Geometric flows of G_2 and Spin(7)-structures

Shubham Dwivedi Humboldt-Universität zu Berlin

> SCSHGAP meeting Durham, NC May 17, 2024

based on arXiv:2404.00870 and arXiv:2311.05516 (joint work with P. Gianniotis & S. Karigiannis).

- We study general flows of G₂ and Spin(7)-structures. General here means no conditions on the G₂-structures φ (closed, co-closed, isometric etc.) and the Spin(7)-structures Φ .
- We find all the linearly independent second order differential invariants of a $G_2/Spin(7)$ -structure, which can occur in a variation of $G_2/Spin(7)$ -structures.
- We write the most general flow of G₂/Spin(7)-structures and find sufficient conditions for short-time existence and uniqueness (amenable to a DeTurck type trick).

Flows of G_2 -structures.

Throughout this part, we will be working on 7-dimensional manifolds.

A G₂-structure on M^7 is the reduction of the structure group of the frame bundle Fr(M) from $GL(7, \mathbb{R})$ to the Lie group $G_2 \leq SO(7)$.

Definition

Let M^7 be a smooth manifold. A G₂ structure on M is a 3-form φ which is nondegenerate.

Throughout this part, we will be working on 7-dimensional manifolds.

A G₂-structure on M^7 is the reduction of the structure group of the frame bundle Fr(M) from $GL(7, \mathbb{R})$ to the Lie group $G_2 \leq SO(7)$.

Definition

Let M^7 be a smooth manifold. A G₂ structure on M is a 3-form φ which is nondegenerate.

Let $X, Y \in \Gamma(TM)$, then

$$(X \lrcorner \varphi) \land (Y \lrcorner \varphi) \land \varphi = 6g_{\varphi}(X, Y) \operatorname{vol}_{\varphi}.$$

 M^7 admits G₂-structures \iff it is orientable and spinnable.

The space of nondegenerate (or positive) 3-forms Ω^3_+ is an open subbundle of $\Omega^3.$

 G_2 structure \iff "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly. Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4-form $*_{\varphi}\varphi = \psi$. G_2 structure \iff "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly.

Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4-form $*_{\varphi}\varphi = \psi$.

Definition

Let (M^7, φ) be a manifold with a G_2 structure φ and let ∇ be the Levi-Civita connection of g_{φ} . We call (M, φ) a G_2 manifold if $\nabla \varphi = 0$. $\nabla \varphi$ is interpreted as the torsion T of the G_2 structure.

 G_2 manifolds, i.e., those having torsion-free G_2 structure φ are always Ricci-flat and have special holonomy contained in the Lie group $G_2 \subset SO(7)$.

 G_2 structure \iff "non-degenerate" 3-form $\varphi \rightsquigarrow g_{\varphi}$ and orientation nonlinearly.

Thus, we have a Hodge star operator $*_{\varphi}$ and dual 4-form $*_{\varphi}\varphi = \psi$.

Definition

Let (M^7, φ) be a manifold with a G_2 structure φ and let ∇ be the Levi-Civita connection of g_{φ} . We call (M, φ) a G_2 manifold if $\nabla \varphi = 0$. $\nabla \varphi$ is interpreted as the torsion T of the G_2 structure.

 G_2 manifolds, i.e., those having torsion-free G_2 structure φ are always Ricci-flat and have special holonomy contained in the Lie group $G_2 \subset SO(7)$.

In order to find second order differential invariants of φ , we need to understand the decomposition of differential forms into irreducible G₂-representations.

On (M, φ) , *k*-forms decompose further according to the irreducible G₂ representations.

Introduction contd.

On (M, φ) , *k*-forms decompose further according to the irreducible G₂ representations.

In particular,

$$\Omega^2=\Omega_7^2\oplus\Omega_{14}^2,\quad \Omega^3=\Omega_1^3\oplus\Omega_7^3\oplus\Omega_{27}^3.$$

$$\begin{split} \Omega_7^2 &= \{ X \,\lrcorner \varphi \mid X \in \Gamma(TM) \} = \{ \beta \in \Omega^2 \mid \ast(\varphi \land \beta) = 2\beta \}, \\ \Omega_{14}^2 &= \{ \beta \in \Omega^2 \mid \beta \land \psi = 0 \} = \{ \beta \in \Omega^2 \mid \ast(\varphi \land \beta) = -\beta \} \end{split}$$

Introduction contd.

On (M, φ) , *k*-forms decompose further according to the irreducible G₂ representations.

In particular,

$$\Omega^2=\Omega_7^2\oplus\Omega_{14}^2, \quad \Omega^3=\Omega_1^3\oplus\Omega_7^3\oplus\Omega_{27}^3.$$

$$\begin{split} \Omega_7^2 &= \{ X \,\lrcorner \varphi \mid X \in \mathsf{\Gamma}(\mathsf{T}M) \} = \{ \beta \in \Omega^2 \mid \ast(\varphi \land \beta) = 2\beta \}, \\ \Omega_{14}^2 &= \{ \beta \in \Omega^2 \mid \beta \land \psi = 0 \} = \{ \beta \in \Omega^2 \mid \ast(\varphi \land \beta) = -\beta \} \end{split}$$

For $\sigma \in \Omega^k$ and $A = A_{ij} dx^i \otimes dx^j \in \mathcal{T}^2$, we define

$$(A \diamond \sigma)_{i_1 i_2 \cdots i_k} = A_{i_1}^{\ p} \sigma_{p i_2 \cdots i_k} + A_{i_2}^{\ p} \sigma_{i_1 p i_3 \cdots i_k} + \cdots + A_{i_k}^{\ p} \sigma_{i_1 i_2 \cdots i_{k-1} p},$$

so, e.g., $g \diamond \sigma = k\sigma$ and in particular $(A \diamond \varphi)_{ijk} = A_i^{\ p} \varphi_{pjk} + A_j^{\ p} \varphi_{ipk} + A_k^{\ p} \varphi_{ijp}$.

Introduction contd.

On (M, φ) , *k*-forms decompose further according to the irreducible G₂ representations.

