of the branched covering and consequently $\operatorname{Fix}\left(\alpha_{K 3}\right)=C$

New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

- pick the same K3 surface as in [JK21], that admits a branched double cover

$$
K 3 \rightarrow \mathbb{C P}^{2}
$$

whose branching set is given by a sixtic C of genus 10

- define an involution

$$
\alpha_{K 3}: K 3 \rightarrow K 3
$$

by swapping the sheets of the branched covering and consequently $\operatorname{Fix}\left(\alpha_{K 3}\right)=C$

- the \mathbb{Z}_{2} action on $\mathbb{C P}^{2}$ by complex conjugation can be lifted to an action

New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

- pick the same K3 surface as in [JK21], that admits a branched double cover

$$
K 3 \rightarrow \mathbb{C P}^{2}
$$

whose branching set is given by a sixtic C of genus 10

- define an involution

$$
\alpha_{K 3}: K 3 \rightarrow K 3
$$

by swapping the sheets of the branched covering and consequently $\operatorname{Fix}\left(\alpha_{K 3}\right)=C$

- the \mathbb{Z}_{2} action on $\mathbb{C P}^{2}$ by complex conjugation can be lifted to an action

- non-tivial argument one can show that $\operatorname{Fix}\left(\beta_{k 3}\right)=\mathbb{S}^{2}$ and $\operatorname{Fix}\left(\alpha_{K 3} \beta_{K 3}\right)=\emptyset$

$$
\mathbb{S}^{1}=[0,4] / \sim
$$

an define the \mathbb{Z}_{2}^{3}-action

$$
\begin{aligned}
\alpha_{\mathbb{T}^{4}} & :\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(-x_{1}, 2-x_{2}, x_{3}, x_{4}\right) \\
\beta_{\mathbb{T}^{4}} & :\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(2-x_{1}, x_{2},-x_{3}, x_{4}\right) \\
\gamma_{\mathbb{T}^{4}} & :\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(-x_{1},-x_{2}, 2-x_{3}, 2-x_{4}\right)
\end{aligned}
$$

on the four torus \mathbb{T}^{4}, with

$$
\begin{aligned}
& \operatorname{Fix}\left(\alpha_{\mathbb{T}^{4}}\right)=\left\{\binom{0}{2},\binom{1}{3}, \mathbb{S}^{1}, \mathbb{S}^{1}\right\} \\
& \operatorname{Fix}\left(\beta_{\mathbb{T}^{4}}\right)=\left\{\binom{1}{3}, \mathbb{S}^{1},\binom{0}{2}, \mathbb{S}^{1}\right\} \\
& \operatorname{Fix}\left(\gamma_{\mathbb{T}^{4}}\right)=\left\{\binom{0}{2},\binom{0}{2},\binom{1}{3},\binom{1}{3}\right\} .
\end{aligned}
$$

New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

- lift the action of \mathbb{Z}_{2}^{3} to $\mathbb{T}^{4} \times K 3$ via $\alpha=\alpha_{\mathbb{T}^{4}} \times \alpha_{K 3}, \beta=\beta_{\mathbb{T}^{4}} \times \beta_{K 3}$ and $\gamma=\gamma_{\mathbb{T}^{4}} \times \mathrm{id}_{\kappa 3}$, whose fix point sets are given by

$$
\begin{aligned}
& \operatorname{Fix}(\alpha)=\left\{\binom{0}{2},\binom{1}{3}, \mathbb{S}^{1}, \mathbb{S}^{1}\right\} \times C \\
& \operatorname{Fix}(\beta)=\left\{\binom{1}{3}, \mathbb{S}^{1},\binom{0}{2}, \mathbb{S}^{1}\right\} \times \mathbb{S}^{2} \\
& \operatorname{Fix}(\gamma)=\left\{\binom{0}{2},\binom{1}{3},\binom{0}{2},\binom{1}{3}\right\} \times K 3 .
\end{aligned}
$$

and

$$
\alpha \beta, \alpha \gamma, \beta \gamma, \alpha \beta \gamma
$$

act freely on $\mathbb{T}^{4} \times K 3$

New Examples of Compact Spin(7)-Manifolds (joint work with D.Platt)

