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= We study general flows of G, and Spin(7)-structures. General here means no
conditions on the Ga-structures ¢ (closed, co-closed, isometric etc.) and the
Spin(7)-structures ®.

= We find all the linearly independent second order differential invariants of a
Gz/Spin(7)-structure, which can occur in a variation of Gz/Spin(7)-structures.

= We write the most general flow of G»/Spin(7)-structures and find sufficient
conditions for short-time existence and uniqueness (amenable to a DeTurck
type trick).
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Flows of Go-structures.
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Introduction to G,-structures

Throughout this part, we will be working on 7-dimensional manifolds.

A Ga-structure on M7 is the reduction of the structure group of the frame
bundle Fr(M) from GL(7,R) to the Lie group G> < SO(7).

Definition
Let M” be a smooth manifold. A G, structure on M is a 3-form ¢ which is

nondegenerate.
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Introduction to G,-structures

Throughout this part, we will be working on 7-dimensional manifolds.

A Ga-structure on M7 is the reduction of the structure group of the frame
bundle Fr(M) from GL(7,R) to the Lie group G> < SO(7).

Definition

Let M” be a smooth manifold. A G, structure on M is a 3-form ¢ which is
nondegenerate.

Let X, Y € [(TM), then

(Xap) A (Yp) A p = 6g,(X, Y)vol, .

M admits Go-structures <= it is orientable and spinnable.

The space of nondegenerate (or positive) 3-forms Q3 is an open subbundle of
Q3.

427



Introduction contd.

G, structure «~ “non-degenerate” 3-form ¢ ~» g, and orientation nonlinearly.

Thus, we have a Hodge star operator *, and dual 4-form x,¢ = 1.
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G, structure «~ “non-degenerate” 3-form ¢ ~» g, and orientation nonlinearly.

Thus, we have a Hodge star operator *, and dual 4-form x,¢ = 1.

Definition
Let (M7, ¢) be a manifold with a G, structure ¢ and let V be the Levi-Civita
connection of g,. We call (M, ¢) a G, manifold if Vo = 0. Vg is interpreted
as the torsion T of the G, structure.

G, manifolds, i.e., those having torsion-free G, structure ¢ are always Ricci-flat
and have special holonomy contained in the Lie group G> C SO(7).
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Introduction contd.

G, structure «~ “non-degenerate” 3-form ¢ ~» g, and orientation nonlinearly.

Thus, we have a Hodge star operator *, and dual 4-form x,¢ = 1.

Definition

Let (M7, ¢) be a manifold with a G, structure ¢ and let V be the Levi-Civita
connection of g,. We call (M, ¢) a G, manifold if Vo = 0. Vg is interpreted
as the torsion T of the G, structure.

G, manifolds, i.e., those having torsion-free G, structure ¢ are always Ricci-flat
and have special holonomy contained in the Lie group G> C SO(7).

In order to find second order differential invariants of (o, we need to understand
the decomposition of differential forms into irreducible G,-representations.
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Introduction contd.

On (M, ¢), k-forms decompose further according to the irreducible G
representations.
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Introduction contd.

On (M, ¢), k-forms decompose further according to the irreducible G

representations.

In particular,
P =0e0, =000 0.

Q= {Xup | X eT(TM)} = {Be€Q®|«(¢AB)=28},
QU ={BeQ|BArY=0} = {BeQ|xpAB)=—F}
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Introduction contd.

On (M, ¢), k-forms decompose further according to the irreducible G
representations.

In particular,
P =0e0, =000 0.

QF = {Xup | X €eT(TM)} = {Be€Q®|x(pAB)=28},

Q={Be@|Bryp=0} = {BeQ’|x(pAB)=—p}
For 0 € QX and A = A;dx’' ® dx/ € T2, we define

(A <>0'),'1,‘2.4.,'k = Al-lpap,é..‘,-k + Ay—fo','lp,'34.4,'k + .-+ Aifo-flfQ"'ik—1P7

so, e.g., g 0 = ko and in particular (Ao @) = APppi + AP ik + AL pijp.
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Introduction contd.

On (M, ¢), k-forms decompose further according to the irreducible G

representations.

In particular,
P =0e0, =000 0.