In particular,

$$\Omega^2=\Omega_7^2\oplus\Omega_{14}^2, \quad \Omega^3=\Omega_1^3\oplus\Omega_7^3\oplus\Omega_{27}^3.$$

$$\begin{split} \Omega_7^2 &= \{ X \,\lrcorner \varphi \mid X \in \mathsf{\Gamma}(\mathsf{T}M) \} = \{ \beta \in \Omega^2 \mid \ast(\varphi \land \beta) = 2\beta \}, \\ \Omega_{14}^2 &= \{ \beta \in \Omega^2 \mid \beta \land \psi = 0 \} = \{ \beta \in \Omega^2 \mid \ast(\varphi \land \beta) = -\beta \} \end{split}$$

For $\sigma \in \Omega^k$ and $A = A_{ij} dx^i \otimes dx^j \in \mathcal{T}^2$, we define

$$(A \diamond \sigma)_{i_1 i_2 \cdots i_k} = A_{i_1}^{\ p} \sigma_{p i_2 \cdots i_k} + A_{i_2}^{\ p} \sigma_{i_1 p i_3 \cdots i_k} + \cdots + A_{i_k}^{\ p} \sigma_{i_1 i_2 \cdots i_{k-1} p},$$

so, e.g., $g \diamond \sigma = k\sigma$ and in particular $(A \diamond \varphi)_{ijk} = A_i^{\ p} \varphi_{pjk} + A_j^{\ p} \varphi_{ipk} + A_k^{\ p} \varphi_{ijp}$.

Since $\mathcal{T}^2\cong\Omega^0\oplus S^2_0\oplus\Omega^2_7\oplus\Omega^2_{14}$, it can be proved that

 $\begin{array}{l} A \in \ker(\cdot \diamond \varphi) \iff A \in \Omega_{14}^2 \ (\cong \mathfrak{g}_2) \\ \\ A \mapsto A \diamond \varphi \ \text{is an isomorphism between } S^2 \oplus \Omega_7^2 \ \text{and} \ \Omega^3. \end{array}$

Thus, we can describe the 3-forms as

$$\begin{split} \Omega_1^3 = \{ f\varphi \mid f \in \Omega^0 \}, \quad \Omega_7^3 = \{ A \diamond \varphi \mid A \in \Omega_7^2 \} = \{ X \lrcorner \psi \mid X \in \Gamma(TM) \}, \\ \Omega_{27}^3 = \{ A \diamond \varphi \mid A \in S_0^2 \}. \end{split}$$

Thus, we can describe the 3-forms as

$$\begin{split} \Omega_1^3 &= \{ f\varphi \mid f \in \Omega^0 \}, \quad \Omega_7^3 &= \{ A \diamond \varphi \mid A \in \Omega_7^2 \} = \{ X \lrcorner \psi \mid X \in \Gamma(TM) \}, \\ \Omega_{27}^3 &= \{ A \diamond \varphi \mid A \in \mathcal{S}_0^2 \}. \end{split}$$

For $A\in \mathcal{T}^2$, we set

$$(\mathcal{V}A)_k = A_{ij} \varphi^{ij}_{\ k}.$$

Only the Ω_7^2 part of A contributes to $\mathcal{V}A$, and we call it the vector part of A. In fact,

$$A_7 = \frac{1}{6} (\mathcal{V}A) \lrcorner \varphi.$$

Thus, we can describe the 3-forms as

$$\begin{split} \Omega_1^3 &= \{ f\varphi \mid f \in \Omega^0 \}, \quad \Omega_7^3 &= \{ A \diamond \varphi \mid A \in \Omega_7^2 \} = \{ X \lrcorner \psi \mid X \in \Gamma(TM) \}, \\ \Omega_{27}^3 &= \{ A \diamond \varphi \mid A \in \mathcal{S}_0^2 \}. \end{split}$$

For $A\in \mathcal{T}^2$, we set

$$(\mathcal{V}A)_k = A_{ij} \varphi^{ij}_k.$$

Only the Ω_7^2 part of A contributes to VA, and we call it the vector part of A. In fact,

$$A_7 = rac{1}{6} (\mathcal{V}A) \lrcorner arphi$$

Thus on (M, φ) , any 3-form can be equivalently described by a pair (h, X) with h a symmetric 2-tensor and $X \in \Gamma(TM)$. We will write

$$\gamma_{ijk} = (h \diamond \varphi)_{ijk} + (X \lrcorner \psi)_{ijk} = h_i^p \varphi_{pjk} + h_j^p \varphi_{ipk} + h_k^p \varphi_{imp} + X_p \psi^p_{ijk}.$$

for a 3-form γ .

• The torsion T is a 2-tensor and is explicitly given as

$$T_{pq} = rac{1}{24}
abla_p arphi_{ijk} \psi_q^{\ \ ijk} \qquad (\psi = *_{arphi} arphi)$$

Since $T \in T^2$, it can be further decomposed as $T = T_1 + T_7 + T_{14} + T_{27}$.

• T satisfies a "Bianchi"-type identity (Karigiannis '09)

$$abla_i T_{jk} -
abla_j T_{ik} = T_{ia} T_{jb} \varphi_a^{\ bk} + rac{1}{2} R_{ijab} \varphi_k^{\ ab}.$$

We expect this as $\phi^*(T_{\varphi}) = T_{\phi^*\varphi}$ for any diffeo. ϕ (and also by commuting two derivatives on φ). We crucially use this for some of our results.

Theorem (Fernàndez–Gray)

$$(M, \varphi)$$
 is torsion-free, i.e., $T = 0$ ($\iff \nabla \varphi = 0$) if and only if $d\varphi = d\psi = 0$.

Suppose (M^7, φ) is a compact manifold with a G₂ structure.

Suppose (M^7, φ) is a compact manifold with a G₂ structure.

A geometric flow is an evolution equation which improves a geometric structure, starting from a given one.

Given a G_2 structure (not necessarily torsion-free), it is natural to attempt to improve it in some sense to a "better" G_2 structure (for instance, torsion-free) by using a geometric flow. (Compare: Ricci flow of metrics; mean curvature flow of immersions.)