- lift the action of \mathbb{Z}_{2}^{3} to $\mathbb{T}^{4} \times K 3$ via $\alpha=\alpha_{\mathbb{T}^{4}} \times \alpha_{K 3}, \beta=\beta_{\mathbb{T}^{4}} \times \beta_{K 3}$ and $\gamma=\gamma_{\mathbb{T}^{4}} \times \mathrm{id}_{\kappa 3}$, whose fix point sets are given by

$$
\begin{aligned}
& \operatorname{Fix}(\alpha)=\left\{\binom{0}{2},\binom{1}{3}, \mathbb{S}^{1}, \mathbb{S}^{1}\right\} \times C \\
& \operatorname{Fix}(\beta)=\left\{\binom{1}{3}, \mathbb{S}^{1},\binom{0}{2}, \mathbb{S}^{1}\right\} \times \mathbb{S}^{2} \\
& \operatorname{Fix}(\gamma)=\left\{\binom{0}{2},\binom{1}{3},\binom{0}{2},\binom{1}{3}\right\} \times K 3 .
\end{aligned}
$$

and

$$
\alpha \beta, \alpha \gamma, \beta \gamma, \alpha \beta \gamma
$$

act freely on $\mathbb{T}^{4} \times K 3$

- this \mathbb{Z}_{2}^{3} action preserves the torsion-free $\operatorname{Spin}(7)$-structure

$$
\hat{\Omega}=\operatorname{vol}_{\mathbb{T}^{4}}+\operatorname{vol}_{K 3}-\operatorname{tr}_{+}\left(\underline{\omega}_{\mathbb{T}^{4}} \wedge \underline{\omega}_{K 3}\right)
$$

on $\mathbb{T}^{4} \times K 3$ and hence the torsion-free structure $\hat{\Omega}$ descends to a torsion-free $\operatorname{Spin}(7)$-structure Ω on the orbifold

$$
\left(\mathbb{T}^{4} \times K 3\right) / \mathbb{Z}_{2}^{3}
$$

```
New Example of Compact Spin(7)-Manifolds (joint work with D.Platt)
```

- singular strata in $\left(\mathbb{T}^{4} \times K 3\right) / \mathbb{Z}_{2}^{3}$ are non-intersecting and given by two copies of $\mathbb{T}^{2} \times C$, two copies of $\mathbb{T}^{2} \times \mathbb{S}^{2}$ and four copies of $K 3$
- pick the resolution data on $\mathbb{T}^{2} \times C$ to be determined by $\zeta=\operatorname{vol}_{\mathbb{T}^{2}}+\operatorname{vol}_{C}$, the resolution data on $\mathbb{T}^{2} \times \mathbb{S}^{2}$ by $\zeta=\operatorname{vol}_{\mathbb{T}^{2}}+\operatorname{vol}_{\mathbb{S}^{2}}$ and on the $K 3$ we can freely pick any combination of the hyperkähler triple as ζ

New Example of Compact Spin(7)-Manifolds (joint work with D.Platt)

- singular strata in $\left(\mathbb{T}^{4} \times K 3\right) / \mathbb{Z}_{2}^{3}$ are non-intersecting and given by two copies of $\mathbb{T}^{2} \times C$, two copies of $\mathbb{T}^{2} \times \mathbb{S}^{2}$ and four copies of $K 3$
- pick the resolution data on $\mathbb{T}^{2} \times C$ to be determined by $\zeta=\operatorname{vol}_{\mathbb{T}^{2}}+\operatorname{vol}_{C}$, the resolution data on $\mathbb{T}^{2} \times \mathbb{S}^{2}$ by $\zeta=\operatorname{vol}_{\mathbb{T}^{2}}+\operatorname{vol}_{\mathbb{S}^{2}}$ and on the $K 3$ we can freely pick any combination of the hyperkähler triple as ζ

Lemma ([Majc])

There exists a torsion-free $\operatorname{Spin}(7)$-structure $\widetilde{\Omega}^{t}$ on X^{t} satisfying

$$
\left\|\tilde{\Omega}^{t}-\Omega^{t}\right\|_{C_{\beta ; t}^{1, \alpha}} \lesssim t^{\sim 2.6} .
$$

Moreover, as $b^{1}\left(X^{t}\right)=b_{7}^{2}\left(X^{t}\right)=0$ the resolved Spin(7)-manifold has full holonomy.

