Stability of Cayley fibrations

Gilles Englebert (University of Oxford)

Duke University, Durham, NC

May 16th, 2024

Based on arXiv:2309.07830, arXiv:2312.04477 Slides available at https://englebert.lu/

1 Spin(7)-manifolds and Cayley 4-folds

2 Stability of fibration near non-singular fibres

3 Stability of fibration near conically singular fibres

4 Example: Twisted Connected Sum of G_2 -manifolds

 $\begin{array}{c} {\bf Spin(7)}\text{-manifolds and Cayley 4-folds}\\ {\rm Stability of fibration near non-singular fibres}\\ {\rm Stability of fibration near conically singular fibres}\\ {\rm Example: Twisted Connected Sum of G_2-manifolds} \end{array}$

Spin(7)-geometry

Definition

Standard Cayley form on $\mathbb{R}^8 = \mathbb{R}^4 \oplus \mathbb{R}^4$:

$$\Phi_0 = \operatorname{dvol}_{\mathbb{R}^4 \oplus 0} + \omega_1 \wedge \tau_1 + \omega_2 \wedge \tau_2 - \omega_3 \wedge \tau_3 + \operatorname{dvol}_{0 \oplus \mathbb{R}^4} \in \Lambda^4(\mathbb{R}^8).$$

Here ω_i, τ_i are positive bases of the anti-self-dual two-forms on both copies of \mathbb{R}^4 . For $v_1, v_2, v_3, v_4 \in \mathbb{R}^8$ have **calibration property**:

$$\Phi_0(v_1, v_2, v_3, v_4) \leqslant \operatorname{vol}(v_1, v_2, v_3, v_4).$$

A manifold M^8 with 4-form Φ is a $\operatorname{Spin}(7)$ -manifold if $(\mathcal{T}_p M, \Phi_p)$ is pointwise isomorphic to (\mathbb{R}^8, Φ_0) . A Riemannian metric g_{Φ} is induced, as $\operatorname{Stab}(\Phi_0) = \operatorname{Spin}(7) \subset \operatorname{SO}(8)$ via a Spin representation. If $d\Phi = 0$, then $\operatorname{Hol}(g_{\Phi}) \subset \operatorname{Spin}(7)$.

Definition

A submanifold $N^4 \subset (M, \Phi)$ is **Cayley** if $\Phi|_N = \operatorname{dvol}_N$.

Existence of fibrations via gluing

We hope ${\rm Spin}(7)$ manifolds to be foliated by Cayley submanifolds, motivated by the SYZ conjecture for special Lagrangians in Calabi-Yau manifolds.

Goal: Construct a fibration on a compact torsion-free Spin(7)-manifold via gluing of complex fibrations (on top of gluing a Spin(7)-manifold). **Strategy:**

- Construct exact fibration on (M, Φ) with ||dΦ|| small via gluing from simpler pieces.
- Show that fibration property stable under small change of Φ. This requires knowledge of the deformation theory of the Cayley fibres and desingularisation theory of the singular fibres.
- Use Existence theorem for torsion-free Spin(7)-structures near small-torsion structures and stability of fibration to conclude.

Singularities of fibrations on compact manifolds

It is expected that if (M, Φ) is a compact Spin(7) manifold and $f: M^8 \longrightarrow B^4$ a smooth fibre bundle with Cayley fibres, then $\operatorname{Hol}(g_{\Phi}) \neq \operatorname{Spin}(7)$ (has been proven for coassociative fibrations in G_2 -manifolds). In other words, *interesting fibrations are expected to have singularities*.

Analogy: A holomorphic fibration $K3 \longrightarrow \mathbb{C}P^1$ needs to have nodal fibres, since otherwise $24 = \chi(K3) = \chi(C) \times \chi(\mathbb{C}P^1) = 2(2-2g)$ with $g \ge 0$.

