G₂-instantons over generalised Kummer constructions via finite group actions

Dominik Gutwein Humboldt-Universität zu Berlin

May 14, 2024

7-manifold Y

• G₂-structure: $\phi \in \Omega^3(Y)$ such that $(T_y Y, \phi_y) \cong (\mathbb{R}^7, \phi_{\text{model}})$ for $\forall y \in Y$.

- $\operatorname{Stab}_{\operatorname{Gl}(\mathbb{R}^7)}(\phi_{\operatorname{model}}) = \operatorname{G}_2 < \operatorname{SO}(\mathbb{R}^7)$
- \rightarrow metric g_{ϕ} and orientation $\rightarrow \psi \coloneqq *_{\phi} \phi \in \Omega^{4}(Y)$.

7-manifold Y

- G₂-structure: $\phi \in \Omega^3(Y)$ such that $(T_y Y, \phi_y) \cong (\mathbb{R}^7, \phi_{\text{model}})$ for $\forall y \in Y$.
 - $\mathsf{Stab}_{\mathsf{GI}(\mathbb{R}^7)}(\phi_{\mathsf{model}}) = \mathsf{G}_2 < \mathsf{SO}(\mathbb{R}^7)$
 - \rightarrow metric g_{ϕ} and orientation $\rightarrow \psi \coloneqq *_{\phi} \phi \in \Omega^{4}(Y)$.
 - For $\psi_{\mathsf{model}} = *\phi_{\mathsf{model}}$: $\mathsf{Stab}_{\mathsf{Gl}(\mathbb{R}^7)}(\psi_{\mathsf{model}}) = \mathbb{Z}_2 \times \mathsf{G}_2 < \mathsf{O}(\mathbb{R}^7)$

7-manifold Y

- G₂-structure: $\phi \in \Omega^3(Y)$ such that $(T_y Y, \phi_y) \cong (\mathbb{R}^7, \phi_{\text{model}})$ for $\forall y \in Y$.
 - $\mathsf{Stab}_{\mathsf{GI}(\mathbb{R}^7)}(\phi_{\mathsf{model}}) = \mathsf{G}_2 < \mathsf{SO}(\mathbb{R}^7)$
 - \rightarrow metric g_{ϕ} and orientation $\rightarrow \psi \coloneqq *_{\phi} \phi \in \Omega^{4}(Y)$.
 - For $\psi_{\mathsf{model}} = *\phi_{\mathsf{model}}$: $\mathsf{Stab}_{\mathsf{Gl}(\mathbb{R}^7)}(\psi_{\mathsf{model}}) = \mathbb{Z}_2 \times \mathsf{G}_2 < \mathsf{O}(\mathbb{R}^7)$

- G₂-structure is torsion-free $\Leftrightarrow d\phi = 0$ and $d\psi = 0$.
 - G₂-manifold: (Y, ϕ) .

Joyce's generalised Kummer construction

Produces $\mathsf{G}_2\text{-manifolds}$ as desingularisations of compact, flat $\mathsf{G}_2\text{-orbifolds}.$

(Y₀, φ₀) compact, flat G₂-orbifold
 Assume: ∀ conn. comp. S ⊂ Sing(Y₀), ε-nbhd B_ε(S) is isometric to nbhd in S¹ × C³/Γ for Γ < SU(3) acting freely on C³ \ {0}

Joyce's generalised Kummer construction

Produces $\mathsf{G}_2\text{-manifolds}$ as desingularisations of compact, flat $\mathsf{G}_2\text{-orbifolds}.$

- (Y₀, φ₀) compact, flat G₂-orbifold
 Assume: ∀ conn. comp. S ⊂ Sing(Y₀), ε-nbhd B_ε(S) is isometric to nbhd in S¹ × C³/Γ for Γ < SU(3) acting freely on C³ \ {0}
- **2** R-data: resolution $\tau: \hat{Z} \to \mathbb{C}^3/\Gamma$ with (ω, Ω) ALE Calabi–Yau.
- Replace $B_{\varepsilon}(S)$ by nbhd in $(S^1 \times \hat{Z}, \hat{\phi}_{S^1 \times \hat{Z}}) \to \text{smooth mfd.} \hat{Y}$

Joyce's generalised Kummer construction

Produces $\mathsf{G}_2\text{-manifolds}$ as desingularisations of compact, flat $\mathsf{G}_2\text{-orbifolds}.$