Approximating Hyperkähler Metrics

- $\operatorname{Sym}^{2}(K 3)=(K 3 \times K 3) / \mathbb{Z}_{2}$ is a Spin(7)-orbifold whose torsion-free Spin(7)-structure is induced by the product structure

$$
\hat{\Omega}=\operatorname{vol}_{1}+\operatorname{vol}_{2}-\operatorname{tr}\left(\underline{\omega}_{1} \wedge \underline{\omega}_{2}\right) .
$$

- $\operatorname{Sym}^{2}(K 3)=(K 3 \times K 3) / \mathbb{Z}_{2}$ is a $\operatorname{Spin}(7)$-orbifold whose torsion-free Spin(7)-structure is induced by the product structure

$$
\hat{\Omega}=\operatorname{vol}_{1}+\operatorname{vol}_{2}-\operatorname{tr}\left(\underline{\omega}_{1} \wedge \underline{\omega}_{2}\right)
$$

- singular strata of $\operatorname{Sym}^{2}(K 3)$ is the diagonal $K 3$ and its normal bundle can be identified with its tangent bundle, i.e.

$$
0 \rightarrow T K 3 \rightarrow \text { Sym }^{2}(K 3) \rightarrow N K 3 \longrightarrow 0
$$

splits by $N K 3 \cong T K 3 \ni v \mapsto(\pm v \oplus \mp v)$

- $\operatorname{Sym}^{2}(K 3)=(K 3 \times K 3) / \mathbb{Z}_{2}$ is a $\operatorname{Spin}(7)$-orbifold whose torsion-free Spin(7)-structure is induced by the product structure

$$
\hat{\Omega}=\operatorname{vol}_{1}+\operatorname{vol}_{2}-\operatorname{tr}\left(\underline{\omega}_{1} \wedge \underline{\omega}_{2}\right)
$$

- singular strata of $\operatorname{Sym}^{2}(K 3)$ is the diagonal $K 3$ and its normal bundle can be identified with its tangent bundle, i.e.

$$
0 \rightarrow T K 3 \longrightarrow \operatorname{TSym}^{2}(K 3) \longrightarrow N K 3 \longrightarrow 0
$$

splits by $N K 3 \cong T K 3 \ni v \mapsto(\pm v \oplus \mp v)$

- there exists a two sphere of non-vanishing, harmonic, self-dual two forms corresponding to resolutions

$$
X_{\omega_{1}} \rightarrow N K 3 / \mathbb{Z}_{2} .
$$

The spaces $X_{\omega_{l}}$ are diffeomorphic to $\mathrm{Bl}_{l}\left(\triangle: K 3 \hookrightarrow \operatorname{Sym}^{2}(K 3)\right)$ and the resolved space is diffeomorphic to

$$
\overline{\operatorname{Sym}}^{2}(K 3){ }^{t} \cong \operatorname{Hilb}^{2}(K 3)
$$

- $\operatorname{Sym}^{2}(K 3)=(K 3 \times K 3) / \mathbb{Z}_{2}$ is a $\operatorname{Spin}(7)$-orbifold whose torsion-free Spin(7)-structure is induced by the product structure

$$
\hat{\Omega}=\operatorname{vol}_{1}+\operatorname{vol}_{2}-\operatorname{tr}\left(\underline{\omega}_{1} \wedge \underline{\omega}_{2}\right)
$$

- singular strata of $\operatorname{Sym}^{2}(K 3)$ is the diagonal $K 3$ and its normal bundle can be identified with its tangent bundle, i.e.

$$
0 \rightarrow T K 3 \longrightarrow \operatorname{TSym}^{2}(K 3) \longrightarrow N K 3 \longrightarrow 0
$$

splits by $N K 3 \cong T K 3 \ni v \mapsto(\pm v \oplus \mp v)$

- there exists a two sphere of non-vanishing, harmonic, self-dual two forms corresponding to resolutions

$$
X_{\omega_{1}} \rightarrow N K 3 / \mathbb{Z}_{2} .
$$

The spaces $X_{\omega_{l}}$ are diffeomorphic to $\mathrm{Bl}_{l}\left(\triangle: K 3 \hookrightarrow \operatorname{Sym}^{2}(K 3)\right)$ and the resolved space is diffeomorphic to

$$
\overline{\operatorname{Sym}}^{2}(K 3){ }^{t} \cong \operatorname{Hilb}^{2}(K 3)
$$

Proposition ([Majc])

