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Spin(7)-manifolds and Cayley 4-folds

Spin(7)-geometry

Standard Cayley form on R® = R* & R*:
Oy = dVOlR“@O Fwi ATL +Fwr AT — w3 A T3+ dVOlO@R4 € /\4(R8)

Here w;, 7; are positive bases of the anti-self-dual two-forms on both
copies of R*. For v1, s, v3, v4 € R® have calibration property:

Cbo(vl, Vo, v3, V4) < VOl(Vl, Vo, V3, V4).

A manifold M® with 4-form & is a Spin(7)-manifold if (T,M,®,) is
pointwise isomorphic to (]RS, ®p). A Riemannian metric go is induced, as
Stab(®g) = Spin(7) C SO(8) via a Spin representation.

If d® =0, then Hol(ge) C Spin(7).

Definition
A submanifold N* C (M, ®) is Cayley if ®|y = dvoly.




Spin(7)-manifolds and Cayley 4-folds

Existence of fibrations via gluing

We hope Spin(7) manifolds to be foliated by Cayley submanifolds,
motivated by the SYZ conjecture for special Lagrangians in Calabi-Yau
manifolds.
Goal: Construct a fibration on a compact torsion-free Spin(7)-manifold
via gluing of complex fibrations (on top of gluing a Spin(7)-manifold).
Strategy:
@ Construct exact fibration on (M, ®) with ||d®|| small via gluing from
simpler pieces.
@ Show that fibration property stable under small change of ®. This
requires knowledge of the deformation theory of the Cayley fibres
and desingularisation theory of the singular fibres.

@ Use Existence theorem for torsion-free Spin(7)-structures near
small-torsion structures and stability of fibration to conclude.
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Spin(7)-manifolds and Cayley 4-folds

Singularities of fibrations on compact manifolds

It is expected that if (M, ®) is a compact Spin(7) manifold and

f : M® — B* a smooth fibre bundle with Cayley fibres, then

Hol(gs) # Spin(7) (has been proven for coassociative fibrations in
Gp-manifolds). In other words, interesting fibrations are expected to have
singularities.

Analogy: A holomorphic fibration K3 — CP! needs to have nodal
fibres, since otherwise 24 = x(K3) = x(C) x x(CP') = 2(2 — 2g) with
g =0.

In the Spin(7) case, the simplest singularities are conical and the simplest
plausible one is the following complex singularity:

f.C*— C% (x,y,z,w) —> (x2 +y? + 22 w).

The singular fibres f~1(0, a) are conically singular. We have a good
Fredholm theory and can handle them analytically.
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Stability of fibration near non-singular fibres

Deformation theory

Definition
A submanifold N* C (M, ®) is a-almost Cayley if ®|y > advoly with
O<a<l

For (M, ®) a compact Spin(7)-manifold, there is a global ami, such that
if N C M is a-almost Cayley with & > ami, then there is a well-defined
bundle Epn and a nonlinear elliptic differential operator

N,))-

for p > 4,k > 1 such that N, = exp(v) is Cayley exactly when F(v) = 0.
The map F is smooth and automatically Fredholm at its zeros. Thus if
F(v) =0 and Coker DF(v) = 0 (unobstructed case) for some v, then
M(N, ®), the moduli space of Cayley submanifolds isotopic to N is a
smooth, finite dimensional manifold near N/, modelled on F~1(0). F
depends smoothly on N and ¢.

F Ly (ve(N)) — LY(En), v+— me(xnexpy(T
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Stability of fibration near non-singular fibres

Fibrations near non-singular fibres

We assume a Cayley N C M is unobstructed with ind [) = 4, and that
., wa of ker [) which is pointwise independent. In

there is a basis wy, ..
other words there is a map:
wi A<+ A wy = det - dvol, )

det = det(wl, ceey W4) N — Ry,

NeM w
—) oflwl= 5
% T we CYLP )
£eT,B
MHNE)
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Stability of fibration near non-singular fibres

Fibrations near non-singular fibres

We assume a Cayley N C M is unobstructed with ind [) = 4, and that
there is a basis wy, ..., wy of ker D which is pointwise independent. In
other words there is a map:

det = det(wl,. R W4) N — Ryo.