- (Y₀, φ₀) compact, flat G₂-orbifold
 Assume: ∀ conn. comp. S ⊂ Sing(Y₀), ε-nbhd B_ε(S) is isometric to nbhd in S¹ × C³/Γ for Γ < SU(3) acting freely on C³ \ {0}
- **2** R-data: resolution $\tau: \hat{Z} \to \mathbb{C}^3/\Gamma$ with (ω, Ω) ALE Calabi–Yau.
- Replace $B_{\varepsilon}(S)$ by nbhd in $(S^1 \times \hat{Z}, \hat{\phi}_{S^1 \times \hat{Z}}) \to \text{smooth mfd.} \hat{Y}$
- interpolation: G2-structure $\tilde{\phi}_t \to {\rm deformation:}$ torsion-free ϕ_t for $t \ll 1$

• G₂-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$ where Γ is generated by

$$\begin{aligned} \alpha(x_1,\ldots,x_7) &= (x_2,x_3,x_7,-x_6,-x_4,x_1,x_5) \\ \beta(x_1,\ldots,x_7) &= (\frac{1}{2}-x_1,\frac{1}{2}-x_2,-x_3,-x_4,\frac{1}{2}+x_5,\frac{1}{2}+x_6,x_7) \\ \tau_1(x_1,\ldots,x_7) &= (x_1+1,x_2,x_3,x_4,x_5,x_6,x_7). \end{aligned}$$

• Sing(\mathbb{R}^7/Γ) = S¹ with model S¹ × $\mathbb{C}^3/\mathbb{Z}_7$ action generated by diag($e^{2\pi i/7}, e^{4\pi i/7}, e^{8\pi i/7}$) \in SU(3)

• G₂-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$ where Γ is generated by

$$\begin{aligned} \alpha(x_1,\ldots,x_7) &= (x_2,x_3,x_7,-x_6,-x_4,x_1,x_5) \\ \beta(x_1,\ldots,x_7) &= (\frac{1}{2}-x_1,\frac{1}{2}-x_2,-x_3,-x_4,\frac{1}{2}+x_5,\frac{1}{2}+x_6,x_7) \\ r_1(x_1,\ldots,x_7) &= (x_1+1,x_2,x_3,x_4,x_5,x_6,x_7). \end{aligned}$$

- Sing(\mathbb{R}^7/Γ) = S¹ with model S¹ × $\mathbb{C}^3/\mathbb{Z}_7$ action generated by diag($e^{2\pi i/7}, e^{4\pi i/7}, e^{8\pi i/7}$) \in SU(3)
- Markushevich, Craw–Ishii, Joyce,...: ∃ crepant resolution
 τ: Ẑ → C³/Z₇ with ALE CY-structure (ω, Ω)

• G2-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$ where Γ is generated by

$$\begin{aligned} \alpha(x_1,\ldots,x_7) &= (x_2,x_3,x_7,-x_6,-x_4,x_1,x_5) \\ \beta(x_1,\ldots,x_7) &= (\frac{1}{2}-x_1,\frac{1}{2}-x_2,-x_3,-x_4,\frac{1}{2}+x_5,\frac{1}{2}+x_6,x_7) \\ r_1(x_1,\ldots,x_7) &= (x_1+1,x_2,x_3,x_4,x_5,x_6,x_7). \end{aligned}$$

- Sing(\mathbb{R}^7/Γ) = S¹ with model S¹ × $\mathbb{C}^3/\mathbb{Z}_7$ action generated by diag($e^{2\pi i/7}, e^{4\pi i/7}, e^{8\pi i/7}$) \in SU(3)
- Markushevich, Craw–Ishii, Joyce,...: \exists crepant resolution $\tau: \hat{Z} \to \mathbb{C}^3/\mathbb{Z}_7$ with ALE CY-structure (ω, Ω)
- generalised Kummer construction: G_2 -manifold (\hat{Y}, ϕ_t)

Interlude: solutions to PDE's via Newton-Iteration

- Goal: solve (non-linear, elliptic) PDE F(v) = 0.
- Have: almost solution v_0 (i.e. $F(v_0)$ small)
- Hope: find small v s.t.

$$0 = F(v_0 + v) = F(v_0) + L_{v_0}v + \mathcal{N}_{v_0}(v).$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Interlude: solutions to PDE's via Newton-Iteration