In the Spin(7) case, the simplest singularities are conical and the simplest plausible one is the following complex singularity:

$$f: \mathbb{C}^4 \longrightarrow \mathbb{C}^2; \quad (x, y, z, w) \longmapsto (x^2 + y^2 + z^2, w).$$

The singular fibres $f^{-1}(0, a)$ are **conically singular**. We have a good Fredholm theory and can handle them analytically.

Deformation theory

Definition

A submanifold $N^4 \subset (M, \Phi)$ is α -almost Cayley if $\Phi|_N \ge \alpha \operatorname{dvol}_N$ with $0 < \alpha < 1$.

For (M, Φ) a compact Spin(7)-manifold, there is a global α_{\min} such that if $N \subset M$ is α -almost Cayley with $\alpha > \alpha_{\min}$ then there is a well-defined bundle E_N and a nonlinear elliptic differential operator

$$F: L^p_{k+1}(\nu_{\epsilon}(N)) \longrightarrow L^p_{k}(E_N), \quad v \longmapsto \pi_{E}(\star_{N} \exp^*_{v}(\tau|_{N_{v}})).$$

for p > 4, $k \ge 1$ such that $N_v = \exp(v)$ is Cayley exactly when F(v) = 0. The map F is smooth and automatically Fredholm at its zeros. Thus if F(v) = 0 and $\operatorname{Coker} \operatorname{D} F(v) = 0$ (unobstructed case) for some v, then $\mathcal{M}(N, \Phi)$, the moduli space of Cayley submanifolds isotopic to N is a smooth, finite dimensional manifold near N, modelled on $F^{-1}(0)$. F depends smoothly on N and Φ .

Fibrations near non-singular fibres

We assume a Cayley $N \subset M$ is unobstructed with $\operatorname{ind} D = 4$, and that there is a basis w_1, \ldots, w_4 of ker D which is pointwise independent. In other words there is a map:

$$\mathsf{det} = \mathsf{det}(w_1, \dots, w_4) : N \longrightarrow \mathbb{R}_{>0}, \quad w_1 \wedge \dots \wedge w_4 = \mathsf{det} \cdot \operatorname{dvol}_{\nu(N)}$$

Fibrations near non-singular fibres

We assume a Cayley $N \subset M$ is unobstructed with $\operatorname{ind} D = 4$, and that there is a basis w_1, \ldots, w_4 of ker D which is pointwise independent. In other words there is a map:

$$\det = \det(w_1, \ldots, w_4) : N \longrightarrow \mathbb{R}_{>0}.$$

By compactness of N we have det > K > 0 uniformly on an open set $U \subset \mathcal{M}(N, \Phi)$ containing N. If now $\{(N_t, \Phi_t)\}_{t \in (-\epsilon, \epsilon)}$ vary smoothly so that N_t is Cayley for Φ_t , then one can find $w_{i,t}$ as above that vary smoothly as well, by the compact deformation theory (because F varies smoothly in N and Φ and is elliptic). Hence, for $0 < t < t_{\min}$ we still have:

$$det(\tilde{w}_{1,t},\ldots,\tilde{w}_{4,t}) = det(w_1 + t\partial_t w_1,\ldots,w_4 + t\partial_t w_4) + O(t^2)$$

> $K/2 > 0,$

as $|\partial_t w_i| \leq C$ on a neighbourhood of *N*. From this we can later prove that the fibration property is maintained.

Trouble near singular fibres

We can prove stability of fibrations outside a neighbourhood of the singularities, as this region of M is compact. Near the singularities we cannot rely on compactness arguments and we need to show by hand that $\partial_t w_i$ is small in a suitable sense. Hence we need to study the **deformation theory** of singular Cayleys and their almost singular neighbours (**desingularisation theory**).

Deformation theory of conical Cayleys I

Take $A \subset \mathbb{R}^8$ an asymptotically conical Cayley of rate $\lambda < 1$.