- General study of flows of G₂ structures Karigiannis, '09 D.-Gianniotis-Karigiannis, '23 Weiss-Witt, '12
- Laplacian flow of closed G₂ structures Bryant, '05, Bryant–Xu, '11 $\left(\frac{\partial \varphi}{\partial t} = \Delta_{\varphi} \varphi, \quad d\varphi = 0\right)$ Lotay–Wei, '15
- Laplacian co-flow of co-closed G₂ structures Karigiannis–McKay–Tsui, '12 $\left(\frac{\partial \psi}{\partial t} = \Delta_{\varphi}\psi, \quad d\psi = 0\right)$
- Modified Laplacian co-flow of co-closed G₂ structures Grigorian,'13 $(\frac{\partial \psi}{\partial t} = \Delta_{\varphi}\psi + d((\underbrace{\mathcal{A}}_{constant} - \operatorname{tr} T)\varphi), \quad d\psi = 0)$
- Isometric Flow of G₂-structures- D.–Gianniotis–Karigiannis '19, Grigorian, '19, Loubeau–Sá Earp, '19

 $\left(rac{\partial arphi}{\partial t} = {\sf div} \ {\cal T} \lrcorner \psi, \ \ {\sf on} \ \ \{arphi \mid g_{arphi} = g_{arphi_0}\}
ight)$

Flows of G₂-structures

Recall that on (M, φ) , any 3-form can be described by a pair $(h, X), h \in S^2(TM), X \in \Gamma(TM)$. Thus, any flow of G₂-structures can be written as

$$\frac{\partial \varphi(t)}{\partial t} = (h(t) \diamond_t \varphi(t)) + X(t) \lrcorner \psi(t). \tag{GF}$$

Facts: Along (GF), $\partial_t g(t) = 2h(t)$, $\partial_t g(t)^{-1} = -2h(t)$, $\partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t$.

Flows of G₂-structures

Recall that on (M, φ) , any 3-form can be described by a pair $(h, X), h \in S^2(TM), X \in \Gamma(TM)$. Thus, any flow of G₂-structures can be written as

$$\frac{\partial \varphi(t)}{\partial t} = (h(t) \diamond_t \varphi(t)) + X(t) \lrcorner \psi(t). \tag{GF}$$

Facts: Along (GF), $\partial_t g(t) = 2h(t)$, $\partial_t g(t)^{-1} = -2h(t)$, $\partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t$.

One possible approach to write the most general (and reasonable) flow of G_2 -structures is to classify all linearly independent second order differential invariants of a G_2 -structure (upto lower order terms) which are invariant under diffeomorphisms and then take a linear combination of those which can be made into a 3-form.

Flows of G₂-structures

Recall that on (M, φ) , any 3-form can be described by a pair (h, X), $h \in S^2(TM)$, $X \in \Gamma(TM)$. Thus, any flow of G₂-structures can be written as

$$\frac{\partial \varphi(t)}{\partial t} = (h(t) \diamond_t \varphi(t)) + X(t) \lrcorner \psi(t).$$
 (GF)

Facts: Along (GF), $\partial_t g(t) = 2h(t)$, $\partial_t g(t)^{-1} = -2h(t)$, $\partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t$.

One possible approach to write the most general (and reasonable) flow of G_2 -structures is to classify all linearly independent second order differential invariants of a G_2 -structure (upto lower order terms) which are invariant under diffeomorphisms and then take a linear combination of those which can be made into a 3-form.

We use representation theoretic aspects of the Lie group G_2 to decompose the Riemann curvature tensor Rm and ∇T .

Definition On $(M, \varphi) \exists$ another Ricci-type tensor F given explicitly as

$$F_{jk} = R_{abcd} \varphi^{ab}_{\ j} \varphi^{cd}_{\ k} \underbrace{=}_{symm.of \ Rm} R_{cdab} \varphi^{ab}_{\ j} \varphi^{cd}_{\ k} = F_{kj}.$$

tr(F) = -2R, R =scalar curvature. F has another geometric interpretation.

2nd order differential invariants of φ from Rm

The curvature decomposition is

$$\operatorname{S}^2(\Lambda^2) = \operatorname{S}^2(\textbf{7} \oplus \textbf{14}) = \operatorname{S}^2(\textbf{7}) \oplus (\textbf{7} \otimes \textbf{14}) \oplus \operatorname{S}^2(\textbf{14})$$

which can be further decomposed into irreducible G2-representations as

$$(1 \oplus 27) \oplus (64 \oplus 7 \oplus 27) \oplus (77 \oplus 1 \oplus 27).$$

2nd order differential invariants of φ from Rm

The curvature decomposition is

$$\operatorname{S}^2(\Lambda^2) = \operatorname{S}^2(\mathbf{7} \oplus \mathbf{14}) = \operatorname{S}^2(\mathbf{7}) \oplus (\mathbf{7} \otimes \mathbf{14}) \oplus \operatorname{S}^2(\mathbf{14})$$

which can be further decomposed into irreducible G2-representations as

$$(1 \oplus 27) \oplus (64 \oplus 7 \oplus 27) \oplus (77 \oplus 1 \oplus 27)$$

However, it must be orthogonal to $\Lambda^4=1\oplus 7\oplus 27$ by the first Bianchi identity. This cuts down the curvature to an element of

$$\underbrace{1 \oplus 27}_{\text{Ricci}} \oplus \underbrace{27 \oplus 64 \oplus 77}_{\text{Weyl}}.$$

That is, the Bianchi identity says that the 7 part is zero, that the two 1's are multiples of each other, and that the three 27's reduce to just two independent 27's. Only the 1 and the two 27 components can be made into a 3-form.

2nd order differential invariants of φ from Rm

The curvature decomposition is

$$\operatorname{S}^2(\Lambda^2) = \operatorname{S}^2(\mathbf{7} \oplus \mathbf{14}) = \operatorname{S}^2(\mathbf{7}) \oplus (\mathbf{7} \otimes \mathbf{14}) \oplus \operatorname{S}^2(\mathbf{14})$$

which can be further decomposed into irreducible G2-representations as

$$(1 \oplus 27) \oplus (64 \oplus 7 \oplus 27) \oplus (77 \oplus 1 \oplus 27)$$

However, it must be orthogonal to $\Lambda^4=1\oplus 7\oplus 27$ by the first Bianchi identity. This cuts down the curvature to an element of

$$\underbrace{1 \oplus 27}_{\text{Ricci}} \oplus \underbrace{27 \oplus 64 \oplus 77}_{\text{Weyl}}.$$

That is, the Bianchi identity says that the 7 part is zero, that the two 1's are multiples of each other, and that the three 27's reduce to just two independent 27's. Only the 1 and the two 27 components can be made into a 3-form.

Upshot: The only second order invariants from Rm which could appear for a flow of G_2 -structures are: Rg, Ric_0 and W_{27} .

Since

$$W_{27} = F + \frac{2}{7}Rg - \frac{4}{5}\operatorname{Ric}_0,$$

we'll use Rg, Ric₀ and F.