- Goal: solve (non-linear, elliptic) PDE F(v) = 0.
- Have: almost solution v_0 (i.e. $F(v_0)$ small)
- Hope: find small v s.t.

$$0 = F(v_0 + v) = F(v_0) + L_{v_0}v + \mathcal{N}_{v_0}(v).$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• If L_{v_0} has right-inverse R, then (1) is satisfied by v = Rw where

$$w = -F(v_0) - \mathcal{N}_{v_0}(Rw).$$

 often in gluing constructions: find such w via Banach's Fixedpoint Theorem • PDE $F: V \to W$, almost solution $v_0 \in V \to fixpoint-problem$:

$$w = -F(v_0) - \mathcal{N}_{v_0}(Rw)$$

• Assume: linear, continuous H-action on V and W

• Assume: F equivariant

• PDE $F: V \to W$, almost solution $v_0 \in V \to \text{fixpoint-problem}$:

$$w = -F(v_0) - \mathcal{N}_{v_0}(Rw)$$

• Assume: linear, continuous H-action on V and W

• Assume: F equivariant

Observation

If v_0 is *H*-invariant, *R* is equivariant, and fixpoint *w* is unique, then *w* and v = Rw are *H*-invariant. (Because $h \cdot w$ also solves fixpoint-problem for every $h \in H$.)

• G₂-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$ where Γ is generated by

$$\begin{aligned} \alpha(x_1,\ldots,x_7) &= (x_2,x_3,x_7,-x_6,-x_4,x_1,x_5) \\ \beta(x_1,\ldots,x_7) &= (\frac{1}{2}-x_1,\frac{1}{2}-x_2,-x_3,-x_4,\frac{1}{2}+x_5,\frac{1}{2}+x_6,x_7) \\ \tau_1(x_1,\ldots,x_7) &= (x_1+1,x_2,x_3,x_4,x_5,x_6,x_7). \end{aligned}$$

• Involution $\sigma := -Id \in Norm_{O(\mathbb{R}^7)}(\Gamma)$ descends to \mathbb{R}^7/Γ and preserves ψ_0

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• G₂-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$ where Γ is generated by

$$\begin{aligned} \alpha(x_1,\ldots,x_7) &= (x_2,x_3,x_7,-x_6,-x_4,x_1,x_5) \\ \beta(x_1,\ldots,x_7) &= (\frac{1}{2}-x_1,\frac{1}{2}-x_2,-x_3,-x_4,\frac{1}{2}+x_5,\frac{1}{2}+x_6,x_7) \\ \tau_1(x_1,\ldots,x_7) &= (x_1+1,x_2,x_3,x_4,x_5,x_6,x_7). \end{aligned}$$

• Involution $\sigma := -\mathrm{Id} \in \mathrm{Norm}_{\mathrm{O}(\mathbb{R}^7)}(\Gamma)$ descends to \mathbb{R}^7/Γ and preserves ψ_0

• Fact: Obtain lift $\hat{\sigma}$ to \hat{Y} such that $\hat{\sigma}^*\psi_t = \psi_t$ (and $\hat{\sigma}^*\phi_t = -\phi_t$)

Equivariant generalised Kummer construction

• Upshot: Sometimes symmetries of (Y_0, ϕ_0) lift to (\hat{Y}, ϕ_t) (might depend on choice of R-data)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Equivariant generalised Kummer construction

- Upshot: Sometimes symmetries of (Y_0, ϕ_0) lift to (\hat{Y}, ϕ_t) (might depend on choice of R-data)
- Applications:
 - Joyce '96: (Co-) Associative submanifolds as fixpoint sets of G_2 -(anti)-involutions.
 - Dwivedi–Platt–Walpuski '23: Associative submanifolds by deforming Morse–Bott families.

 \rightarrow Use group action to ensure that deformed family contains associatives

• G. '24: (obstructed) equivariant G2-instantons via gluing. \rightarrow Use group action to overcome possible obstructions

(Y, ϕ) compact G₂-manifold, $\pi \colon P \to Y$ principal *G*-bundle

Definition

A connection A on $\pi: P \to Y$ is called G₂-instanton, if $F_A \wedge \psi = 0$.

