
Geometric flows of G2 and Spin(7)-structures

Shubham Dwivedi

Humboldt-Universität zu Berlin

SCSHGAP meeting

Durham, NC

May 17, 2024

based on arXiv:2404.00870

and

arXiv:2311.05516 (joint work with P. Gianniotis & S. Karigiannis).

1 / 27



Overview

We study general flows of G2 and Spin(7)-structures. General here means no

conditions on the G2-structures ϕ (closed, co-closed, isometric etc.) and the

Spin(7)-structures Φ.

We find all the linearly independent second order differential invariants of a

G2/Spin(7)-structure, which can occur in a variation of G2/Spin(7)-structures.

We write the most general flow of G2/Spin(7)-structures and find sufficient

conditions for short-time existence and uniqueness (amenable to a DeTurck

type trick).
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Flows of G2-structures.
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Introduction to G2-structures

Throughout this part, we will be working on 7-dimensional manifolds.

A G2-structure on M7 is the reduction of the structure group of the frame

bundle Fr(M) from GL(7,R) to the Lie group G2 ≤ SO(7).

Definition

Let M7 be a smooth manifold. A G2 structure on M is a 3-form ϕ which is

nondegenerate.

Let X ,Y ∈ Γ(TM), then

(Xyϕ) ∧ (Y yϕ) ∧ ϕ = 6gϕ(X ,Y ) volϕ .

M7 admits G2-structures ⇐⇒ it is orientable and spinnable.

The space of nondegenerate (or positive) 3-forms Ω3
+ is an open subbundle of

Ω3.
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Introduction contd.

G2 structure ! “non-degenerate” 3-form ϕ gϕ and orientation nonlinearly.

Thus, we have a Hodge star operator ∗ϕ and dual 4-form ∗ϕϕ = ψ.

Definition

Let (M7, ϕ) be a manifold with a G2 structure ϕ and let ∇ be the Levi-Civita

connection of gϕ. We call (M, ϕ) a G2 manifold if ∇ϕ = 0. ∇ϕ is interpreted

as the torsion T of the G2 structure.

G2 manifolds, i.e., those having torsion-free G2 structure ϕ are always Ricci-flat

and have special holonomy contained in the Lie group G2 ⊂ SO(7).

In order to find second order differential invariants of ϕ, we need to understand

the decomposition of differential forms into irreducible G2-representations.
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Introduction contd.

On (M, ϕ), k-forms decompose further according to the irreducible G2

representations.

In particular,

Ω2 = Ω2
7 ⊕ Ω2

14, Ω3 = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27.

Ω2
7 = {Xyϕ | X ∈ Γ(TM)} = {β ∈ Ω2 | ∗(ϕ ∧ β) = 2β},

Ω2
14 = {β ∈ Ω2 | β ∧ ψ = 0} = {β ∈ Ω2 | ∗(ϕ ∧ β) = −β}

For σ ∈ Ωk and A = Aijdx
i ⊗ dx j ∈ T 2, we define

(A � σ)i1 i2···ik = A p
i1
σpi2···ik + A p

i2
σi1pi3···ik + · · ·+ A p

ik
σi1 i2···ik−1p,

so, e.g., g � σ = kσ and in particular (A � ϕ)ijk = A p
i ϕpjk + A p

j ϕipk + A p
k ϕijp.

Since T 2 ∼= Ω0 ⊕ S2
0 ⊕ Ω2

7 ⊕ Ω2
14, it can be proved that

A ∈ ker(· � ϕ) ⇐⇒ A ∈ Ω2
14 (∼= g2)

A 7→ A � ϕ is an isomorphism between S2 ⊕ Ω2
7 and Ω3.
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Introduction contd.

Thus, we can describe the 3-forms as

Ω3
1 = {f ϕ | f ∈ Ω0}, Ω3

7 = {A � ϕ | A ∈ Ω2
7} = {Xyψ | X ∈ Γ(TM)},

Ω3
27 = {A � ϕ | A ∈ S2

0}.