• In a similar way we can decompose $\nabla T \in \Gamma(T^*M \otimes T^2)$ into irreducible G_2 -representations and look for those 2*nd* order differential invariants which can be made into a 3-form. There are many of these.

• In a similar way we can decompose $\nabla T \in \Gamma(T^*M \otimes T^2)$ into irreducible G_2 -representations and look for those 2nd order differential invariants which can be made into a 3-form. There are many of these.

• However, not all invariants obtained from Rm and ∇T are independent because these quantities are related by the G₂-Bianchi identity.

• In a similar way we can decompose $\nabla T \in \Gamma(T^*M \otimes T^2)$ into irreducible G_2 -representations and look for those 2nd order differential invariants which can be made into a 3-form. There are many of these.

• However, not all invariants obtained from Rm and ∇T are independent because these quantities are related by the G₂-Bianchi identity.

The G2-Bianchi identity is

$$G_{qij} =
abla_i T_{jq} -
abla_j T_{iq} - T_{ia} T_{jb} \varphi^{ab}_{q} - rac{1}{2} R_{ijab} \varphi^{ab}_{q} = 0.$$

 G_{qij} are the components of a tensor $G \in \Gamma(T^*M \otimes \Lambda^2(T^*M))$, because G_{qij} is skew in $i, j \rightarrow$ decomposed into two components $G^7 + G^{14}$, where $G^k \in \Gamma(T^*M \otimes \Lambda^2_k(T^*M))$ for k = 7, 14. Using the decompositions

 $7 \otimes 7 = 1 \oplus 27 \oplus 7 \oplus 14$ and $7 \otimes 14 = 64 \oplus 27 \oplus 7$,

we can therefore decompose G = 0 into seven independent relations.

Doing all this, we prove the following lemma.

Lemma (D.-Gianniotis-Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential invariants of φ which can be made into a 3-form. The choices are

 $h = Ric_0, Rg, F, \mathcal{L}_{T_7}g$ and $X = \operatorname{div} T, \operatorname{div} T^t$.

Note that T_7 is the 7-component of the torsion and $(\operatorname{div} T)_k = \nabla^i T_{ik}, \ (\operatorname{div} T^t)_k = \nabla^i T_k^{\ i}$ are vector fields on M.

Lemma (D.-Gianniotis-Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential invariants of φ which can be made into a 3-form. The choices are

 $h = Ric_0, Rg, F, \mathcal{L}_{T_7}g$ and $X = \operatorname{div} T, \operatorname{div} T^t$.

Note that T_7 is the 7-component of the torsion and $(\operatorname{div} T)_k = \nabla^i T_{ik}, \ (\operatorname{div} T^t)_k = \nabla^i T_k^{\ i}$ are vector fields on M.

These *h*'s and *X*'s appear in the first variation of the *L*²-norm of the torsion components, i.e, in $\frac{d}{dt}\Big|_{t=0} \int_{M} |T_i|^2 \operatorname{vol}$, i = 1, 7, 14, 27. The formulas are:

Lemma (D.-Gianniotis-Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential invariants of φ which can be made into a 3-form. The choices are

 $h = Ric_0, Rg, F, \mathcal{L}_{T_7}g$ and $X = \operatorname{div} T, \operatorname{div} T^t$.

Note that T_7 is the 7-component of the torsion and $(\operatorname{div} T)_k = \nabla^i T_{ik}, \ (\operatorname{div} T^t)_k = \nabla^i T_k^{\ i}$ are vector fields on M.

These *h*'s and *X*'s appear in the first variation of the *L*²-norm of the torsion components, i.e, in $\frac{d}{dt}\Big|_{t=0} \int_M |\mathcal{T}_i|^2 \operatorname{vol}$, i = 1, 7, 14, 27. The formulas are:

$$\frac{d}{dt} \int_{M} |T_1|^2 \operatorname{Vol} = \int_{M} h^{ip} ((\operatorname{tr} T)^2 g_{ip} - 2 \operatorname{tr} TT_{ip}) \operatorname{Vol} \\ -2 \int_{M} X^p (\operatorname{tr} T(T_7)_p + (\operatorname{div} T^t)_p) \operatorname{Vol}$$

$$\begin{aligned} \frac{d}{dt} \int_{M} |T_{7}|^{2} \operatorname{Vol} &= \int_{M} 6h^{ip} \Big[(\mathcal{L}_{T_{7}}g)_{ip} + Rg_{ip} + \operatorname{tr}(T^{2})g_{ip} - (\operatorname{tr} T)^{2}g_{ip} + T_{la}T_{jq}\psi^{lajq}g_{ip} \\ &- |T_{7}|^{2}g_{ip} - 4(T_{\mathrm{skew}})_{is}T_{p}^{s} - 2T_{mn}T_{is}\psi^{mns}_{p} \Big] \operatorname{Vol} \\ &+ \int_{M} 6X^{q} \Big[2(\operatorname{div} T)_{q} + 2(\operatorname{div} T^{t})_{q} + 2\nabla_{p}T_{mn}\psi^{pmn}_{q} \\ &+ 4(T_{\mathrm{skew}})_{pq}T_{7}^{p} + 2(T^{2})_{pn}\varphi^{pn}_{q} \Big] \operatorname{Vol} \\ \frac{d}{dt} \int_{M} |T_{14}|^{2} \operatorname{Vol} &= \int_{M} h^{ip} \Big[R_{ip} - \frac{11}{2} (\mathcal{L}_{T_{7}}g)_{ip} - \frac{1}{4}F_{ip} - 6Rg_{ip} + 2(T^{2})_{pi} - (T \circ T^{t})_{ip} \\ &- \operatorname{tr} TT_{pi} - \frac{1}{2}T_{ms}T_{nt}\varphi^{mn}_{i}\varphi^{st}_{p} - 2T_{km}(T_{\mathrm{skew}})_{pq}\psi^{kmq}_{i} \\ &+ 12T_{mn}T_{is}\psi^{mns}_{p} + 24(T_{\mathrm{skew}})_{is}T_{p}^{s} + \frac{1}{2}|T|^{2}g_{ip} - \frac{13}{2}\operatorname{tr}(T^{2})g_{ip} \\ &+ 6(\operatorname{tr} T)^{2}g_{ip} + 6|T_{7}|^{2}g_{ip} - 6T_{la}T_{jq}\psi^{lpjq}g_{ip} \Big] \operatorname{Vol} \\ &- X^{q} \int_{M} \Big[13(\operatorname{div} T)_{q} + 13(\operatorname{div} T^{t})_{q} - 24(T_{\mathrm{skew}})_{pq}(T_{7})^{p} \\ &- 13(T^{2})_{pl}\varphi^{pl}_{q} - 12\nabla_{p}T_{mn}\psi^{pmn}_{q} \Big] \operatorname{Vol} \end{aligned}$$