(Y, ϕ) compact G₂-manifold, $\pi \colon P \to Y$ principal G-bundle

Definition

A connection A on $\pi: P \to Y$ is called G₂-instanton, if $F_A \wedge \psi = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Fix connection A_0 .

(Y, ϕ) compact G₂-manifold, $\pi \colon P \to Y$ principal *G*-bundle

Definition

A connection A on $\pi: P \to Y$ is called G₂-instanton, if $F_A \wedge \psi = 0$.

Fix connection A_0 . Then $A_0 + a$ for $a \in \Omega^1(Y, \mathfrak{g}_P)$ is a G_2 -instanton (in Uhlenbeck gauge) iff there exists a $\xi \in \Omega^7(Y, \mathfrak{g}_P)$ such that

$$\left. \begin{array}{l} 0 = F_{A_{\mathbf{0}}+a} \wedge \psi + \mathsf{d}^{*}_{A_{\mathbf{0}}+a}\xi \\ 0 = \mathsf{d}^{*}_{A_{\mathbf{0}}}a \\ = : \Upsilon_{A_{\mathbf{0}}}(a,\xi) \end{array} \right\} = F_{A_{\mathbf{0}}} \wedge \psi + \mathcal{L}_{A_{\mathbf{0}}}(a,\xi) + \mathcal{Q}_{A_{\mathbf{0}}}(a,\xi)$$

Flat connections (i.e. $F_A = 0$) are G₂-instantons.

Flat connections (i.e. $F_A = 0$) are G₂-instantons.

Example 2

- (Z, ω, Ω) Calabi–Yau 3-fold
- \rightarrow G₂-manifold: $S^1 \times Z$ with $\psi := \frac{1}{2}\omega \wedge \omega + ds \wedge \operatorname{Re} \Omega$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Flat connections (i.e. $F_A = 0$) are G₂-instantons.

Example 2

- (Z, ω, Ω) Calabi–Yau 3-fold
- \rightarrow G₂-manifold: $S^1 \times Z$ with $\psi := \frac{1}{2}\omega \wedge \omega + ds \wedge \operatorname{Re}\Omega$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

• $\pi: P \rightarrow Z$ principal *G*-bundle with connection *A*

Flat connections (i.e. $F_A = 0$) are G₂-instantons.

Example 2

- (Z, ω, Ω) Calabi–Yau 3-fold
- \rightarrow G₂-manifold: $S^1 \times Z$ with $\psi := \frac{1}{2}\omega \wedge \omega + ds \wedge \text{Re}\,\Omega$
- $\pi: P \rightarrow Z$ principal *G*-bundle with connection *A*
- $\rightarrow \operatorname{pr}_Z^* A$ is G₂-instanton on $\operatorname{pr}_Z^* \pi \colon \operatorname{pr}_Z^* P \rightarrow S^1 \times Z$ iff $F_A \wedge \omega \wedge \omega = 0$ and $F_A \wedge \operatorname{Re} \Omega = 0$

• \Leftrightarrow A is Hermitian Yang–Mills (assume G is real)

Flat connections (i.e. $F_A = 0$) are G₂-instantons.

Example 2

- (Z, ω, Ω) Calabi–Yau 3-fold
- \rightarrow G₂-manifold: $S^1 \times Z$ with $\psi := \frac{1}{2}\omega \wedge \omega + ds \wedge \text{Re}\,\Omega$
- $\pi: P \rightarrow Z$ principal *G*-bundle with connection *A*
- $\rightarrow \operatorname{pr}_Z^* A$ is G₂-instanton on $\operatorname{pr}_Z^* \pi \colon \operatorname{pr}_Z^* P \rightarrow S^1 \times Z$ iff $F_A \wedge \omega \wedge \omega = 0$ and $F_A \wedge \operatorname{Re} \Omega = 0$
- \Leftrightarrow A is Hermitian Yang–Mills (assume G is real)
- Walpuski '13: G2-instantons over generalised Kummer constructions

• Platt '22: G2-instantons over orbifold resolutions

Group actions

Assumption

Assume:

- *H* finite group
- *H*-action $\tilde{\lambda} \colon H \to \text{Isom}(P)$, i.e.

$$\begin{array}{c} P \xrightarrow{\tilde{\lambda}(h)} P \\ \downarrow & \downarrow \\ Y \xrightarrow{\lambda(h)} Y \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• $\lambda(h)^*\psi = \psi$ for every $h \in H$