For A ∈ T 2, we set

(VA)k = Aijϕ
ij
k .

Only the Ω2
7 part of A contributes to VA, and we call it the vector part of A. In

fact,

A7 = 1
6
(VA)yϕ.

Thus on (M, ϕ), any 3-form can be equivalently described by a pair (h,X ) with

h a symmetric 2-tensor and X ∈ Γ(TM). We will write

γijk = (h � ϕ)ijk + (Xyψ)ijk = hp
i ϕpjk + hp

j ϕipk + hp
kϕimp + Xpψ

p
ijk .

for a 3-form γ.
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Torsion of a G2-structure

• The torsion T is a 2-tensor and is explicitly given as

Tpq =
1

24
∇pϕijkψ

ijk
q (ψ = ∗ϕϕ)

Since T ∈ T 2, it can be further decomposed as T = T1 + T7 + T14 + T27.

• T satisfies a “Bianchi”-type identity (Karigiannis ’09)

∇iTjk −∇jTik = TiaTjbϕ
bk

a +
1

2
Rijabϕ

ab
k .

We expect this as φ∗(Tϕ) = Tφ∗ϕ for any diffeo. φ (and also by commuting

two derivatives on ϕ). We crucially use this for some of our results.

Theorem (Fernàndez–Gray)

(M, ϕ) is torsion-free, i.e., T = 0 (⇐⇒ ∇ϕ = 0) if and only if

dϕ = dψ = 0.
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Flows of G2-structures

Suppose (M7, ϕ) is a compact manifold with a G2 structure.

A geometric flow is an evolution equation which improves a geometric

structure, starting from a given one.

Given a G2 structure (not necessarily torsion-free), it is natural to attempt to

improve it in some sense to a “better” G2 structure (for instance, torsion-free)

by using a geometric flow. (Compare: Ricci flow of metrics; mean curvature

flow of immersions.)
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Flows of G2-structures...a brief history

• General study of flows of G2 structures - Karigiannis, ’09

D.–Gianniotis–Karigiannis, ’23

Weiss–Witt, ’12

• Laplacian flow of closed G2 structures - Bryant, ’05, Bryant–Xu, ’11

( ∂ϕ
∂t

= ∆ϕϕ, dϕ = 0) Lotay–Wei, ’15

• Laplacian co-flow of co-closed G2 structures - Karigiannis–McKay–Tsui, ’12

( ∂ψ
∂t

= ∆ϕψ, dψ = 0)

• Modified Laplacian co-flow of co-closed G2 structures - Grigorian,’13

( ∂ψ
∂t

= ∆ϕψ + d(( A︸︷︷︸
constant

− trT )ϕ), dψ = 0)

• Isometric Flow of G2-structures- D.–Gianniotis–Karigiannis ’19, Grigorian, ’19,

Loubeau–Sá Earp, ’19

( ∂ϕ
∂t

= divTyψ, on {ϕ | gϕ = gϕ0})
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Flows of G2-structures

Recall that on (M, ϕ), any 3-form can be described by a pair

(h,X ), h ∈ S2(TM), X ∈ Γ(TM). Thus, any flow of G2-structures can be

written as
∂ϕ(t)

∂t
= (h(t) �t ϕ(t)) + X (t)yψ(t). (GF)

Facts: Along (GF), ∂tg(t) = 2h(t), ∂tg(t)−1 = −2h(t), ∂t volt = tr h(t) volt .

One possible approach to write the most general (and reasonable) flow of

G2-structures is to classify all linearly independent second order differential

invariants of a G2-structure (upto lower order terms) which are invariant under

diffeomorphisms and then take a linear combination of those which can be

made into a 3-form.