Definition

Fix a weight $\delta \in \mathbb{R}$ and bundle of tensors $F \longrightarrow A$. For $s \in C_c^{\infty}(F)$ define the norm

$$\|s\|_{L^p_{k,\delta}} = \left(\sum_{i=0}^k \int_A |r^{-\delta+i}\nabla^i s|^p r^{-4} \operatorname{dvol}\right)^{\frac{1}{p}}$$

The weighted Sobolev space $L_{k,\delta}^{p}(F)$ is the completion of $C_{c}^{\infty}(F)$ with regards to $\|\cdot\|_{L_{k,\delta}^{p}}$.

We can then define the deformation operator as follows, where $\lambda < 1$ is the rate of A:

$$F_{\mathrm{AC}}: L^p_{k+1,\lambda}(\nu_{\epsilon}(A)) \longrightarrow L^p_{k,\lambda-1}(E_A).$$

Then any v such that $F_{AC}(v) = 0$ corresponds to an AC_{λ} Cayley and the deformation theory can be developed analogously to the compact case.

Deformation theory of conical Cayleys II

Proposition (E.'23)

 $F_{\rm AC}$ is smooth and $\not D_{\rm AC} = DF_{\rm AC}(0)$ Fredholm for $\lambda \in \mathbb{R} \setminus D_{crit}(C)$. As λ passes a critical rate, $\operatorname{ind} \not D_{\rm AC}$ jumps by a fixed amount. If λ not critical and $\operatorname{Coker} \not D_{\rm AC} = 0$, then

 $\mathcal{M}_{\mathrm{AC}}^{\lambda}(A) = \{ \tilde{A} : \tilde{A} \text{ is an } \mathrm{AC}_{\lambda} \text{ Cayley submanifold of } (\mathbb{R}^{8}, \Phi_{0}) \\ \text{isotopic to } A \text{ and asymptotic to the same cone} \}$

is a smooth finite dimensional manifold, locally.

Can also define $\overline{\mathcal{M}}^{\lambda}_{\mathrm{AC}}(A) = \mathcal{M}^{\lambda}_{\mathrm{AC}}(A) \cup \{C\}$, including the cone.

Example

Let $-1 < \lambda < 0$. Consider the complex surface $A_{\epsilon} = \{x^2 + y^2 + z^2 = \epsilon, w = 0\} \subset \mathbb{C}^4$. This is an unobstructed Cayley and has a real 2-dimensional moduli space (from varying $\epsilon \in \mathbb{C}$). If instead $0 < \lambda < 1$ the moduli space becomes 2 + 8 = 10-dimensional

Desingularisation theory I

Similarly there is a moduli space of CS_{μ} Cayleys in (M, Φ) , denoted by $\mathcal{M}^{\mu}_{\mathrm{CS}}(N, \Phi)$ $(1 < \mu < 2)$, as well as a family moduli space $\mathcal{M}^{\mu}_{\mathrm{CS}}(N, \mathcal{S})$, where \mathcal{S} is a family of Spin(7)-structures. Moreover, one can include rates up to $\mu = 1$ and $\mu = 0$ manually, denote these moduli spaces by $\mathcal{M}^{1}_{\mathrm{CS}}$ and $\mathcal{M}^{0}_{\mathrm{CS}}$ respectively. Assume that $\mathcal{M}^{0}_{\mathrm{CS}}(N, \Phi)$ and $\mathcal{M}^{\lambda}_{\mathrm{AC}}(A)$ contain only unobstructed Cayley with the same cone C, that $\mathcal{D}_{crit}(C) \cap [\lambda, 0] = \{0\}$ and that the linear deformations of the cone are unobstructed.

Theorem (E.'23)

There is a stratified smooth gluing map:

$$\Gamma:\mathcal{M}^{0}_{\mathrm{CS}}(N)\times (U\subset\overline{\mathcal{M}}^{\lambda}_{\mathrm{AC}}(A))\times\mathcal{S}\longrightarrow\mathcal{M}(N\sharp A,\mathcal{S})$$

Here U is a small open neighbourhood of the cone C in $\overline{\mathcal{M}}_{\mathrm{AC}}^{\lambda}(A)$. It is a local diffeomorphism.