Group actions

Assumption

Assume:

- *H* finite group
- *H*-action $\tilde{\lambda} \colon H \to \text{Isom}(P)$, i.e.

$$\begin{array}{c} P \xrightarrow{\tilde{\lambda}(h)} P \\ \downarrow & \downarrow \\ Y \xrightarrow{\lambda(h)} Y \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• $\lambda(h)^*\psi = \psi$ for every $h \in H$

• \Rightarrow *H* acts on all $\Omega^k(Y, \mathfrak{g}_P)$

Group actions

Assumption

Assume:

- *H* finite group
- *H*-action $\tilde{\lambda} \colon H \to \mathsf{Isom}(P)$, i.e.

$$\begin{array}{c} P \xrightarrow{\tilde{\lambda}(h)} P \\ \downarrow & \downarrow \\ Y \xrightarrow{\lambda(h)} Y \end{array}$$

• $\lambda(h)^*\psi = \psi$ for every $h \in H$

- \Rightarrow H acts on all $\Omega^k(Y, \mathfrak{g}_P)$
- Observation: If A_0 is *H*-invariant, then

 $\Upsilon_{A_{0}}\colon \, \Omega^{1}(Y,\mathfrak{g}_{P})\oplus \Omega^{7}(Y,\mathfrak{g}_{P})\to \Omega^{0}(Y,\mathfrak{g}_{P})\oplus \Omega^{6}(Y,\mathfrak{g}_{P})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

is equivariant. (Sanity check: $\Upsilon_{A_0}(0) = F_{A_0} \wedge \psi$ invariant)

Deforming invariant almost instantons

$$\begin{split} \tilde{\lambda} \colon H \to \operatorname{Isom}(P) \ \psi \text{-preserving action}, \ A_0 \ \text{fixed connection}, \\ \Upsilon_{A_0} \colon \underbrace{\Omega^1(Y, \mathfrak{g}_P) \oplus \Omega^7(Y, \mathfrak{g}_P)}_{=:V} \to \underbrace{\Omega^0(Y, \mathfrak{g}_P) \oplus \Omega^6(Y, \mathfrak{g}_P)}_{=:W} \\ (a, \xi) \mapsto F_{A_0} \land \psi + L_{A_0}(a, \xi) + Q_{A_0}(a, \xi) \end{split}$$

Pretend that V, W are Banach-spaces

Deforming invariant almost instantons

 $ilde{\lambda}$: $H
ightarrow {
m Isom}(P)$ ψ -preserving action, A_0 fixed connection,

$$\Upsilon_{A_{0}}: \underbrace{\Omega^{1}(Y,\mathfrak{g}_{P})\oplus\Omega^{7}(Y,\mathfrak{g}_{P})}_{=:V} \to \underbrace{\Omega^{0}(Y,\mathfrak{g}_{P})\oplus\Omega^{6}(Y,\mathfrak{g}_{P})}_{=:W}_{=:W}$$
$$(a,\xi)\mapsto F_{A_{0}}\wedge\psi+L_{A_{0}}(a,\xi)+Q_{A_{0}}(a,\xi)$$

Pretend that V, W are Banach-spaces

Schematic Theorem

Assume A_0 is *H*-invariant and

- There exists a bounded right-inverse R_{A_0} : $W^H \to V^H$ to $L_{A_0}|_{V^H}$.
- ||F_{A₀} ∧ ψ|| is 'sufficiently small' (depending on op-norm of R_{A₀} and bounds on Q_{A₀}).

Then there exists a *H*-invariant $a \in \Omega^1(Y, \mathfrak{g}_P)$ such that $A_0 + a$ is a G_2 -instanton.

 \rightarrow use this to construct instantons over generalised Kummer construction

 (Y₀, φ₀) flat compact G₂-orbifold such that all singularities are modelled on S¹ × C³/Γ (Γ < SU(3) acts freely outside 0)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

- (Y_0, ϕ_0) flat compact G₂-orbifold such that all singularities are modelled on $S^1 \times \mathbb{C}^3 / \Gamma$ ($\Gamma < SU(3)$ acts freely outside 0)
- generalised Kummer construction: G₂-manifold (\hat{Y}, ϕ_t) 'by replacing \mathbb{C}^3/Γ with crepant resolution \hat{Z} '