We use representation theoretic aspects of the Lie group G2 to decompose the

Riemann curvature tensor Rm and ∇T .
Definition On (M, ϕ) ∃ another Ricci-type tensor F given explicitly as

Fjk = Rabcdϕ
ab
jϕ

cd
k =︸︷︷︸
symm.of Rm

Rcdabϕ
ab
jϕ

cd
k = Fkj .

tr(F ) = −2R,R =scalar curvature. F has another geometric interpretation.
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2nd order differential invariants of ϕ from Rm

The curvature decomposition is

S2(Λ2) = S2(7⊕ 14) = S2(7)⊕ (7⊗ 14)⊕ S2(14)

which can be further decomposed into irreducible G2-representations as

(1⊕ 27)⊕ (64⊕ 7⊕ 27)⊕ (77⊕ 1⊕ 27).

However, it must be orthogonal to Λ4 = 1⊕ 7⊕ 27 by the first Bianchi

identity. This cuts down the curvature to an element of

1⊕ 27︸ ︷︷ ︸
Ricci

⊕ 27⊕ 64⊕ 77︸ ︷︷ ︸
Weyl

.

That is, the Bianchi identity says that the 7 part is zero, that the two 1’s are

multiples of each other, and that the three 27’s reduce to just two independent

27’s. Only the 1 and the two 27 components can be made into a 3-form.

Upshot: The only second order invariants from Rm which could appear for a

flow of G2-structures are: Rg , Ric0 and W27.

Since

W27 = F +
2

7
Rg − 4

5
Ric0,

we’ll use Rg ,Ric0 and F .
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2nd order differential invariants of ϕ from ∇T

• In a similar way we can decompose ∇T ∈ Γ(T ∗M ⊗ T 2) into irreducible

G2-representations and look for those 2nd order differential invariants which

can be made into a 3-form. There are many of these.

• However, not all invariants obtained from Rm and ∇T are independent

because these quantities are related by the G2-Bianchi identity.

The G2-Bianchi identity is

Gqij = ∇iTjq −∇jTiq − TiaTjbϕ
ab
q −

1

2
Rijabϕ

ab
q = 0.

Gqij are the components of a tensor G ∈ Γ(T ∗M ⊗ Λ2(T ∗M)), because Gqij is

skew in i , j  decomposed into two components G 7 + G 14, where

G k ∈ Γ(T ∗M ⊗ Λ2
k(T ∗M)) for k = 7, 14. Using the decompositions

7⊗ 7 = 1⊕ 27⊕ 7⊕ 14 and 7⊗ 14 = 64⊕ 27⊕ 7,

we can therefore decompose G = 0 into seven independent relations.

Doing all this, we prove the following lemma.
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All 2nd order differential invariants of ϕ

Lemma (D.–Gianniotis–Karigiannis, ’23)

Up to lower order terms, there are 6 independent 2nd order differential

invariants of ϕ which can be made into a 3-form. The choices are

h = Ric0,Rg ,F ,LT7g and X = divT , divT t .

Note that T7 is the 7-component of the torsion and

(divT )k = ∇iTik , (divT t)k = ∇iT i
k are vector fields on M.

These h’s and X ’s appear in the first variation of the L2-norm of the torsion

components, i.e, in d
dt

∣∣
t=0

∫
M
|Ti |2 vol, i = 1, 7, 14, 27. The formulas are:

d

dt

∫
M

|T1|2 Vol =

∫
M

hip((trT )2gip − 2 trTTip) Vol

− 2

∫
M

X p(trT (T7)p + (divT t)p) Vol
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d