$$\begin{split} \frac{d}{dt} \int_{M} |T_{27}|^{2} \operatorname{Vol} &= \int_{M} h^{ip} \Big[R_{ip} + \frac{1}{2} (\mathcal{L}_{T_{7}} g)_{ip} + \frac{1}{4} F_{ip} + \frac{1}{2} T_{ms} T_{nt} \varphi^{mn}_{\ i} \varphi^{st}_{\ p} - \frac{5}{7} \operatorname{tr} T T_{pi} \\ &- 2 T_{km} (T_{sym})_{pq} \psi^{kmq}_{\ i} - (T \circ T^{t})_{ip} + \frac{1}{2} |T|^{2} g_{ip} + \frac{1}{2} \operatorname{tr} (T^{2}) g_{ip} \\ &- \frac{1}{7} (\operatorname{tr} T)^{2} g_{ip} \Big] \operatorname{Vol} \\ &- \int_{M} X^{q} \Big[(\operatorname{div} T)_{q} - \frac{9}{7} (\operatorname{div} T^{t})_{q} + T_{pl}^{2} \varphi^{pl}_{\ q} + \frac{2}{7} \operatorname{tr} T (T_{7})_{q} \\ &+ \frac{2}{7} (T_{7})^{p} T_{qp} \Big] \operatorname{Vol} . \end{split}$$

$$\begin{split} \frac{d}{dt} \int_{M} |T_{27}|^{2} \operatorname{Vol} &= \int_{M} h^{ip} \Big[R_{ip} + \frac{1}{2} (\mathcal{L}_{T_{7}} g)_{ip} + \frac{1}{4} F_{ip} + \frac{1}{2} T_{ms} T_{nt} \varphi^{mn}_{\ i} \varphi^{st}_{\ p} - \frac{5}{7} \operatorname{tr} TT_{pi} \\ &- 2 T_{km} (T_{sym})_{pq} \psi^{kmq}_{\ i} - (T \circ T^{t})_{ip} + \frac{1}{2} |T|^{2} g_{ip} + \frac{1}{2} \operatorname{tr} (T^{2}) g_{ip} \\ &- \frac{1}{7} (\operatorname{tr} T)^{2} g_{ip} \Big] \operatorname{Vol} \\ &- \int_{M} X^{q} \Big[(\operatorname{div} T)_{q} - \frac{9}{7} (\operatorname{div} T^{t})_{q} + T_{pl}^{2} \varphi^{pl}_{\ q} + \frac{2}{7} \operatorname{tr} T(T_{7})_{q} \\ &+ \frac{2}{7} (T_{7})^{p} T_{qp} \Big] \operatorname{Vol}. \end{split}$$

Thus, we are led to define the following family of flows of G_2 -structures.

[Flows of G₂-structures]

Let (M^7,φ_0) be a compact manifold. The general flow of $G_2\mbox{-structures}$ is the initial value problem

$$\begin{split} \frac{\partial \varphi}{\partial t} &= (-\operatorname{Ric} + a\mathcal{L}_{T_7}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \operatorname{I.o.t.}_{(\mathsf{GGF})} \\ \varphi(0) &= \varphi_0 \\ \text{with } a, \beta, b_1, b_2 \in \mathbb{R}. \end{split}$$

Remark: We do not put any condition on φ (like $d\varphi = 0, d * \varphi = 0$ or isometric).

[Flows of G₂-structures]

Let (M^7,φ_0) be a compact manifold. The general flow of $G_2\mbox{-structures}$ is the initial value problem

$$\begin{aligned} \frac{\partial \varphi}{\partial t} &= (-\operatorname{Ric} + a\mathcal{L}_{T_7}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \operatorname{l.o.t.} \end{aligned}$$

$$\begin{aligned} \varphi(0) &= \varphi_0 \end{aligned}$$
with $a, \beta, b_1, b_2 \in \mathbb{R}.$

Remark: We do not put any condition on φ (like $d\varphi = 0, d * \varphi = 0$ or isometric).

Special cases

a = β = b₁ = b₂ = 0 and no l.o.t. gives the usual Ricci flow of G₂-structures, i.e., a flow of G₂-structures which induce the Ricci flow of metrics.

$$\frac{\partial \varphi}{\partial t} = (-\operatorname{Ric} + a\mathcal{L}_{T_7}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \operatorname{l.o.t.}$$

• $a = \beta = b_2 = 0$, $b_1 = 1$ and no Ric and I.o.t term gives the isometric/harmonic flow of G₂-structures $\partial_t \varphi = \operatorname{div} T \lrcorner \psi \rightsquigarrow$ negative gradient flow of $\varphi \mapsto \int_M |T|^2$ Vol restricted to $[[\varphi_0]]_{iso}$. Analytic properties well-understood and we have a monotonicity formula, entropy functional, ε -regularity theorem.

$$\frac{\partial \varphi}{\partial t} = (-\operatorname{Ric} + a\mathcal{L}_{T_7}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \operatorname{l.o.t.}$$

- a = β = b₂ = 0, b₁ = 1 and no Ric and I.o.t term gives the isometric/harmonic flow of G₂-structures ∂_tφ = div T_⊥ψ → negative gradient flow of φ → ∫_M |T|² Vol restricted to [[φ₀]]_{iso}. Analytic properties well-understood and we have a monotonicity formula, entropy functional, ε-regularity theorem.
- a = β = b₂ = 0 and no l.o.t. gives the Ricci flow coupled with the isometric flow of G₂-structures. We prove short-time existence and uniqueness of solutions and one can get *a priori* estimates using Gao Chen's arguments.

$$\frac{\partial \varphi}{\partial t} = (-\operatorname{Ric} + a\mathcal{L}_{T_7}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \operatorname{l.o.t.}$$