- (Y₀, φ₀) flat compact G₂-orbifold such that all singularities are modelled on S¹ × C³/Γ (Γ < SU(3) acts freely outside 0)
- generalised Kummer construction: G₂-manifold (\hat{Y}, ϕ_t) 'by replacing \mathbb{C}^3/Γ with crepant resolution \hat{Z} '
- ϕ_t 'close' to $\tilde{\phi}_t$ 'close' to ϕ_0 on $Y_0 \setminus \text{Sing and } \phi_{S^1 \times \hat{Z}, t}$ on $S^1 \times \hat{Z}$

- (Y₀, φ₀) flat compact G₂-orbifold such that all singularities are modelled on S¹ × C³/Γ (Γ < SU(3) acts freely outside 0)
- generalised Kummer construction: G₂-manifold (\hat{Y}, ϕ_t) 'by replacing \mathbb{C}^3/Γ with crepant resolution \hat{Z} '
- ϕ_t 'close' to $\tilde{\phi}_t$ 'close' to ϕ_0 on $Y_0 \setminus \text{Sing and } \phi_{S^1 \times \hat{Z}, t}$ on $S^1 \times \hat{Z}$
- idea: almost instanton on (\hat{Y}, ϕ_t) by interpolating G₂-instanton on Y_0 and G₂-instanton on $S^1 \times \hat{Z}$ matching at infinity

- (Y₀, φ₀) flat compact G₂-orbifold such that all singularities are modelled on S¹ × C³/Γ (Γ < SU(3) acts freely outside 0)
- generalised Kummer construction: G₂-manifold (\hat{Y}, ϕ_t) 'by replacing \mathbb{C}^3/Γ with crepant resolution \hat{Z} '
- ϕ_t 'close' to $\tilde{\phi}_t$ 'close' to ϕ_0 on $Y_0 \setminus \text{Sing and } \phi_{S^1 \times \hat{Z}, t}$ on $S^1 \times \hat{Z}$
- idea: almost instanton on (\hat{Y}, ϕ_t) by interpolating G₂-instanton on Y_0 and G₂-instanton on $S^1 \times \hat{Z}$ matching at infinity
- easier: almost instanton by interpolating flat connection on Y_0 and asymptotically flat Hermitian Yang–Mills connection on $S^1 \times \hat{Z}$

- (Y₀, φ₀) flat compact G₂-orbifold such that all singularities are modelled on S¹ × C³/Γ (Γ < SU(3) acts freely outside 0)
- (P_0, A_0) flat principal *G*-bundle over Y_0
- \rightarrow over (nbhd. in) $S^1 \times \mathbb{C}^3 / \Gamma$:

$$(P_0, A_0) \cong (\mathbb{R} \times (P_\infty, A_\infty))/\mathbb{Z}$$

with (P_{∞}, A_{∞}) flat bundle over \mathbb{C}^3/Γ .

- (Y_0, ϕ_0) flat compact G₂-orbifold such that all singularities are modelled on $S^1 \times \mathbb{C}^3 / \Gamma$ ($\Gamma < SU(3)$ acts freely outside 0)
- (P_0, A_0) flat principal G-bundle over Y_0
- \rightarrow over (nbhd. in) $S^1 \times \mathbb{C}^3 / \Gamma$:

$$(P_0, A_0) \cong (\mathbb{R} \times (P_\infty, A_\infty)) / \mathbb{Z}$$

with (P_{∞}, A_{∞}) flat bundle over \mathbb{C}^3/Γ .

Gluing data

- flat principal G-bundle over Y_0
- framed principal G-bundle $\hat{P}_{\hat{Z}}$ over \hat{Z} (isomorphic to P_{∞} outside the except. divisor)
- Hermitian Yang–Mills connection $\hat{A}_{\hat{Z}}$ on $\hat{P}_{\hat{Z}}$ asymptotic to A_{∞} (with rate -5)
- lift of the \mathbb{Z} -action to $\hat{P}_{\hat{Z}}$ that preserves $\hat{A}_{\hat{Z}}$

Assume there are

Assume there are

- Gluing data:
 - a flat bundle (P_0, A_0) over Y_0
 - bundles P̂₂ over Ẑ with HYM connection Â₂ asymptotic to A₀ at infinity (with rate −5) + lift of monodromy around S¹