dt

∫
M

|T7|2 Vol =

∫
M

6hip
[
(LT7g)ip + Rgip + tr(T 2)gip − (trT )2gip + TlaTjqψ

lajqgip

− |T7|2gip − 4(Tskew)isT
s
p − 2TmnTisψ

mns
p

]
Vol

+

∫
M

6X q
[
2(divT )q + 2(divT t)q + 2∇pTmnψ

pmn
q

+ 4(Tskew)pqT7
p + 2(T 2)pnϕ

pn
q

]
Vol

d

dt

∫
M

|T14|2 Vol =

∫
M

hip
[
Rip −

11

2
(LT7g)ip −

1

4
Fip − 6Rgip + 2(T 2)pi − (T ◦ T t)ip

− trTTpi −
1

2
TmsTntϕ

mn
i ϕ

st
p − 2Tkm(Tskew)pqψ

kmq
i

+ 12TmnTisψ
mns
p + 24(Tskew)isT

s
p +

1

2
|T |2gip −

13

2
tr(T 2)gip

+ 6(trT )2gip + 6|T7|2gip − 6TlaTjqψ
lpjqgip

]
Vol

− X q

∫
M

[
13(divT )q + 13(divT t)q − 24(Tskew)pq(T7)p

− 13(T 2)plϕ
pl
q − 12∇pTmnψ

pmn
q

]
Vol

15 / 27



d

dt

∫
M

|T27|2 Vol =

∫
M

hip
[
Rip +

1

2
(LT7g)ip +

1

4
Fip +

1

2
TmsTntϕ

mn
i ϕ

st
p −

5

7
trTTpi

− 2Tkm(Tsym)pqψ
kmq
i − (T ◦ T t)ip +

1

2
|T |2gip +

1

2
tr(T 2)gip

− 1

7
(trT )2gip

]
Vol

−
∫
M

X q
[
(divT )q −

9

7
(divT t)q + T 2

plϕ
pl
q +

2

7
trT (T7)q

+
2

7
(T7)pTqp

]
Vol .

Thus, we are led to define the following family of flows of G2-structures.
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Flows of G2 structures

[Flows of G2-structures]

Let (M7, ϕ0) be a compact manifold. The general flow of G2-structures is

the initial value problem

∂ϕ

∂t
= (−Ric +aLT7g + βF ) � ϕ+ (b1 divT + b2 divT t)yψ + l.o.t.

ϕ(0) = ϕ0

(GGF)

with a, β, b1, b2 ∈ R.

Remark: We do not put any condition on ϕ (like dϕ = 0, d ∗ ϕ = 0 or

isometric).

Special cases

• a = β = b1 = b2 = 0 and no l.o.t. gives the usual Ricci flow of

G2-structures, i.e., a flow of G2-structures which induce the Ricci flow of

metrics.
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Special cases contd.

∂ϕ
∂t

= (−Ric +aLT7g + βF ) � ϕ+ (b1 divT + b2 divT t)yψ + l.o.t.

• a = β = b2 = 0, b1 = 1 and no Ric and l.o.t term gives the

isometric/harmonic flow of G2-structures ∂tϕ = divTyψ  negative

gradient flow of ϕ 7→
∫
M
|T |2 Vol restricted to [[ϕ0]]iso. Analytic

properties well-understood and we have a monotonicity formula, entropy

functional, ε-regularity theorem.

• a = β = b2 = 0 and no l.o.t. gives the Ricci flow coupled with the

isometric flow of G2-structures. We prove short-time existence and

uniqueness of solutions and one can get a priori estimates using Gao

Chen’s arguments.

• a = − 1
2
, β = 0, b1 = 1, b2 = 0 so we have

∂tϕ = (−Ric− 1
2
LT7g) � ϕ+ divTyψ + l.o.t.︸︷︷︸

explicit

 negative gradient flow

of ϕ 7→
∫
M
|T |2 Vol on all G2-structures. Studied by Weiss–Witt (2012).

We have short-time existence and uniqueness of solutions.