Q= {Xup| X eT(TM)} = {B€Q|x(pnB) =28},
Dy={BeQ|BAYp=0} = {BeQ|«(prp)=—F}
For 0 € QX and A = A;dx’' ® dx/ € T2, we define
(A < U)f1f2'“fk = Ailpaplé'“ik + Ale’aflpfs"‘fk +-+ Aifo-’-l"?'"-k—lP?
so, e.g., g 0 = ko and in particular (Ao @) = APppi + AP ik + AL pijp.
Since T2~ Q%3 S2 ¢ Q2 ¢ Q32,, it can be proved that

Acker(-op) <= Ac Qi (2g.)

A Ao is an isomorphism between $? @ Q2 and Q°.
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Introduction contd.

Thus, we can describe the 3-forms as

QB ={fo|feQ’, QI ={Acp|AcQi}={X|Xel(TM)},
03 ={Aop|Ac S}
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Introduction contd.

Thus, we can describe the 3-forms as
Q= {fp|feQ’), QI={Aop|AcQi}={Xw|Xel(TM)},
03 ={Aop|Ac S}
For A € T2, we set
(VA = Ajg",.

Only the Q2 part of A contributes to VA, and we call it the vector part of A. In
fact,
A = %(VA)Jgo.
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Introduction contd.

Thus, we can describe the 3-forms as

QB ={fo|feQ’, QI ={Acp|AcQi}={X|Xel(TM)},
03 ={Aop|Ac S}

For A € T2, we set
(VA = Ay,

Only the Q2 part of A contributes to VA, and we call it the vector part of A. In
fact,
A = %(VA)Jgo.

Thus on (M, ¢), any 3-form can be equivalently described by a pair (h, X) with
h a symmetric 2-tensor and X € ['(TM). We will write

Yik = (ho @)k + (Xap)i = hf ppjx + hf ik + hpimp + X0 .-

for a 3-form ~.
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Torsion of a G,-structure

e The torsion T is a 2-tensor and is explicitly given as

1 i e
Vit (¥ = *o9)

qu:ﬂ

Since T € T2, it can be further decomposed as T = Ty + T7 + Tis + To7.
e T satisfies a “Bianchi”-type identity (Karigiannis '09)
1 a
ViTu = VT =Ta ijtpabk TP ERijabSDk b,

We expect this as ¢*(T,) = T+, for any diffeo. ¢ (and also by commuting
two derivatives on ¢). We crucially use this for some of our results.

Theorem (Fernandez—Gray)

(M, p) is torsion-free, i.e., T =0 ( <= V¢ = 0) if and only if
de =dip=0.
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Flows of G,-structures

Suppose (M7, ) is a compact manifold with a G, structure.
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Flows of G,-structures

Suppose (M7, ) is a compact manifold with a G, structure.

A geometric flow is an evolution equation which improves a geometric
structure, starting from a given one.

Given a Gy structure (not necessarily torsion-free), it is natural to attempt to
improve it in some sense to a “better” G, structure (for instance, torsion-free)
by using a geometric flow. (Compare: Ricci flow of metrics; mean curvature
flow of immersions.)
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Flows of G;-structures...a brief history

e General study of flows of Gy structures - Karigiannis, '09
D.—Gianniotis—Karigiannis, '23
Weiss—Witt, '12

e Laplacian flow of closed G structures - Bryant, '05, Bryant—Xu, '11

(Z?Tf =Agpp, dp=0) Lotay-Wei, '15

e Laplacian co-flow of co-closed G structures - Karigiannis—McKay—-Tsui, '12
(3% =Apy, dy=0)

e Modified Laplacian co-flow of co-closed G» structures - Grigorian,'13
(3 =Det+d(( A —trT)p), dy=0)

constant

e Isometric Flow of Gy-structures- D.—Gianniotis—Karigiannis '19, Grigorian, '19,
Loubeau—-S3 Earp, '19

(% =divTu, on {v|gy, =ge})
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Flows of G,-structures

Recall that on (M, ¢), any 3-form can be described by a pair
(h,X), he S*(TM), X € T(TM). Thus, any flow of Go-structures can be

written as
9¢(t)
ot

= (h(t) o (1)) + X () 1 (2). (GF)

Facts: Along (GF), 0:g(t) = 2h(t), 0:g(t)™" = —2h(t), O vol, = tr h(t)vol,.
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Flows of G,-structures

Recall that on (M, ¢), any 3-form can be described by a pair
(h,X), he S*(TM), X € T(TM). Thus, any flow of Go-structures can be
written as

dp(t) _

ot

(h(t) ot p(t)) + X (£)3(2)- (GF)

Facts: Along (GF), d:g(t) = 2h(t), O:g(t)™* = —2h(t), O;vol, = tr h(t)vol; .