Assume there are

- Gluing data:
 - a flat bundle (P_0, A_0) over Y_0
 - bundles \$\hat{P}_2\$ over \$\hat{Z}\$ with HYM connection \$\hat{A}_2\$ asymptotic to \$A_0\$ at infinity (with rate \$-5\$) + lift of monodromy around \$S^1\$

Then there is a bundle over \hat{Y} with that are 'almost instantons' (w.r.t. ϕ_t).

connections $(\tilde{A}_t)_{t\in(0,\varepsilon)}$

うせん 川田 (山田) (山) (山) (山)

Assume there are

- Gluing data:
 - a flat bundle (P_0, A_0) over Y_0
 - bundles P̂₂ over Ẑ with HYM connection Â₂ asymptotic to A₀ at infinity (with rate −5) + lift of monodromy around S¹
- matching *H*-actions on P_0 and $\hat{P}_{\hat{Z}}$ that preserve ψ_0 , A_0 , $\hat{\psi}_{S^1 \times \hat{Z}}$, and $\hat{A}_{\hat{Z}}$

Then there is a bundle over \hat{Y} with *H*-invariant connections $(\tilde{A}_t)_{t \in (0,\varepsilon)}$ that are 'almost instantons' (w.r.t. ϕ_t).

Assume there are

- Gluing data:
 - a flat bundle (P_0, A_0) over Y_0
 - bundles $\hat{P}_{\hat{Z}}$ over \hat{Z} with HYM connection $\hat{A}_{\hat{Z}}$ asymptotic to A_0 at infinity (with rate -5) + lift of monodromy around S^1
- matching *H*-actions on P_0 and $\hat{P}_{\hat{Z}}$ that preserve ψ_0 , A_0 , $\hat{\psi}_{S^1 \times \hat{Z}}$, and $\hat{A}_{\hat{Z}}$

Then there is a bundle over \hat{Y} with *H*-invariant connections $(\tilde{A}_t)_{t \in (0,\varepsilon)}$ that are 'almost instantons' (w.r.t. ϕ_t). If

- $\operatorname{coker}(L_{A_0})^H = 0$ and
- The HYM connections Â₂ do not have H₂-invariant obstructions where H₂ < H stabilises S¹ ⊂ Sing(Y₀) resolved by 2,

then \tilde{A}_t can be deformed to a G₂-instanton for $t \ll 1$.

set-up: G₂-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$, action by $H < \operatorname{Norm}_{O(\mathbb{R}^7)}(\Gamma)$

set-up: G₂-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$, action by $H < \operatorname{Norm}_{O(\mathbb{R}^7)}(\Gamma)$

- flat connection:
 - flat principal G-bundles over $\mathbb{R}^7/\Gamma \Leftrightarrow \text{Hom}(\Gamma, G)$
 - flat principal *G*-bundles (P_0, A_0) over \mathbb{R}^7/Γ with *H*-action $\Leftrightarrow \rho \in \operatorname{Hom}(H \ltimes \Gamma, G)$

• $\operatorname{coker}(L_{A_0})^H = 0 \Leftrightarrow (\mathfrak{g} \oplus \Lambda^6 \mathbb{R}^7 \otimes \mathfrak{g})^{H \ltimes \Gamma, \rho} = 0$

set-up: G₂-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$, action by $H < \operatorname{Norm}_{O(\mathbb{R}^7)}(\Gamma)$

- Ilat connection:
 - flat principal G-bundles over $\mathbb{R}^7/\Gamma \Leftrightarrow \text{Hom}(\Gamma, G)$
 - flat principal *G*-bundles (P_0, A_0) over \mathbb{R}^7/Γ with *H*-action $\Leftrightarrow \rho \in \text{Hom}(H \ltimes \Gamma, G)$
 - $\operatorname{coker}(L_{A_0})^H = 0 \Leftrightarrow (\mathfrak{g} \oplus \Lambda^6 \mathbb{R}^7 \otimes \mathfrak{g})^{H \ltimes \Gamma, \rho} = 0$

2 Hermitian Yang–Mills connections over \hat{Z} (crep. resolution of \mathbb{C}^3/Γ)

 Degeratu–Walpuski '15: For every flat U(n)-bundle (P_∞, A_∞) over C³/Γ there exists a framed U(n)-bundle P̂₂ over Ẑ together with an unobstructed HYM connection Â₂ asymptotic to A_∞ (with rate -5).