- a = β = b₂ = 0, b₁ = 1 and no Ric and I.o.t term gives the isometric/harmonic flow of G₂-structures ∂_tφ = div T_⊥ψ → negative gradient flow of φ → ∫_M |T|² Vol restricted to [[φ₀]]_{iso}. Analytic properties well-understood and we have a monotonicity formula, entropy functional, ε-regularity theorem.
- a = β = b₂ = 0 and no l.o.t. gives the Ricci flow coupled with the isometric flow of G₂-structures. We prove short-time existence and uniqueness of solutions and one can get a priori estimates using Gao Chen's arguments.
- $a = -\frac{1}{2}, \ \beta = 0, \ b_1 = 1, \ b_2 = 0$ so we have $\partial_t \varphi = (-\operatorname{Ric} - \frac{1}{2}\mathcal{L}_{T_7}g) \diamond \varphi + \operatorname{div} T_{\neg}\psi + \underbrace{\operatorname{lo.t.}}_{explicit} \rightsquigarrow \text{negative gradient flow}$

of $\varphi \mapsto \int_M |\mathcal{T}|^2$ Vol on all G₂-structures. Studied by Weiss–Witt (2012). We have short-time existence and uniqueness of solutions.

$$\frac{\partial \varphi}{\partial t} = (-\operatorname{Ric} + a\mathcal{L}_{T_7}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi + \operatorname{l.o.t.}$$

- a = β = b₂ = 0, b₁ = 1 and no Ric and I.o.t term gives the isometric/harmonic flow of G₂-structures ∂_tφ = div T_⊥ψ → negative gradient flow of φ → ∫_M |T|² Vol restricted to [[φ₀]]_{iso}. Analytic properties well-understood and we have a monotonicity formula, entropy functional, ε-regularity theorem.
- a = β = b₂ = 0 and no l.o.t. gives the Ricci flow coupled with the isometric flow of G₂-structures. We prove short-time existence and uniqueness of solutions and one can get a priori estimates using Gao Chen's arguments.
- $a = -\frac{1}{2}, \ \beta = 0, \ b_1 = 1, \ b_2 = 0$ so we have $\partial_t \varphi = (-\operatorname{Ric} -\frac{1}{2}\mathcal{L}_{T_7}g) \diamond \varphi + \operatorname{div} T_{\perp}\psi + \underbrace{\operatorname{lo.t.}}_{explicit} \rightsquigarrow \text{negative gradient flow}$

of $\varphi \mapsto \int_{M} |T|^2$ Vol on all G₂-structures. Studied by Weiss–Witt (2012). We have short-time existence and uniqueness of solutions.

What can we say about the short-time existence and uniqueness of solutions of (GGF) in general?

Theorem (D.-Gianniotis-Karigiannis, '23)

Let (M, φ_0) be a compact 7-manifold with a G_2 -structure φ_0 . Then there exists a unique $\varphi(t)$, $t \in [0, \varepsilon)$, such that

$$\begin{aligned} \frac{\partial \varphi(t)}{\partial t} &= (-\operatorname{Ric} + a\mathcal{L}_{T_7}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi \\ \varphi(0) &= \varphi_0, \end{aligned}$$

provided that $0 \le b_1 - a - 1 < 4$, $b_1 + b_2 \ge 1$ and $|\beta| < \frac{c}{4}$, where $c = 1 - \frac{1}{4}(b_1 - a - 1)$.

Theorem (D.–Gianniotis–Karigiannis, '23)

Let (M, φ_0) be a compact 7-manifold with a G_2 -structure φ_0 . Then there exists a unique $\varphi(t)$, $t \in [0, \varepsilon)$, such that

$$\begin{split} \frac{\partial \varphi(t)}{\partial t} &= (-\operatorname{Ric} + a\mathcal{L}_{T_7}g + \beta F) \diamond \varphi + (b_1 \operatorname{div} T + b_2 \operatorname{div} T^t) \lrcorner \psi \\ \varphi(0) &= \varphi_0, \end{split}$$
provided that $0 \leq b_1 - a - 1 < 4$, $b_1 + b_2 \geq 1$ and $|\beta| < \frac{c}{4}$, where $c = 1 - \frac{1}{4}(b_1 - a - 1).$

Idea of the proof:

С

• Let the RHS of (GGF) be P_{ω} . Calculate the principal symbols of the operators involved: Ric, $\mathcal{L}_{T_7}g$, F, div T, div T^t. It turns out that dim ker $(\sigma(DP_{\omega})(h, X)) \geq 7$ because of diffeomorphism invariance of the tensors involved.

Proof contd.

• We prove that dim ker $(\sigma(DP_{\varphi})(h, X)) = 7$ and hence the failure of parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors involved. Remark: We needed to introduce a new operator to show this; we have $B_1: S^2(T_x^*M) \to T_x^*M$ with $B_1(h)_k = \xi_a h^a_k - \frac{1}{2}\xi_k$ tr h which is the usual *Bianchi operator* in the Ricci-flow. We introduce $B_2: T_x^*M \to T_x^*M$ by $B_2(X)_k = \xi_a X_b \varphi^{ab}_k$ and use both of these.

Proof contd.

• We prove that dim ker $(\sigma(DP_{\varphi})(h, X)) = 7$ and hence the failure of parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors involved. Remark: We needed to introduce a new operator to show this; we have $B_1: S^2(T_x^*M) \to T_x^*M$ with $B_1(h)_k = \xi_a h^a_k - \frac{1}{2}\xi_k$ tr h which is the usual *Bianchi operator* in the Ricci-flow. We introduce $B_2: T_x^*M \to T_x^*M$ by $B_2(X)_k = \xi_a X_b \varphi^{ab}_k$ and use both of these.

• Because of above, we can use the DeTurck's trick: look at the modified operator $P_{\varphi} + \mathcal{L}_W \varphi$ with $W \in \Gamma(TM)$ given by

$$W^{k} = g^{ij} \left(\Gamma_{ij}^{k} - \overline{\Gamma}_{ij}^{k} \right) - 2a(T_{7})^{k}$$

where $\overline{\Gamma}$ are the Christoffel symbols w.r.t. a fixed background G₂-structure, e.g., φ_0 .

Proof contd.

• We prove that dim ker $(\sigma(DP_{\varphi})(h, X)) = 7$ and hence the failure of parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors involved. Remark: We needed to introduce a new operator to show this; we have $B_1: S^2(T_x^*M) \to T_x^*M$ with $B_1(h)_k = \xi_a h^a_k - \frac{1}{2}\xi_k$ tr h which is the usual *Bianchi operator* in the Ricci-flow. We introduce $B_2: T_x^*M \to T_x^*M$ by $B_2(X)_k = \xi_a X_b \varphi^{ab}_k$ and use both of these.