One possible approach to write the most general (and reasonable) flow of
Ga-structures is to classify all linearly independent second order differential
invariants of a Ga-structure (upto lower order terms) which are invariant under
diffeomorphisms and then take a linear combination of those which can be
made into a 3-form.
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Flows of G,-structures

Recall that on (M, ¢), any 3-form can be described by a pair
(h,X), he S*(TM), X € T(TM). Thus, any flow of Go-structures can be
written as

dp(t) _

ot

(h(t) ot p(t)) + X (£)3(2)- (GF)

Facts: Along (GF), d:g(t) = 2h(t), O:g(t)™* = —2h(t), O;vol, = tr h(t)vol; .

One possible approach to write the most general (and reasonable) flow of
Ga-structures is to classify all linearly independent second order differential
invariants of a Ga-structure (upto lower order terms) which are invariant under
diffeomorphisms and then take a linear combination of those which can be
made into a 3-form.

We use representation theoretic aspects of the Lie group G2 to decompose the
Riemann curvature tensor Rm and VT.
Definition On (M, ) 3 another Ricci-type tensor F given explicitly as
b cod b cod
Fik = Rabed©’j0%% =,  Reaarp’j "k = Figj.
symm.of Rm

tr(F) = —2R, R =scalar curvature. F has another geometric interpretation.
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2nd order differential invariants of ¢ from Rm

The curvature decomposition is
S2(N?) = S3(T @ 18) = S¥(7) @ (7T ® 14) @ S(14)
which can be further decomposed into irreducible Go-representations as

(1e27) e (64070 27) 0 (770 16 27).
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2nd order differential invariants of ¢ from Rm

The curvature decomposition is
S2(N?) = S3(T @ 18) = S¥(7) @ (7T ® 14) @ S(14)
which can be further decomposed into irreducible Go-representations as

(1e27) e (64070 27) 0 (770 16 27).

However, it must be orthogonal to A* =1 & 7 & 27 by the first Bianchi
identity. This cuts down the curvature to an element of

10270271064 77.

N

Ricci Weyl

That is, the Bianchi identity says that the 7 part is zero, that the two 1's are
multiples of each other, and that the three 27’s reduce to just two independent
27's. Only the 1 and the two 27 components can be made into a 3-form.
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2nd order differential invariants of ¢ from Rm

The curvature decomposition is
S2(N?) = S3(T @ 18) = S¥(7) @ (7T ® 14) @ S(14)
which can be further decomposed into irreducible Go-representations as

(1e27) e (64070 27) 0 (770 16 27).

However, it must be orthogonal to A* =1 & 7 & 27 by the first Bianchi
identity. This cuts down the curvature to an element of

10270270640 77.
N~
Ricci Weyl
That is, the Bianchi identity says that the 7 part is zero, that the two 1's are
multiples of each other, and that the three 27’s reduce to just two independent
27's. Only the 1 and the two 27 components can be made into a 3-form.

Upshot: The only second order invariants from Rm which could appear for a
flow of Gy-structures are: Rg, Rico and Way.

Since 2 A
W27 = F“r ?Rg — g RiC(}7
we'll use Rg, Ricg and F.
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2nd order differential invariants of ¢ from VT

e In a similar way we can decompose VT € I'(T*M ® T?) into irreducible
Ga-representations and look for those 2nd order differential invariants which
can be made into a 3-form. There are many of these.
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2nd order differential invariants of ¢ from VT

e In a similar way we can decompose VT € I'(T*M ® T?) into irreducible
Ga-representations and look for those 2nd order differential invariants which
can be made into a 3-form. There are many of these.

e However, not all invariants obtained from Rm and VT are independent
because these quantities are related by the G,-Bianchi identity.
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2nd order differential invariants of ¢ from VT

e In a similar way we can decompose VT € I'(T*M ® T?) into irreducible
Ga-representations and look for those 2nd order differential invariants which
can be made into a 3-form. There are many of these.

e However, not all invariants obtained from Rm and VT are independent
because these quantities are related by the G,-Bianchi identity.