• Check if
$$S^1$$
-monodromy lifts to $(\hat{P}_{\hat{Z}}, \hat{A}_{\hat{Z}})$

set-up: G₂-orbifold ($\mathbb{R}^7/\Gamma, \phi_0$), action by $H < \operatorname{Norm}_{O(\mathbb{R}^7)}(\Gamma)$

Ilat connection:

- flat principal G-bundles over $\mathbb{R}^7/\Gamma \Leftrightarrow \text{Hom}(\Gamma, G)$
- flat principal *G*-bundles (P_0, A_0) over \mathbb{R}^7/Γ with *H*-action $\Leftrightarrow \rho \in \operatorname{Hom}(H \ltimes \Gamma, G)$
- $\operatorname{coker}(L_{A_0})^H = 0 \Leftrightarrow (\mathfrak{g} \oplus \Lambda^6 \mathbb{R}^7 \otimes \mathfrak{g})^{H \ltimes \Gamma, \rho} = 0$

2 Hermitian Yang–Mills connections over \hat{Z} (crep. resolution of \mathbb{C}^3/Γ)

Degeratu–Walpuski '15: For every flat U(n)-bundle (P_∞, A_∞) over C³/Γ there exists a framed U(n)-bundle P̂₂ over Ẑ together with an unobstructed HYM connection Â₂ asymptotic to A_∞ (with rate -5).

• Check if S^1 -monodromy lifts to $(\hat{P}_{\hat{Z}}, \hat{A}_{\hat{Z}})$

9 Caution: Don't want U(1)-instanton or flat connection over \hat{Y}

Example (Joyce '96)

- G₂-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$ where Γ is as before \rightarrow Kummer construction: (\hat{Y}, ϕ_t)
- Recall: Involution $\sigma := -\operatorname{Id} \in O(\mathbb{R}^7)$ lifts to \hat{Y} such that $\hat{\sigma}^* \psi_t = \psi_t$ (and $\hat{\sigma}^* \phi_t = -\phi_t$) $\rightarrow \mathbb{Z}_2$ -action on \hat{Y} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example (Joyce '96)

- G₂-orbifold $(\mathbb{R}^7/\Gamma, \phi_0)$ where Γ is as before \rightarrow Kummer construction: (\hat{Y}, ϕ_t)
- Recall: Involution $\sigma := -\operatorname{Id} \in O(\mathbb{R}^7)$ lifts to \hat{Y} such that $\hat{\sigma}^* \psi_t = \psi_t$ (and $\hat{\sigma}^* \phi_t = -\phi_t$) $\rightarrow \mathbb{Z}_2$ -action on \hat{Y} .

Proposition (G. '24)

In above example:

- There exists a SO(14)-bundle over Ŷ and a S¹-family of pairwise not gauge equivalent 'almost instantons' (Ã_θ)_{θ∈S¹}.
- All \tilde{A}_{θ} are \mathbb{Z}_2 -invariant.
- If $\theta \in S^1 \setminus \{\pm 1\}$, then \tilde{A}_{θ} satisfies condition of previous theorem

 $(\rightarrow \text{ can be deformed to } G_2\text{-instantons})$ \Rightarrow For each pairwise distinct $\theta_1, \ldots, \theta_n \in S^1 \setminus \{\pm 1\}$ there are (for $t \ll 1$) $\mathbb{Z}_2\text{-invariant (non-flat) } G_2\text{-instantons } A_{\theta_1}, \ldots, A_{\theta_n}$ which are pairwise not gauge-equivalent and infinitesimally irreducible.

Hope:

In prior example: deform a 1-parameter family $(\tilde{A}_{\theta})_{\theta \in K}$ for $K \subset S^1 \setminus \{\pm 1\}$ a compact submanifold with boundary to obtain a corresponding family of G₂-instantons.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Hope:

In prior example: deform a 1-parameter family $(\tilde{A}_{\theta})_{\theta \in K}$ for $K \subset S^1 \setminus \{\pm 1\}$ a compact submanifold with boundary to obtain a corresponding family of G₂-instantons.

- \bullet Such a family would be obstructed but $\mathbb{Z}_2\text{-unobstructed}$
- \Rightarrow obtain family of unobstructed 'instantons' on \hat{Y}/\mathbb{Z}_2 (non-orientable but has ψ)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thank you for your attention!

・ロト・4日ト・4日ト・4日・9000