Desingularisation theory II

Question: Suppose that $N \subset (M, \Phi)$ is a CS Cayley with cone *C* and *A* is an AC Cayley with the same cone. Can you desingularise *N* by gluing in *A*?

We first define almost Cayleys $N_t = N \sharp tA$ which are approximations of desingularisations of N. Write $F_t(v) = F_t(0) + \not D_t v + Q_t(v)$, where $\not D_t v = DF_t(0)[v]$. Generally, dim Ker $\not D_t > 0$ so solutions come in families. Hence we solve modulo **pseudo-kernel** $\kappa_t \subset C^{\infty}(\nu(N_t))$ to find unique solution. Since we want to perturb a family of almost Cayleys $\{N_t\}_{t \in (0,\epsilon)}$ with uniformly small perturbations we need to chose our function spaces $L^p_{k,\delta,t}$ ($0 < \delta < \mu$) so that:

•
$$||F_t(0)||_{L^p_{k,\delta-1,t}} \leq t^{\alpha} C_F$$
 with $\alpha > 0$.

- $\|u\|_{L^p_{k+1,\delta,t}} \leq C_D \|\not\!D_t u\|_{L^p_{k,\delta-1,t}}$ for uniform $C_D > 0$ and $u \perp \kappa_t$.
- $\|Q_t(u)\|_{L^p_{k,\delta-1,t}} \leq C_Q \|u\|^2_{L^p_{k+1,\delta,t}}$ for uniform $C_Q > 0$.

These estimates can be obtained by combining the CS and AC deformation theory. For sufficiently small neck size t > 0 we can find v_t with $F_t(v_t) = 0$ by Banach fixed point theorem, with $\|v_t\|_{L^p_{k+1,\delta,t}} \leq t^{\beta}$, where $\beta > 0$.

Determinant map near singular fibres

Goal: replicate the stability argument for non-singular fibres in a neighbourhood of the singular fibres.

Want maps det : $\Gamma(N, A, \Phi) \to \mathbb{R}$ for $(N, A) \in \mathcal{M}_{CS}(N, \Phi) \times \overline{\mathcal{M}}_{AC}^{\lambda}(A)$ with $0 < C < \det < C^{-1}$ uniformly. If $\{\Phi_s\}$ is a smooth family then ∂_s det should be uniformly bounded, even as the neck size shrinks to 0.

Determinant map near singular fibres

Goal: replicate the stability argument for non-singular fibres in a neighbourhood of the singular fibres.

Want maps det: $\Gamma(N, A, \Phi) \to \mathbb{R}$ for $(N, A) \in \mathcal{M}_{\mathrm{CS}}(N, \Phi) \times \overline{\mathcal{M}}_{\mathrm{AC}}^{\lambda}(A)$ with $0 < C < \det < C^{-1}$ uniformly. If $\{\Phi_s\}$ is a smooth family then ∂_s det should be uniformly bounded, even as the neck size shrinks to 0. For the cone $C = \{x^2 + y^2 + z^2 = 0, w = 0\} \subset \mathbb{C}^4$ we can use:

 $\det(w_1, w_2, r \cdot w_3, r \cdot w_4),$

where w_1, w_2 are the translations, corresponding to varying $w = \eta, \eta \in \mathbb{C}$, and w_3, w_4 are the rescalings (of rate r^{-1} , r being the distance to the singular point), corresponding to varying $x^2 + y^2 + z^2 = \epsilon, \epsilon \in \mathbb{C}$.

Gluing of infinitesimal deformation vector fields

The first order deformations w_i can be obtained by solving the linearised Cayley equation:

$$\not D w = 0.$$

We can solve this on $\Gamma(N, tA, \Phi)$ starting from known glued approximation. By using appropriate Banach spaces $L_{k,\delta,t}^{p}$, we can make the error small.