By compactness of N we have det > K > 0 uniformly on an open set

U C M(N,®) containing N. If now {(N¢, ®;)}ec(—e,) vary smoothly so
that N, is Cayley for ®;, then one can find w;; as above that vary
smoothly as well, by the compact deformation theory (because F varies
smoothly in N and ¢ and is elliptic). Hence, for 0 < t < tmi, we still
have:

det(in s, ..., V) = det(wy + tOywi, ..., wq + tOywa) + O(t?)
> K/2>0,

as |0:w;| < C on a neighbourhood of N. From this we can later prove
that the fibration property is maintained.
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Stability of fibration near non-singular fibres

Trouble near singular fibres

We can prove stability of fibrations outside a neighbourhood of the
singularities, as this region of M is compact. Near the singularities we
cannot rely on compactness arguments and we need to show by hand
that J;w; is small in a suitable sense. Hence we need to study the
deformation theory of singular Cayleys and their almost singular
neighbours (desingularisation theory).

MV.B)

Koo 8)
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Stability of fibration near conically singular fibres

Deformation theory of conical Cayleys |
Take A C R® an asymptotically conical Cayley of rate \ < 1.

Definition

Fix a weight § € R and bundle of tensors F — A. For s € C°(F)
define the norm

Isllee, = (Z/ |r=0 N s|Pr— 4dvol)

The weighted Sobolev space L} ;(F) is the completion of C2°(F) with
regards to || - ||z .

We can then define the deformation operator as follows, where A < 1 is
the rate of A:

Fac : L£+1,A(V6(A)) — Li,)\—l(EA)'

Then any v such that Foc(v) = 0 corresponds to an ACy Cayley and the
deformation theory can be developed analogously to the compact case.
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Stability of fibration near conically singular fibres

Deformation theory of conical Cayleys Il

Proposition (E.'23)

Fac is smooth and Do = DFac(0) Fredholm for A € R\ Dgit(C). As
\ passes a critical rate, ind [D ¢ jumps by a fixed amount. If X not
critical and Coker Do = 0, then

Mirc(A) = {A: Ais an ACy Cayley submanifold of (R®, )
isotopic to A and asymptotic to the same cone}

is a smooth finite dimensional manifold, locally.

Can also define ﬂic(A) = Mic(A) U {C}, including the cone.

Let —1 < A < 0. Consider the complex surface

Ac={x>+y>+ 22 =¢,w =0} C C*. This is an unobstructed Cayley
and has a real 2-dimensional moduli space (from varying e € C). If
instead 0 < A\ < 1 the moduli space becomes 2 + 8 = 10-dimensional
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Stability of fibration near conically singular fibres

Desingularisation theory |

Similarly there is a moduli space of CS,, Cayleys in (M, ®), denoted by
MEG(N,®) (1 < p < 2), as well as a family moduli space M{4(N,S),
where S is a family of Spin(7)-structures. Moreover, one can include
rates up to . = 1 and p = 0 manually, denote these moduli spaces by
Mg and M2 respectively. Assume that Mg (N, ®) and Mro(A)
contain only unobstructed Cayley with the same cone C, that

Deit(C) N[N, 0] = {0} and that the linear deformations of the cone are
unobstructed.

Theorem (E.'23)

There is a stratified smooth gluing map:

[ MO%(N) x (U C Mac(A)) x S — M(N4A, S).

Here U is a small open neighbourhood of the cone C in ﬂic (A). Itisa
local diffeomorphism.

v
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Stability of fibration near conically singular fibres

Desingularisation theory |l

Question: Suppose that N C (M, ®) is a CS Cayley with cone C and A
is an AC Cayley with the same cone. Can you desingularise N by gluing
in A?
We first define almost Cayleys N; = NftA which are approximations of
desingularisations of N. Write F;(v) = F(0) + D,v + Q:(v), where
D.v = DF,(0)[v]. Generally, dim Ker [, > 0 so solutions come in
families. Hence we solve modulo pseudo-kernel x; C C*°(v(N;)) to find
unique solution. Since we want to perturb a family of almost Cayleys
{N:}te(o,e) with uniformly small perturbations we need to chose our
function spaces L}, ;. (0 < § < p) so that:

o HFt(O)HL” < t*Cr with a > 0.

k,6—1,t

° HuHL/;+1 . S CDHDtU”Lf ,_,, for uniform Cp >0 and u L .
o Q) ,, < CQ||U||%£+1,6J for uniform Cg > 0.

These estimates can be obtained by combining the CS and AC
deformation theory. For sufficiently small neck size t > 0 we can find v;
with F;(v¢) = 0 by Banach fixed point theorem, with ||VtHL/;+1 by S th,
where 5 > 0. N

Gilles Englebert (University of Oxford) Stability of Cayley fibrations



Stability of fibration near conically singular fibres

Determinant map near singular fibres

Goal: replicate the stability argument for non-singular fibres in a
neighbourhood of the singular fibres.