What can we say about the short-time existence and uniqueness of solutions of

(GGF) in general?
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Main Theorem

Theorem (D.–Gianniotis–Karigiannis, ’23)

Let (M, ϕ0) be a compact 7-manifold with a G2-structure ϕ0. Then there

exists a unique ϕ(t), t ∈ [0, ε), such that

∂ϕ(t)

∂t
= (−Ric +aLT7g + βF ) � ϕ+ (b1 divT + b2 divT t)yψ

ϕ(0) = ϕ0,

provided that 0 ≤ b1 − a− 1 < 4, b1 + b2 ≥ 1 and |β| < c

4
, where

c = 1− 1
4
(b1 − a− 1).

Idea of the proof:

• Let the RHS of (GGF) be Pϕ. Calculate the principal symbols of the

operators involved: Ric,LT7g ,F , divT , divT t . It turns out that

dim ker (σ(DPϕ)(h,X )) ≥ 7 because of diffeomorphism invariance of the

tensors involved.
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Proof contd.

• We prove that dim ker (σ(DPϕ)(h,X )) = 7 and hence the failure of

parabolicity of (GGF) is only due to diffeomorphism invariance of the tensors

involved. Remark: We needed to introduce a new operator to show this; we

have B1 : S2(T ∗
x M)→ T ∗

x M with B1(h)k = ξah
a
k − 1

2
ξk tr h which is the usual

Bianchi operator in the Ricci-flow. We introduce B2 : T ∗
x M → T ∗

x M by

B2(X )k = ξaXbϕ
ab
k and use both of these.

• Because of above, we can use the DeTurck’s trick: look at the modified

operator Pϕ + LWϕ with W ∈ Γ(TM) given by

W k = g ij
(

Γk
ij − Γ̄k

ij

)
− 2a(T7)k

where Γ̄ are the Christoffel symbols w.r.t. a fixed background G2-structure,

e.g., ϕ0.

• The symbol of Pϕ + LWϕ is a multiple of Id and hence we can prove

short-time existence and uniqueness using DeTurck’s trick.
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Flows of Spin(7)-structures.
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We work on M8 in this part.

• A Spin(7)-structure on M8 is given by Φ ∈ Ω4(M) and the subgroup of

GL(8,R) preserving Φ is the Lie group Spin(7) which is the double cover of

SO(7). The existence of such a structure is again a topological condition.

Like the G2-case, Φ induces a metric and volume form, nonlinearly.

• Unlike the G2-case, the space of 4-forms Φ on M which determine a

Spin(7)-structure is a subbundle A called the bundle of admissible 4-forms.

This is not a vector subbundle and is not even an open subbundle. In fact, for

p ∈ M, Ap has codimension 27 in Λ4(T ∗
p M).

Ω2 = Ω2
7 ⊕ Ω2

21, Ω3 = Ω3
8 ⊕ Ω3

48, Ω4 = Ω4
1 ⊕ Ω4

35︸ ︷︷ ︸
∼=�S2(M)

⊕ Ω4
7︸︷︷︸

∼=�Ω2
7

⊕Ω4
27.

• The torsion tensor T ∈ Ω1
8 ⊗ Ω2

7 and is given in terms of ∇Φ as

Tm;ab =
1

96
(∇mΦajklΦ

jkl
b )

and in fact, T can be viewed as a 3-form with T = T8 + T48 with T8 being

identified as a vector field.

22 / 27



We work on M8 in this part.

• A Spin(7)-structure on M8 is given by Φ ∈ Ω4(M) and the subgroup of

GL(8,R) preserving Φ is the Lie group Spin(7) which is the double cover of

SO(7). The existence of such a structure is again a topological condition.

Like the G2-case, Φ induces a metric and volume form, nonlinearly.

• Unlike the G2-case, the space of 4-forms Φ on M which determine a

Spin(7)-structure is a subbundle A called the bundle of admissible 4-forms.

This is not a vector subbundle and is not even an open subbundle. In fact, for

p ∈ M, Ap has codimension 27 in Λ4(T ∗
p M).