• Because of above, we can use the DeTurck's trick: look at the modified operator $P_{\varphi} + \mathcal{L}_W \varphi$ with $W \in \Gamma(TM)$ given by

$$W^{k} = g^{ij} \left(\Gamma_{ij}^{k} - \overline{\Gamma}_{ij}^{k} \right) - 2a(T_{7})^{k}$$

where $\overline{\Gamma}$ are the Christoffel symbols w.r.t. a fixed background G₂-structure, e.g., φ_0 .

• The symbol of $P_{\varphi} + \mathcal{L}_W \varphi$ is a multiple of Id and hence we can prove short-time existence and uniqueness using DeTurck's trick.

Flows of Spin(7)-structures.

• A Spin(7)-structure on M^8 is given by $\Phi \in \Omega^4(M)$ and the subgroup of $\operatorname{GL}(8,\mathbb{R})$ preserving Φ is the Lie group Spin(7) which is the double cover of SO(7). The existence of such a structure is again a topological condition.

Like the G_2 -case, Φ induces a metric and volume form, nonlinearly.

• A Spin(7)-structure on M^8 is given by $\Phi \in \Omega^4(M)$ and the subgroup of $\operatorname{GL}(8,\mathbb{R})$ preserving Φ is the Lie group Spin(7) which is the double cover of SO(7). The existence of such a structure is again a topological condition.

Like the G_2 -case, Φ induces a metric and volume form, nonlinearly.

• Unlike the G₂-case, the space of 4-forms Φ on M which determine a Spin(7)-structure is a subbundle \mathcal{A} called the bundle of <u>admissible 4-forms</u>. This is not a vector subbundle and is not even an open subbundle. In fact, for $p \in M$, \mathcal{A}_p has codimension 27 in $\Lambda^4(\mathcal{T}_p^*M)$.

• A Spin(7)-structure on M^8 is given by $\Phi \in \Omega^4(M)$ and the subgroup of $\operatorname{GL}(8,\mathbb{R})$ preserving Φ is the Lie group Spin(7) which is the double cover of SO(7). The existence of such a structure is again a topological condition.

Like the G₂-case, Φ induces a metric and volume form, nonlinearly.

• Unlike the G₂-case, the space of 4-forms Φ on M which determine a Spin(7)-structure is a subbundle \mathcal{A} called the bundle of <u>admissible 4-forms</u>. This is not a vector subbundle and is not even an open subbundle. In fact, for $p \in M$, \mathcal{A}_p has codimension 27 in $\Lambda^4(\mathcal{T}_p^*M)$.

$$\Omega^2 = \Omega_7^2 \oplus \Omega_{21}^2, \quad \Omega^3 = \Omega_8^3 \oplus \Omega_{48}^3, \quad \Omega^4 = \underbrace{\Omega_1^4 \oplus \Omega_{35}^4}_{\cong \diamond S^2(M)} \oplus \underbrace{\Omega_7^4}_{\cong \diamond \Omega_7^2} \oplus \Omega_{27}^4.$$

• A Spin(7)-structure on M^8 is given by $\Phi \in \Omega^4(M)$ and the subgroup of $\operatorname{GL}(8,\mathbb{R})$ preserving Φ is the Lie group Spin(7) which is the double cover of SO(7). The existence of such a structure is again a topological condition.

Like the G_2 -case, Φ induces a metric and volume form, nonlinearly.

• Unlike the G₂-case, the space of 4-forms Φ on M which determine a Spin(7)-structure is a subbundle \mathcal{A} called the bundle of <u>admissible 4-forms</u>. This is not a vector subbundle and is not even an open subbundle. In fact, for $p \in M$, \mathcal{A}_p has codimension 27 in $\Lambda^4(T_p^*M)$.

$$\Omega^2 = \Omega_7^2 \oplus \Omega_{21}^2, \quad \Omega^3 = \Omega_8^3 \oplus \Omega_{48}^3, \quad \Omega^4 = \underbrace{\Omega_1^4 \oplus \Omega_{35}^4}_{\cong \diamond S^2(M)} \oplus \underbrace{\Omega_7^4}_{\cong \diamond \Omega_7^2} \oplus \Omega_{27}^4.$$

• The torsion tensor $\mathcal{T}\in\Omega^1_8\otimes\Omega^2_7$ and is given in terms of $abla\Phi$ as

$$T_{m;ab} = \frac{1}{96} (\nabla_m \Phi_{ajkl} \Phi_b^{jkl})$$

and in fact, T can be viewed as a 3-form with $T = T_8 + T_{48}$ with T_8 being identified as a vector field.

On (M, φ) , any 4-form in Ω^4_{1+7+35} can be described by a pair (h, X), $h \in S^2(TM)$, $X \in \Omega^2_7$. From (Karigiannis, '07), any flow of Spin(7)-structures can be written as

$$\frac{\partial \Phi(t)}{\partial t} = (h(t) + X(t)) \diamond_t \Phi(t).$$

Facts: Along the above flow,

 $\partial_t g(t) = 2h(t), \ \partial_t g(t)^{-1} = -2h(t), \ \partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t.$

On (M, φ) , any 4-form in Ω^4_{1+7+35} can be described by a pair (h, X), $h \in S^2(TM)$, $X \in \Omega^2_7$. From (Karigiannis, '07), any flow of Spin(7)-structures can be written as

$$rac{\partial \Phi(t)}{\partial t} = (h(t) + X(t)) \diamond_t \Phi(t).$$

Facts: Along the above flow,

 $\partial_t g(t) = 2h(t), \ \partial_t g(t)^{-1} = -2h(t), \ \partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t.$

Using similar strategies as in the G₂-case, we show that the only linearly independent second order differential invariants of Φ that can occur for a flow of Spin(7)-structures are: Ric₀, Rg, $\mathcal{L}_{T_8}g$ for h and $(\operatorname{div} T)_{ab} = \nabla^m T_{m;ab}$ for X.

Rmk: There is a 27-dim Weyl curvature tensor in this case as well, but that cannot occur as a variation of Spin(7)-structures.

On (M, φ) , any 4-form in Ω^4_{1+7+35} can be described by a pair (h, X), $h \in S^2(TM)$, $X \in \Omega^2_7$. From (Karigiannis, '07), any flow of Spin(7)-structures can be written as

$$rac{\partial \Phi(t)}{\partial t} = (h(t) + X(t)) \diamond_t \Phi(t).$$

Facts: Along the above flow,

 $\partial_t g(t) = 2h(t), \ \partial_t g(t)^{-1} = -2h(t), \ \partial_t \operatorname{vol}_t = \operatorname{tr} h(t) \operatorname{vol}_t.$

Using similar strategies as in the G₂-case, we show that the only linearly independent second order differential invariants of Φ that can occur for a flow of Spin(7)-structures are: Ric₀, Rg, $\mathcal{L}_{T_3}g$ for h and $(\operatorname{div} T)_{ab} = \nabla^m T_{m;ab}$ for X.

