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Spin(7)-geometry

Definition

Standard Cayley form on R8 = R4 ⊕ R4:

Φ0 = dvolR4⊕0 +ω1 ∧ τ1 + ω2 ∧ τ2 − ω3 ∧ τ3 + dvol0⊕R4 ∈ Λ4(R8).

Here ωi , τi are positive bases of the anti-self-dual two-forms on both
copies of R4. For v1, v2, v3, v4 ∈ R8 have calibration property:

Φ0(v1, v2, v3, v4) ⩽ vol(v1, v2, v3, v4).

A manifold M8 with 4-form Φ is a Spin(7)-manifold if (TpM,Φp) is
pointwise isomorphic to (R8,Φ0). A Riemannian metric gΦ is induced, as
Stab(Φ0) = Spin(7) ⊂ SO(8) via a Spin representation.
If dΦ = 0, then Hol(gΦ) ⊂ Spin(7).

Definition

A submanifold N4 ⊂ (M,Φ) is Cayley if Φ|N = dvolN .
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Existence of fibrations via gluing

We hope Spin(7) manifolds to be foliated by Cayley submanifolds,
motivated by the SYZ conjecture for special Lagrangians in Calabi-Yau
manifolds.
Goal: Construct a fibration on a compact torsion-free Spin(7)-manifold
via gluing of complex fibrations (on top of gluing a Spin(7)-manifold).
Strategy:

1 Construct exact fibration on (M,Φ) with ∥dΦ∥ small via gluing from
simpler pieces.

2 Show that fibration property stable under small change of Φ. This
requires knowledge of the deformation theory of the Cayley fibres
and desingularisation theory of the singular fibres.

3 Use Existence theorem for torsion-free Spin(7)-structures near
small-torsion structures and stability of fibration to conclude.
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Singularities of fibrations on compact manifolds

It is expected that if (M,Φ) is a compact Spin(7) manifold and
f : M8 −→ B4 a smooth fibre bundle with Cayley fibres, then
Hol(gΦ) ̸= Spin(7) (has been proven for coassociative fibrations in
G2-manifolds). In other words, interesting fibrations are expected to have
singularities.
Analogy: A holomorphic fibration K3 −→ CP1 needs to have nodal
fibres, since otherwise 24 = χ(K3) = χ(C )× χ(CP1) = 2(2− 2g) with
g ⩾ 0.
In the Spin(7) case, the simplest singularities are conical and the simplest
plausible one is the following complex singularity:

f : C4 −→ C2; (x , y , z ,w) 7−→ (x2 + y2 + z2,w).

The singular fibres f −1(0, a) are conically singular. We have a good
Fredholm theory and can handle them analytically.
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Deformation theory

Definition

A submanifold N4 ⊂ (M,Φ) is α-almost Cayley if Φ|N ⩾ α dvolN with
0 < α < 1.

For (M,Φ) a compact Spin(7)-manifold, there is a global αmin such that
if N ⊂ M is α-almost Cayley with α > αmin then there is a well-defined
bundle EN and a nonlinear elliptic differential operator

F : Lpk+1(νϵ(N)) −→ Lpk(EN), v 7−→ πE (⋆N exp∗v (τ |Nv )).

for p > 4, k ⩾ 1 such that Nv = exp(v) is Cayley exactly when F (v) = 0.
The map F is smooth and automatically Fredholm at its zeros. Thus if
F (v) = 0 and CokerDF (v) = 0 (unobstructed case) for some v , then
M(N,Φ), the moduli space of Cayley submanifolds isotopic to N is a
smooth, finite dimensional manifold near N, modelled on F−1(0). F
depends smoothly on N and Φ.
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Fibrations near non-singular fibres
We assume a Cayley N ⊂ M is unobstructed with ind /D = 4, and that
there is a basis w1, . . . ,w4 of ker /D which is pointwise independent. In
other words there is a map:

det = det(w1, . . . ,w4) : N −→ R>0, w1 ∧ · · · ∧ w4 = det ·dvolν(N)
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Fibrations near non-singular fibres

We assume a Cayley N ⊂ M is unobstructed with ind /D = 4, and that
there is a basis w1, . . . ,w4 of ker /D which is pointwise independent. In
other words there is a map:

det = det(w1, . . . ,w4) : N −→ R>0.

By compactness of N we have det > K > 0 uniformly on an open set
U ⊂ M(N,Φ) containing N. If now {(Nt ,Φt)}t∈(−ϵ,ϵ) vary smoothly so
that Nt is Cayley for Φt , then one can find wi,t as above that vary
smoothly as well, by the compact deformation theory (because F varies
smoothly in N and Φ and is elliptic). Hence, for 0 < t < tmin we still
have:

det(w̃1,t , . . . , w̃4,t) = det(w1 + t∂tw1, . . . ,w4 + t∂tw4) + O(t2)

> K/2 > 0,

as |∂twi | ⩽ C on a neighbourhood of N. From this we can later prove
that the fibration property is maintained.