The G2-Bianchi identity is

a 1 a
Gai = ViTia = V;Tia = TaTisp"q = 5 Riabp"q = 0.

Ggij are the components of a tensor G € I'(T*M @ A?(T*M)), because Gg; is
skew in i, j ~+ decomposed into two components G’ + G*, where
G* e T(T*M ® A2(T*M)) for k = 7,14. Using the decompositions

707=102707014 and 7014=6402707T,

we can therefore decompose G = 0 into seven independent relations.

Doing all this, we prove the following lemma.
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All 2nd order differential invariants of ¢

Lemma (D.—Gianniotis—Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential
invariants of ¢ which can be made into a 3-form. The choices are

h = Rico,Rg,F,L1,g and X =div T,div T".

Note that T is the T-component of the torsion and
(div Tk = V' T, (div TH)x = V' T,/ are vector fields on M.
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All 2nd order differential invariants of ¢

Lemma (D.—Gianniotis—Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential
invariants of ¢ which can be made into a 3-form. The choices are

h = Rico,Rg,F,L1,g and X =div T,div T".

Note that T is the T-component of the torsion and
(div Tk = V' T, (div TH)x = V' T,/ are vector fields on M.

These h's and X's appear in the first variation of the L2-norm of the torsion
components, i.e, in %L:O fM | Ti|?vol, i =1,7,14,27. The formulas are:
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All 2nd order differential invariants of ¢

Lemma (D.—Gianniotis—Karigiannis, '23)

Up to lower order terms, there are 6 independent 2nd order differential
invariants of ¢ which can be made into a 3-form. The choices are

h = Rico,Rg,F,L1,g and X =div T,div T".

Note that T is the T-component of the torsion and
(div Tk = V' T, (div TH)x = V' T,/ are vector fields on M.

These h's and X's appear in the first variation of the L2-norm of the torsion
components, i.e, in %L:O fM | Ti|?vol, i =1,7,14,27. The formulas are:

% / | T1]* Vol = / hP((tr T)’gip — 2tr TT;) Vol
M M

- 2/ XP(tr T(T7), + (div T%),) Vol
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% /M | T7|* Vol = /M 6h" [(£T7g),-p + Reip + tr(T?)gip — (tr T)’gip + Tia Tia?™"gip
— | T+Pgip — 4( Tokew)is TS — 2 Trun T,-sw"’jf] Vol
+ / 6X9 [2(div T)q + 2(div T g + 2V, Trnth?7"
M
4 Tuew)pq T# + 2( Tz)p,,gopg] Vol
d , ,. 11 1 ) .
= /M | Tual? Vol = /M h”[R,—,, — S (L18)i— 3Fie — 6Rgin + 2T — (To T,
A1 Tyt = 2 Tons Tor0"7 0% — 2 i Tt )7
+ 12T Tat™5" + 24( Takew)is T,” + %| Tgip — % tr(T*)giv
+6(tr T)gip + 6| T+/°8ip — 6 Tia Tt Vol
—X° /M [13(div T)q + 13(div T")g — 24( Taew) g ( T7)°

—13(T2) ", — 12V, Tmnw"ﬂ"] Vol
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1

mn _si 5 .
%/ |T27\2Vo|:/ h® [,p+ S(Lr8)ip+ Ep+ Tmsansofsotp*frTTm
M

1 1 >
- 2Tkm(Tsym)pq¢’kTq —(To Tt)fp + §| T|2gfp + 2 tr(T)gip
1
— G T)Zg,-,,] Vol 2
. O /
— /M Xq |:(le T)q — ?(d|V Tt)q + Ts,@pq + ? tr T( T7)q

2
¥ ?(T7)”qu] Vol.
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1

d mn s 5
E ‘/,\‘/’ |T27‘2V0| = / h |: ip + (£T7g)lp + - ’:lp + = TmsTntSO i Y tp — ?tr TTP,'

. 1 1
- 2Tkm(Tsym)pq¢kiq —(To Tt)fp + §| T|2gr’p + D) tr( TQ)gip
1
— ?(tr T)Zg,-,,] Vol
- / 2 [(div T)q = g(diV Tt)q + Tsl@plq + g tr T(T7)q
M 7 7
2 P
+ (1) qu] Vol .