There exists a family of hyperkähler metrics \widetilde{g}^{t} on $\operatorname{Hilb}^{2}(K 3)$ satisfying

$$
\| \widetilde{g}^{t}-\left.g^{t}\right|_{C_{-0.5 ; t}^{1,0.01}} \lesssim t^{1.1}
$$

$$
\text { and } \lambda=0.444 \text { and } \kappa=1 / 2
$$

Summary

- correspondence between resolutions of X_{0} and harmonic $\zeta \in \Omega_{+}^{2}(S, \mathfrak{H})$
- correspondence between resolutions of X_{0} and harmonic $\zeta \in \Omega_{+}^{2}(S, \mathfrak{H})$
- improved existence result for $\operatorname{Spin}(7)$-orbifold resolutions
- correspondence between resolutions of X_{0} and harmonic $\zeta \in \Omega_{+}^{2}(S, \mathfrak{H})$
- improved existence result for $\operatorname{Spin}(7)$-orbifold resolutions
- new examples of compact $\operatorname{Spin}(7)$-manifolds and approximations of hyperkähler metrics on $\operatorname{Hilb}^{2}(K 3)$

Further Research

- new examples using classification of Nikulin-involutions on K3 surfaces
- new examples using classification of Nikulin-involutions on K3 surfaces
- construction of degenerating families of holonomy instantons (up-coming [Majd])
- new examples using classification of Nikulin-involutions on K3 surfaces
- construction of degenerating families of holonomy instantons (up-coming [Majd])
- construction of degenerating families of calibrated submanifolds (up-coming [Maja])
- new examples using classification of Nikulin-involutions on K3 surfaces
- construction of degenerating families of holonomy instantons (up-coming [Majd])
- construction of degenerating families of calibrated submanifolds (up-coming [Maja])
- generalise construction to all types of orbifold singularities using Mazzeo's Edge calculus
- new examples using classification of Nikulin-involutions on K3 surfaces
- construction of degenerating families of holonomy instantons (up-coming [Majd])
- construction of degenerating families of calibrated submanifolds (up-coming [Maja])
- generalise construction to all types of orbifold singularities using Mazzeo's Edge calculus
- computing η-invariants of G_{2}-manifolds (extending work of [For])

References

[Bar19] Rodrigo Barbosa. Harmonic higgs bundles and coassociative ale fibrations. arXiv preprint arXiv:1910.10742, 2019.
[BC89] Jean-Michel Bismut and Jeff Cheeger. η-invariants and their adiabatic limits. Journal of the American Mathematical Society, 2(1):33-70, 1989.
[Bis86] Jean-Michel Bismut. The Atiyah-Singer index theorem for families of Dirac operators: Two heat equation proofs. Invent. Math., 83:91-151, 1986.
[BL91] Jean-Michel Bismut and Gilles Lebeau. Complex immersions and Quillen metrics. Publ. Math., Inst. Hautes Étud. Sci., 74:1-297, 1991.
[BL95] Jean-Michel Bismut and John Lott. Flat vector bundles, direct images and higher real analytic torsion. Journal of the American Mathematical Society, 8(2):291-363, 1995.
[For] Nelvis Fornasin. [eta] invariants under degeneration to cone-edge singularities. PhD thesis, Dissertation, Universität Freiburg, 2019.
[Goe14] Sebastian Goette. Adiabatic limits of Seifert fibrations, Dedekind sums, and the diffeomorphism type of certain 7-manifolds. J. Eur. Math. Soc. (JEMS), 16(12):2499-2555, 2014.
[JK21] Dominic Joyce and Spiro Karigiannis. A new construction of compact torsion-free G_{2}-manifolds by gluing families of Eguchi-Hanson spaces. J. Differ. Geom., 117(2):255-343, 2021.
[Joy96] Dominic D. Joyce. Compact 8-manifolds with holonomy Spin(7). Invent. Math., 123(3):507-552, 1996.
[Joy99] Dominic D. Joyce. A new construction of compact 8-manifolds with holonomy Spin(7). Journal of Differential Geometry, 53(1):89-130, 1999.
[Kro90] P. B. Kronheimer. Instantons and the geometry of the nilpotent variety. Journal of Differential Geometry, 32(2):473-490, 1990.
[Maja] Viktor F. Majewski. Cayley Submanifolds of Resolutions of Spin(7)-Orbifold. to appear.
[Majb] Viktor F. Majewski. Dirac Operators on Orbifold Resolutions. to appear.
[Majc] Viktor F. Majewski. Resolutions of Spin(7)-Orbifold. to appear.
[Majd] Viktor F. Majewski. Spin(7)-Instantons on Resolutions of Spin(7)-Orbifold. to appear.
[Pla20] Daniel Platt. Improved Estimates for G_{2}-structures on the Generalised Kummer Construction, 2020.
[Wal17] Thomas Walpuski. G2-instantons, associative submanifolds and Fueter sections. Commun. Anal. Geom., 25(4):847-893, 2017.