Rmk: There is a 27-dim Weyl curvature tensor in this case as well, but that cannot occur as a variation of Spin(7)-structures.

Since the above h and X all occur in the negative gradient flow of

$$E(\Phi) = \int_{M} |T_{\Phi}|^2 \operatorname{vol}_{\Phi}$$
 (EF)

we look at this flow as this naturally gives us the lower order terms as well. Also studied by Ammann–Weiss–Witt, '16 using spinorial approach (and more generally by Collins–Phong.) Let (M^8, Φ_0) be a compact manifold. The negative gradient flow of (EF) is the initial value problem

$$\begin{aligned} \frac{\partial \Phi}{\partial t} &= \left(-\operatorname{Ric} + 2(\mathcal{L}_{T_8}g) + (T * T) - |T|^2 g + 2\operatorname{div} T \right) \diamond \Phi, \\ \Phi(0) &= \Phi_0. \end{aligned}$$
with $(T * T)_{ij} = 8T_{b;i}{}^{i}T_{j;l}{}^{b} - 8T_{j;i}{}^{i}T_{b;l}{}^{b} + 2T_{i;lb}T_{j;}{}^{lb}. \end{aligned}$
(GSF)

wi

Let (M^8, Φ_0) be a compact manifold. The negative gradient flow of (EF) is the initial value problem

$$\begin{aligned} \frac{\partial \Phi}{\partial t} &= \left(-\operatorname{Ric} + 2(\mathcal{L}_{T_8}g) + (T * T) - |T|^2 g + 2\operatorname{div} T \right) \diamond \Phi, \\ \Phi(0) &= \Phi_0. \end{aligned}$$

$$(\text{GSF})$$

$$\text{th} (T * T)_{ij} &= 8T_{b;i}{}^{i}T_{j;i}{}^{b} - 8T_{j;i}{}^{i}T_{b;i}{}^{b} + 2T_{i;lb}T_{j;}{}^{lb}. \end{aligned}$$

• The isometric flow of Spin(7)-structures $\partial_t \Phi(t) = \text{div } T \diamond \Phi$ studied by D.-Loubeau-Sa' Earp, '21 is a special case of (GSF).

Let (M^8, Φ_0) be a compact manifold. The negative gradient flow of (EF) is the initial value problem

$$\begin{aligned} \frac{\partial \Phi}{\partial t} &= \left(-\operatorname{Ric} + 2(\mathcal{L}_{T_8}g) + (T * T) - |T|^2 g + 2\operatorname{div} T \right) \diamond \Phi, \\ \Phi(0) &= \Phi_0. \end{aligned}$$
(GSF)
with $(T * T)_{ij} = 8T_{b;i}{}^{i}T_{j;l}{}^{b} - 8T_{j;i}{}^{i}T_{b;l}{}^{b} + 2T_{i;lb}T_{j;}{}^{lb}. \end{aligned}$

• The isometric flow of Spin(7)-structures $\partial_t \Phi(t) = \text{div } T \diamond \Phi$ studied by D.-Loubeau-Sa' Earp, '21 is a special case of (GSF).

Theorem (D., '24)

Let (M^8, Φ_0) be a compact 8-manifold with a Spin(7)-structure Φ_0 . Then there exists a unique $\Phi(t)$, $t \in [0, \varepsilon)$ which is a solution to (GSF).

Solitons

A soliton for (GSF) is a triple (Φ, Y, λ) with $Y \in \Gamma(TM)$ and $\lambda \in \mathbb{R}$ such that

$$\left(-\operatorname{Ric}+2(\mathcal{L}_{T_8}g)+T*T-|T|^2g+2\operatorname{div} T\right)\diamond\Phi=\lambda\Phi+\mathcal{L}_Y\Phi$$

where $(T * T)_{ij} = 8T_{b;i}{}^{I}T_{j;l}{}^{b} - 8T_{j;i}{}^{I}T_{b;l}{}^{b} + 2T_{i;lb}T_{j;}{}^{lb}$. expanding $\rightsquigarrow \lambda > 0$, steady $\rightsquigarrow \lambda < 0$ and steady $\rightsquigarrow \lambda = 0$.

Solitons

A soliton for (GSF) is a triple (Φ, Y, λ) with $Y \in \Gamma(TM)$ and $\lambda \in \mathbb{R}$ such that

$$\left(-\operatorname{Ric}+2(\mathcal{L}_{\mathcal{T}_8}g)+T*T-|T|^2g+2\operatorname{div} T\right)\diamond\Phi=\lambda\Phi+\mathcal{L}_Y\Phi$$

where $(T * T)_{ij} = 8T_{b;i}{}^{I}T_{j;l}{}^{b} - 8T_{j;i}{}^{I}T_{b;l}{}^{b} + 2T_{i;lb}T_{j;}{}^{lb}$. expanding $\rightsquigarrow \lambda > 0$, steady $\rightsquigarrow \lambda < 0$ and steady $\rightsquigarrow \lambda = 0$.

Lemma (D., '24)

Let (Φ, Y, λ) be a soliton of the (GSF).

- 1. There are no compact expanding solitons.
- 2. The only compact steady solitons are given by torsion-free Spin(7)-structures.

• Find the flow with the "nicest" evolution of the torsion/norm of torsion. This will involve the lower order terms as well. We have a "heat-type" equation for T or $|T|^2$ along the negative gradient flow of $\varphi \mapsto \int_M |T|^2$ Vol functional $(\beta = b_2 = 0, a = -\frac{1}{2}, b_1 = 1 \text{ case}).$

• Examine the flows which might give some "preserved" conditions for the torsion or closedness of certain tensors along the flow (e.g., strong G_2T -structures as in A. Fino's talk).

• A monotone quantity, just like the case of the isometric flow and if possible, an entropy functional, "smallness" of which guarantees long time existence.

• Examples of solutions and solitons.

• Dynamical stability of stationary points (e.g. torsion-free $G_2/Spin(7)$ -structures) along the flows considered here.

Thank you for your attention.