Thus, we are led to define the following family of flows of Ga-structures.
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Flows of G, structures

[Flows of G»-structures]

Let (M7, o) be a compact manifold. The general flow of Go-structures is
the initial value problem

8@ (R . . t
o (—Ric+alrg+ BF)op+ (bidivT + badiv T ) ) + I'o't('GGF)

©(0) = o
with a, 8, b1, b € R.

Remark: We do not put any condition on ¢ (like dp =0,d * ¢ =0 or
isometric).
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Flows of G, structures

[Flows of G»-structures]

Let (M7, o) be a compact manifold. The general flow of Go-structures is
the initial value problem

8(,0 (R . . t
9 = (—Ric+alrg+ BF)op+ (bidivT + badiv T ) ) + I'o't('GGF)

©(0) = o
with a, 8, b1, b € R.

Remark: We do not put any condition on ¢ (like dp =0,d * ¢ =0 or
isometric).

Special cases

e a=[f=b; = b, =0 and no l.o.t. gives the usual Ricci flow of
Ga-structures, i.e., a flow of Gy-structures which induce the Ricci flow of
metrics.
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Special cases contd.

aa—f = (—Ric+alrg+ BF)op+ (bidivT + bodiv T") 1 + lo.t.

e a=[=05b,=0, by =1 and no Ric and l.o.t term gives the
isometric/harmonic flow of Gy-structures 9:¢ = div T i) ~> negative
gradient flow of ¢ — [, |T|* Vol restricted to [[o]]iso- Analytic
properties well-understood and we have a monotonicity formula, entropy

functional, e-regularity theorem.
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gradient flow of ¢ — [, |T|* Vol restricted to [[o]]iso- Analytic
properties well-understood and we have a monotonicity formula, entropy
functional, e-regularity theorem.

e a= [ = b, =0 and no l.o.t. gives the Ricci flow coupled with the
isometric flow of G,-structures. We prove short-time existence and
uniqueness of solutions and one can get a priori estimates using Gao
Chen's arguments.
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e a=[=05b,=0, by =1 and no Ric and l.o.t term gives the
isometric/harmonic flow of Gy-structures 9:¢ = div T i) ~> negative
gradient flow of ¢ — [, |T|* Vol restricted to [[o]]iso- Analytic
properties well-understood and we have a monotonicity formula, entropy
functional, e-regularity theorem.

e a= [ = b, =0 and no l.o.t. gives the Ricci flow coupled with the
isometric flow of G,-structures. We prove short-time existence and
uniqueness of solutions and one can get a priori estimates using Gao
Chen's arguments.

ea=-1 8=0, by =1, b, =0 so we have

Orp = (—Ric—3Lr8) oo +div T+ Lo, ~ negative gradient flow

explicit

of ¢ — [,,|T|*Vol on all G,-structures. Studied by Weiss-Witt (2012).

We have short-time existence and uniqueness of solutions.
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Special cases contd.

aa—f = (—Ric+alrg+ BF)op+ (bidivT + bodiv T") 1 + lo.t.

e a=[=05b,=0, by =1 and no Ric and l.o.t term gives the
isometric/harmonic flow of Gy-structures 9:¢ = div T i) ~> negative
gradient flow of ¢ — [, |T|* Vol restricted to [[o]]iso- Analytic
properties well-understood and we have a monotonicity formula, entropy
functional, e-regularity theorem.

e a= [ = b, =0 and no l.o.t. gives the Ricci flow coupled with the
isometric flow of G,-structures. We prove short-time existence and
uniqueness of solutions and one can get a priori estimates using Gao
Chen's arguments.

ea=-1 8=0, by =1, b, =0 so we have

Orp = (—Ric—3Lr8) oo +div T+ Lo, ~ negative gradient flow

explicit

of ¢ — [,,|T|*Vol on all G,-structures. Studied by Weiss-Witt (2012).

We have short-time existence and uniqueness of solutions.