Gilles Englebert (University of Oxford) Stability of Cayley fibrations



Spin(7)-manifolds and Cayley 4-folds
Stability of fibration near non-singular fibres

Stability of fibration near conically singular fibres
Example: Twisted Connected Sum of G2-manifolds

Trouble near singular fibres
We can prove stability of fibrations outside a neighbourhood of the
singularities, as this region of M is compact. Near the singularities we
cannot rely on compactness arguments and we need to show by hand
that ∂twi is small in a suitable sense. Hence we need to study the
deformation theory of singular Cayleys and their almost singular
neighbours (desingularisation theory).
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Deformation theory of conical Cayleys I
Take A ⊂ R8 an asymptotically conical Cayley of rate λ < 1.

Definition

Fix a weight δ ∈ R and bundle of tensors F −→ A. For s ∈ C∞
c (F )

define the norm

∥s∥Lp
k,δ

=

(
k∑

i=0

∫
A

|r−δ+i∇i s|pr−4 dvol

) 1
p

.

The weighted Sobolev space Lpk,δ(F ) is the completion of C∞
c (F ) with

regards to ∥ · ∥Lp
k,δ
.

We can then define the deformation operator as follows, where λ < 1 is
the rate of A:

FAC : Lpk+1,λ(νϵ(A)) −→ Lpk,λ−1(EA).

Then any v such that FAC(v) = 0 corresponds to an ACλ Cayley and the
deformation theory can be developed analogously to the compact case.
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Deformation theory of conical Cayleys II

Proposition (E.’23)

FAC is smooth and /DAC = DFAC(0) Fredholm for λ ∈ R \ Dcrit(C ). As
λ passes a critical rate, ind /DAC jumps by a fixed amount. If λ not
critical and Coker /DAC = 0, then

Mλ
AC(A) = {Ã : Ã is an ACλ Cayley submanifold of (R8,Φ0)

isotopic to A and asymptotic to the same cone}

is a smooth finite dimensional manifold, locally.

Can also define Mλ

AC(A) = Mλ
AC(A) ∪ {C}, including the cone.

Example

Let −1 < λ < 0. Consider the complex surface
Aϵ = {x2 + y2 + z2 = ϵ,w = 0} ⊂ C4. This is an unobstructed Cayley
and has a real 2-dimensional moduli space (from varying ϵ ∈ C). If
instead 0 < λ < 1 the moduli space becomes 2 + 8 = 10-dimensional
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Desingularisation theory I

Similarly there is a moduli space of CSµ Cayleys in (M,Φ), denoted by
Mµ

CS(N,Φ) (1 < µ < 2), as well as a family moduli space Mµ
CS(N,S),

where S is a family of Spin(7)-structures. Moreover, one can include
rates up to µ = 1 and µ = 0 manually, denote these moduli spaces by
M1

CS and M0
CS respectively. Assume that M0

CS(N,Φ) and Mλ
AC(A)

contain only unobstructed Cayley with the same cone C , that
Dcrit(C ) ∩ [λ, 0] = {0} and that the linear deformations of the cone are
unobstructed.

Theorem (E.’23)

There is a stratified smooth gluing map:

Γ : M0
CS(N)× (U ⊂ Mλ

AC(A))× S −→ M(N♯A,S).

Here U is a small open neighbourhood of the cone C in Mλ

AC(A). It is a
local diffeomorphism.
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Desingularisation theory II
Question: Suppose that N ⊂ (M,Φ) is a CS Cayley with cone C and A
is an AC Cayley with the same cone. Can you desingularise N by gluing
in A?
We first define almost Cayleys Nt = N♯tA which are approximations of
desingularisations of N. Write Ft(v) = Ft(0) + /Dtv + Qt(v), where
/Dtv = DFt(0)[v ]. Generally, dimKer /Dt > 0 so solutions come in
families. Hence we solve modulo pseudo-kernel κt ⊂ C∞(ν(Nt)) to find
unique solution. Since we want to perturb a family of almost Cayleys
{Nt}t∈(0,ϵ) with uniformly small perturbations we need to chose our
function spaces Lpk,δ,t (0 < δ < µ) so that:

∥Ft(0)∥Lp
k,δ−1,t

⩽ tαCF with α > 0.

∥u∥Lp
k+1,δ,t

⩽ CD∥ /Dtu∥Lp
k,δ−1,t

for uniform CD > 0 and u ⊥ κt .

∥Qt(u)∥Lp
k,δ−1,t

⩽ CQ∥u∥2Lp
k+1,δ,t

for uniform CQ > 0.