Proposition

Given solutions $w_{\rm CS}$, $w_{\rm AC}$ to D = 0 on N and A with the same asymptotic behaviour $r^{\delta}\sigma$ for $\delta = -1, 0$ (+technical conditions), then there is a solution to the Cayley equation on $\Gamma(N, tA, \Phi)$ of the form:

$$w_{\rm CS} + t^{\delta} w_{\rm AC} + \tilde{w}_t,$$

where $\|\tilde{w}_t\|_{L^p_{k+1,\delta+\epsilon,t}} \to 0$ as $t \to 0$. Varying Φ varies \tilde{w}_t uniformly continuously in $L^p_{k+1,\delta+\epsilon,t}$. $\Rightarrow |\partial_{\Phi}w|_{C^0_{\delta+\epsilon}} \leqslant C$.

Stability of fibration

We can cover the base of our initial fibration $f: M \rightarrow B$ with neighbourhoods where we can apply the local stability results.

Theorem (Main theorem (E.'24))

If all the fibres in a fibration modelled on the quadratic cone are unobstructed and the initial fibration has $C_1 > \det > C_2 > 0$, then the fibration property is stable under deformation of the Spin(7) structure.

Proof.

Consider the evaluation map, dependent on Φ :

$$\operatorname{ev}_\Phi:\operatorname{Univ}(\overline{\mathcal{M}}(N,\Phi))\longrightarrow M$$

Desingularisation theory \Rightarrow stratified smooth map, degree 1 in the sense of pseudo-cycles. Initially an orientation-preserving diffeomorphism on smooth stratum. Since det > 0 it stays orientation preserving of degree one, thus any point must have exactly one pre-image.

A nice quartic in $\mathbb{C}P^4$

$$P = x_0^4 + x_1^4 + x_2^4 + x_3^4 + x_4^4 + x_3^3(x_0 + 10x_1 + 100x_2).$$

Consider the Fano threefold $X = \{P = 0\} \subset \mathbb{C}P^4$. The anticanonical bundle is $\omega_X^* = \mathcal{O}(1)|_X$, and the anticanonical divisors are exactly the hyperplane sections of X.Take the sections:

$$S_{0} = \{x_{3} = 0\} \cap X \simeq \{x_{0}^{4} + x_{1}^{4} + x_{2}^{4} + x_{4}^{4} = 0\} \subset \mathbb{C}P^{3}$$

$$S_{\infty} = \{x_{4} = 0\} \cap X \simeq \{x_{0}^{4} + x_{1}^{4} + x_{2}^{4} + x_{3}^{4} + x_{3}^{3}(x_{0} + 10x_{1} + 100x_{2})\} \subset \mathbb{C}P^{3}.$$
Both are smooth K3 surfaces. They intersect transversely in a curve
$$C \simeq \{x_{0}^{4} + x_{1}^{4} + x_{2}^{4} = 0\} \subset \mathbb{C}P^{2}.$$
We obtain a building block Z by
blowing up C and the pencil defined by So So lifts to a belomerphic

blowing up C and the pencil defined by S_0, S_∞ lifts to a holomorphic map $f: Z \to \mathbb{C}P^1$ which extends

$$f: Z \setminus E \longrightarrow \mathbb{C}P^1, \quad [x_0: x_1: x_2: x_3: x_4] \longmapsto [x_3: x_4].$$

There are exactly $3^3 \cdot 4$ singular fibres of f, each with a unique singular point modelled on $\{x^2 + y^2 + z^2 = 0\}$.

Twisted connected sum from building block

Having conically singular fibres with at most one singular point each is a Zariski open condition on X in the deformation type of the quartic and the space of choices for S_0, S_∞ . **Claim:** This is sufficient to allow for matching of two building blocks related by a hyperkähler rotation. From two such blocks we can build a G_2 manifold of small torsion together with a coassociative fibration. We can then deform this manifold to a torsion free **twisted connected sum** manifold M. Applying the main theorem to $M \times S^1$, we see that the Cayley fibration persists if the neck of M is sufficiently long. As the Spin(7)-structure on $M \times S^1$ is of product type, the fibration splits into a coassociative fibration times S^1 .