What can we say about the short-time existence and uniqueness of solutions of

(GGF) in general?
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Theorem (D.—Gianniotis—Karigiannis, '23)

Let (M, o) be a compact 7T-manifold with a G,-structure po. Then there
exists a unique p(t), t € [0,€), such that

82(:) = (— Ric+alr,g + BF)o @+ (bidivT + bydiv T") 10
(0) = o,

provided that 0 < by —a—1<4, b1+ b, > 1 and |B] < % where
c:l—%(bl—a—l).
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Theorem (D.—Gianniotis—Karigiannis, '23)

Let (M, o) be a compact 7T-manifold with a G,-structure po. Then there
exists a unique p(t), t € [0,€), such that

82(:) = (— Ric+alr,g + BF)o @+ (bidivT + bydiv T") 10

¢(0) = o,

provided that 0 < by —a—1<4, b1+ b, > 1 and |B] < % where
c:l—%(bl—a—l).

Idea of the proof:

e Let the RHS of (GGF) be P,. Calculate the principal symbols of the
operators involved: Ric, £7,g, F,div T,div T*. It turns out that

dim ker (o(DP,)(h, X)) > 7 because of diffeomorphism invariance of the
tensors involved.
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e We prove that dim ker (o(DP,)(h, X)) =7 and hence the failure of
parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors
involved. Remark: We needed to introduce a new operator to show this; we
have B; : 52(TX*M) — T M with Bi(h)x = &.h% — %fk tr h which is the usual
Bianchi operator in the Ricci-flow. We introduce B, : TyM — T, M by
Bo(X)k = €. Xbp™ and use both of these.

20/27



e We prove that dim ker (o(DP,)(h, X)) =7 and hence the failure of
parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors
involved. Remark: We needed to introduce a new operator to show this; we
have B; : 52(TX*M) — T M with Bi(h)x = &.h% — %fk tr h which is the usual
Bianchi operator in the Ricci-flow. We introduce B, : TyM — T, M by
Bo(X)k = €. Xbp™ and use both of these.

e Because of above, we can use the DeTurck'’s trick: look at the modified
operator P, + Lwy with W € ['(TM) given by

Wk = g¥ (r; - F,-ﬁ-) —2a(Ty)

where T are the Christoffel symbols w.r.t. a fixed background Gy-structure,
e.g., po.
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e We prove that dim ker (o(DP,)(h, X)) =7 and hence the failure of
parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors
involved. Remark: We needed to introduce a new operator to show this; we
have B; : 52(TX*M) — T M with Bi(h)x = &.h% — %fk tr h which is the usual
Bianchi operator in the Ricci-flow. We introduce B, : TyM — T, M by
Bo(X)k = €. Xbp™ and use both of these.

e Because of above, we can use the DeTurck'’s trick: look at the modified
operator P, + Lwy with W € ['(TM) given by

Wk = g¥ (r; - F,-ﬁ-) —2a(Ty)

where T are the Christoffel symbols w.r.t. a fixed background Gy-structure,
e.g., po.

e The symbol of P, + Lw is a multiple of Id and hence we can prove
short-time existence and uniqueness using DeTurck’s trick.
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Flows of Spin(7)-structures.
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We work on M? in this part.
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We work on M? in this part.

e A Spin(7)-structure on M® is given by ® € Q*(M) and the subgroup of
GL(8,R) preserving @ is the Lie group Spin(7) which is the double cover of
SO(7). The existence of such a structure is again a topological condition.

Like the Gz-case, ® induces a metric and volume form, nonlinearly.
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We work on M? in this part.

e A Spin(7)-structure on M® is given by ® € Q*(M) and the subgroup of
GL(8,R) preserving @ is the Lie group Spin(7) which is the double cover of
SO(7). The existence of such a structure is again a topological condition.
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Spin(7)-structure is a subbundle A called the bundle of admissible 4-forms.
This is not a vector subbundle and is not even an open subbundle. In fact, for
p € M, A, has codimension 27 in A*(T;M).

P=0a0, V=000 =0ee 0 0.
~652(M) 002
o The torsion tensor T € QF ® Q2 and is given in terms of V& as
1 .
Vet = %(vm(bajqu)bjk/)

and in fact, T can be viewed as a 3-form with T = Tg 4+ Tag with Tg being
identified as a vector field.
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On (M, ), any 4-form in Q1,735 can be described by a pair
(h,X), h e S*’(TM), X € Q3. From (Karigiannis, '07), any flow of
Spin(7)-structures can be written as
oP(t)
ot
Facts: Along the above flow,
Drg(t) = 2h(t), Deg(t)™* = —2h(t), ¢ vols = tr h(t)vol,.