These estimates can be obtained by combining the CS and AC
deformation theory. For sufficiently small neck size t > 0 we can find vt
with Ft(vt) = 0 by Banach fixed point theorem, with ∥vt∥Lp

k+1,δ,t
⩽ tβ ,

where β > 0.
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Determinant map near singular fibres

Goal: replicate the stability argument for non-singular fibres in a
neighbourhood of the singular fibres.

Want maps det : Γ(N,A,Φ) → R for (N,A) ∈ MCS(N,Φ)×Mλ

AC(A)
with 0 < C < det < C−1 uniformly. If {Φs} is a smooth family then
∂s det should be uniformly bounded, even as the neck size shrinks to 0.
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Determinant map near singular fibres

Goal: replicate the stability argument for non-singular fibres in a
neighbourhood of the singular fibres.

Want maps det : Γ(N,A,Φ) → R for (N,A) ∈ MCS(N,Φ)×Mλ

AC(A)
with 0 < C < det < C−1 uniformly. If {Φs} is a smooth family then
∂s det should be uniformly bounded, even as the neck size shrinks to 0.
For the cone C = {x2 + y2 + z2 = 0,w = 0} ⊂ C4 we can use:

det(w1,w2, r · w3, r · w4),

where w1,w2 are the translations, corresponding to varying w = η, η ∈ C,
and w3,w4 are the rescalings (of rate r−1, r being the distance to the
singular point), corresponding to varying x2 + y2 + z2 = ϵ, ϵ ∈ C.
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Gluing of infinitesimal deformation vector fields
The first order deformations wi can be obtained by solving the linearised
Cayley equation:

/Dw = 0.

We can solve this on Γ(N, tA,Φ) starting from known glued
approximation. By using appropriate Banach spaces Lpk,δ,t , we can make
the error small.

Proposition

Given solutions wCS,wAC to /Dw = 0 on N and A with the same
asymptotic behaviour rδσ for δ = −1, 0 (+technical conditions), then
there is a solution to the Cayley equation on Γ(N, tA,Φ) of the form:

wCS + tδwAC + w̃t ,

where ∥w̃t∥Lp
k+1,δ+ϵ,t

→ 0 as t → 0. Varying Φ varies w̃t uniformly

continuously in Lpk+1,δ+ϵ,t . ⇒ |∂Φw |C 0
δ+ϵ

⩽ C .
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Stability of fibration
We can cover the base of our initial fibration f : M → B with
neighbourhoods where we can apply the local stability results.

Theorem (Main theorem (E.’24))

If all the fibres in a fibration modelled on the quadratic cone are
unobstructed and the initial fibration has C1 > det > C2 > 0, then the
fibration property is stable under deformation of the Spin(7) structure.

Proof.

Consider the evaluation map, dependent on Φ:

evΦ : Univ(M(N,Φ)) −→ M

Desingularisation theory ⇒ stratified smooth map, degree 1 in the sense
of pseudo-cycles. Initially an orientation-preserving diffeomorphism on
smooth stratum. Since det > 0 it stays orientation preserving of degree
one, thus any point must have exactly one pre-image.
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A nice quartic in CP4

P = x40 + x41 + x42 + x43 + x44 + x33 (x0 + 10x1 + 100x2).

Consider the Fano threefold X = {P = 0} ⊂ CP4. The anticanonical
bundle is ω⋆

X = O(1)|X , and the anticanonical divisors are exactly the
hyperplane sections of X .Take the sections:

S0 ={x3 = 0} ∩ X ≃ {x40 + x41 + x42 + x44 = 0} ⊂ CP3

S∞ ={x4 = 0} ∩ X ≃ {x40 + x41 + x42 + x43 + x33 (x0 + 10x1 + 100x2)} ⊂ CP3.

Both are smooth K3 surfaces. They intersect transversely in a curve
C ≃ {x40 + x41 + x42 = 0} ⊂ CP2. We obtain a building block Z by
blowing up C and the pencil defined by S0,S∞ lifts to a holomorphic
map f : Z → CP1 which extends

f : Z \ E −→ CP1, [x0 : x1 : x2 : x3 : x4] 7−→ [x3 : x4].

There are exactly 33 · 4 singular fibres of f , each with a unique singular
point modelled on {x2 + y2 + z2 = 0}.
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Twisted connected sum from building block

Having conically singular fibres with at most one singular point each is a
Zariski open condition on X in the deformation type of the quartic and
the space of choices for S0,S∞. Claim: This is sufficient to allow for
matching of two building blocks related by a hyperkähler rotation. From
two such blocks we can build a G2 manifold of small torsion together
with a coassociative fibration. We can then deform this manifold to a
torsion free twisted connected sum manifold M. Applying the main
theorem to M × S1, we see that the Cayley fibration persists if the neck
of M is sufficiently long. As the Spin(7)-structure on M × S1 is of
product type, the fibration splits into a coassociative fibration times S1.
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