Want maps det : T(N, A, ®) — R for (N, A) € Mcs(N, ®) x Mac(A)
with 0 < C < det < C~! uniformly. If {®,} is a smooth family then
0s det should be uniformly bounded, even as the neck size shrinks to 0.

(2] |~
W 2
pa 2
~
X\
/

W= 0O(4)
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Stability of fibration near conically singular fibres

Determinant map near singular fibres

Goal: replicate the stability argument for non-singular fibres in a
neighbourhood of the singular fibres.

Want maps det : T(N, A, ®) — R for (N, A) € Mcs(N, ®) x Mac(A)
with 0 < C < det < C~! uniformly. If {®,} is a smooth family then
0Os det should be uniformly bounded, even as the neck size shrinks to 0.
For the cone C = {x?> + y> 4 22 = 0,w = 0} C C* we can use:

det(wl, Wo,r - w3, r- W4),

where wy, ws are the translations, corresponding to varying w = n,n € C,
and ws, wy are the rescalings (of rate r=, r being the distance to the
singular point), corresponding to varying x? + y? + z2 = ¢,¢ € C.

Gilles Englebert (University of Oxford) Stability of Cayley fibrations



Stability of fibration near conically singular fibres

Gluing of infinitesimal deformation vector fields

The first order deformations w; can be obtained by solving the linearised
Cayley equation:
Pw = 0.

We can solve this on (N, tA, ®) starting from known glued
approximation. By using appropriate Banach spaces L, s ,, we can make
the error small.

Proposition

Given solutions wcs, wac to Pw =0 on N and A with the same
asymptotic behaviour r’c for § = —1,0 (+technical conditions), then
there is a solution to the Cayley equation on ['(N, tA, ®) of the form:

o) =
wes + t"wac + Wy,

where || V|| > — 0 ast — 0. Varying ® varies W, uniformly

+1,6+€,t
continuously in Ly, 5. . = [0ow|co < C.
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Stability of fibration near conically singular fibres

Stability of fibration

We can cover the base of our initial fibration f : M — B with
neighbourhoods where we can apply the local stability results.

Theorem (Main theorem (E.'24))

If all the fibres in a fibration modelled on the quadratic cone are
unobstructed and the initial fibration has C; > det > C, > 0, then the
fibration property is stable under deformation of the Spin(7) structure.

Consider the evaluation map, dependent on ®:

eve : Univ(M(N,®)) — M

Desingularisation theory = stratified smooth map, degree 1 in the sense
of pseudo-cycles. Initially an orientation-preserving diffeomorphism on
smooth stratum. Since det > 0 it stays orientation preserving of degree
one, thus any point must have exactly one pre-image. O
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Example: Twisted Connected Sum of Gp-manifolds

A nice quartic in CP*

P = x5+ x} 4+ 4+ x5 + x4 + x33(x0 + 10x; + 100x3).
Consider the Fano threefold X = {P =0} C CP*. The anticanonical
bundle is w} = O(1)|x, and the anticanonical divisors are exactly the
hyperplane sections of X.Take the sections:
So={x=0}NX=~{x+x+x +x4 =0} CCP?
Soo ={xa =0} N X =~ {x3 + x{ + x5 + x5 + x3(x0 + 10x; + 100x2)} C CP>.
Both are smooth K3 surfaces. They intersect transversely in a curve
C ~{x§ +x{ +x3 =0} C CP?. We obtain a building block Z by
blowing up C and the pencil defined by Sy, S, lifts to a holomorphic
map f : Z — CP! which extends

f:Z\E—CP', [xo:x1:x2:x3:xs] — [x3:x4)].

There are exactly 33 - 4 singular fibres of f, each with a unique singular
point modelled on {x? + y? + z2 = 0}.
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Example: Twisted Connected Sum of Gp-manifolds

Twisted connected sum from building block

Having conically singular fibres with at most one singular point each is a
Zariski open condition on X in the deformation type of the quartic and
the space of choices for Sy, Soo. Claim: This is sufficient to allow for
matching of two building blocks related by a hyperkahler rotation. From
two such blocks we can build a G, manifold of small torsion together
with a coassociative fibration. We can then deform this manifold to a
torsion free twisted connected sum manifold M. Applying the main
theorem to M x S1, we see that the Cayley fibration persists if the neck
of M is sufficiently long. As the Spin(7)-structure on M x St is of
product type, the fibration splits into a coassociative fibration times S?.
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