= (h(t) + X(t)) o ®(1).
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Rmk: There is a 27-dim Weyl curvature tensor in this case as well, but that

cannot occur as a variation of Spin(7)-structures.

23/27



On (M, ), any 4-form in Q1,735 can be described by a pair
(h,X), h e S*’(TM), X € Q3. From (Karigiannis, '07), any flow of
Spin(7)-structures can be written as
oP(t)
ot
Facts: Along the above flow,
Drg(t) = 2h(t), Deg(t)™* = —2h(t), ¢ vols = tr h(t)vol,.

= (h(t) + X(t)) o ®(1).

Using similar strategies as in the Ga-case, we show that the only linearly
independent second order differential invariants of ® that can occur for a flow
of Spin(7)-structures are: Rico, Rg, Lr,g for h and (div T )., = V" Tpp.ap for
X.

Rmk: There is a 27-dim Weyl curvature tensor in this case as well, but that
cannot occur as a variation of Spin(7)-structures.

Since the above h and X all occur in the negative gradient flow of
E(®) = / | To|* volo (EF)
M

we look at this flow as this naturally gives us the lower order terms as well.
Also studied by Ammann—Weiss—Witt, '16 using spinorial approach (and more
generally by Collins—Phong.)
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Flows of Spin(7)-structures

Let (M8 &;) be a compact manifold. The negative gradient flow of (EF) is

the initial value problem

o . 2 i
5;__(-mc+X£ug)+(T*77—|T|g+2dWT)°¢’(Gsm

with (T * T); =8T,,;'T;,* —8T,;' Ty,> + 2T T,
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e The isometric flow of Spin(7)-structures 0:®(t) = div T ¢ ® studied by
D.-Loubeau—Sa’ Earp, '21 is a special case of (GSF).
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Let (M8 &;) be a compact manifold. The negative gradient flow of (EF) is

the initial value problem
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g (~Ric+2(Lrg) + (T+ )~ [TPg +2div T) o @, (GSF)

with (T * T); =8T,,'T;,® —8T,;' Ty,” + 2T T,.".

e The isometric flow of Spin(7)-structures 0:®(t) = div T ¢ ® studied by
D.-Loubeau—Sa’ Earp, '21 is a special case of (GSF).

Theorem (D., ’24)

Let (M®, &) be a compact 8-manifold with a Spin(7)-structure ®o. Then
there exists a unique ®(t), t € [0, ) which is a solution to (GSF).
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A soliton for (GSF) is a triple (®, Y, \) with Y € [(TM) and X € R such that

(—Rm+ﬂcﬁgy+T*TquFg+2va>o¢:A¢+cy¢

where (T * T); =8T,,'T;.,° — 8T,/ T, + 2T ;.
expanding~~ A\ > 0, steady~~ A\ < 0 and steady~~ A = 0.
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A soliton for (GSF) is a triple (®, Y, \) with Y € [(TM) and X € R such that

(—Rm+xcﬁgy+T*TquFg+2va>o¢:A¢+cy¢

where (T * T); =8T,,'T;.,° — 8T,/ T, + 2T ;.
expanding~~ A\ > 0, steady~~ A\ < 0 and steady~~ A = 0.

Lemma (D., '24)
Let (®, Y, \) be a soliton of the (GSF).
1. There are no compact expanding solitons.

2. The only compact steady solitons are given by torsion-free
Spin(7)-structures.
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Future Problems

e Find the flow with the “nicest” evolution of the torsion/norm of torsion. This
will involve the lower order terms as well. We have a "heat-type” equation for
T or | T|? along the negative gradient flow of o Ju | T|? Vol functional
(B=b=0,a= —%,bl =1 case).

e Examine the flows which might give some " preserved” conditions for the
torsion or closedness of certain tensors along the flow (e.g., strong
Gy T-structures as in A. Fino's talk).

e A monotone quantity, just like the case of the isometric flow and if possible,
an entropy functional, “smallness” of which guarantees long time existence.

e Examples of solutions and solitons.

e Dynamical stability of stationary points (e.g. torsion-free
G2/Spin(7)-structures ) along the flows considered here.
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Thank you for your attention.
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