Ω2 = Ω2
7 ⊕ Ω2

21, Ω3 = Ω3
8 ⊕ Ω3

48, Ω4 = Ω4
1 ⊕ Ω4

35︸ ︷︷ ︸
∼=�S2(M)

⊕ Ω4
7︸︷︷︸

∼=�Ω2
7

⊕Ω4
27.

• The torsion tensor T ∈ Ω1
8 ⊗ Ω2

7 and is given in terms of ∇Φ as

Tm;ab =
1

96
(∇mΦajklΦ

jkl
b )

and in fact, T can be viewed as a 3-form with T = T8 + T48 with T8 being

identified as a vector field.

22 / 27



We work on M8 in this part.

• A Spin(7)-structure on M8 is given by Φ ∈ Ω4(M) and the subgroup of

GL(8,R) preserving Φ is the Lie group Spin(7) which is the double cover of

SO(7). The existence of such a structure is again a topological condition.

Like the G2-case, Φ induces a metric and volume form, nonlinearly.

• Unlike the G2-case, the space of 4-forms Φ on M which determine a

Spin(7)-structure is a subbundle A called the bundle of admissible 4-forms.

This is not a vector subbundle and is not even an open subbundle. In fact, for

p ∈ M, Ap has codimension 27 in Λ4(T ∗
p M).

Ω2 = Ω2
7 ⊕ Ω2

21, Ω3 = Ω3
8 ⊕ Ω3

48, Ω4 = Ω4
1 ⊕ Ω4

35︸ ︷︷ ︸
∼=�S2(M)

⊕ Ω4
7︸︷︷︸

∼=�Ω2
7

⊕Ω4
27.

• The torsion tensor T ∈ Ω1
8 ⊗ Ω2

7 and is given in terms of ∇Φ as

Tm;ab =
1

96
(∇mΦajklΦ

jkl
b )

and in fact, T can be viewed as a 3-form with T = T8 + T48 with T8 being

identified as a vector field.

22 / 27



We work on M8 in this part.

• A Spin(7)-structure on M8 is given by Φ ∈ Ω4(M) and the subgroup of

GL(8,R) preserving Φ is the Lie group Spin(7) which is the double cover of

SO(7). The existence of such a structure is again a topological condition.

Like the G2-case, Φ induces a metric and volume form, nonlinearly.

• Unlike the G2-case, the space of 4-forms Φ on M which determine a

Spin(7)-structure is a subbundle A called the bundle of admissible 4-forms.

This is not a vector subbundle and is not even an open subbundle. In fact, for

p ∈ M, Ap has codimension 27 in Λ4(T ∗
p M).

Ω2 = Ω2
7 ⊕ Ω2

21, Ω3 = Ω3
8 ⊕ Ω3

48, Ω4 = Ω4
1 ⊕ Ω4

35︸ ︷︷ ︸
∼=�S2(M)

⊕ Ω4
7︸︷︷︸

∼=�Ω2
7

⊕Ω4
27.

• The torsion tensor T ∈ Ω1
8 ⊗ Ω2

7 and is given in terms of ∇Φ as

Tm;ab =
1

96
(∇mΦajklΦ

jkl
b )

and in fact, T can be viewed as a 3-form with T = T8 + T48 with T8 being

identified as a vector field.

22 / 27



We work on M8 in this part.

• A Spin(7)-structure on M8 is given by Φ ∈ Ω4(M) and the subgroup of

GL(8,R) preserving Φ is the Lie group Spin(7) which is the double cover of

SO(7). The existence of such a structure is again a topological condition.

Like the G2-case, Φ induces a metric and volume form, nonlinearly.

• Unlike the G2-case, the space of 4-forms Φ on M which determine a

Spin(7)-structure is a subbundle A called the bundle of admissible 4-forms.

This is not a vector subbundle and is not even an open subbundle. In fact, for

p ∈ M, Ap has codimension 27 in Λ4(T ∗
p M).

Ω2 = Ω2
7 ⊕ Ω2

21, Ω3 = Ω3
8 ⊕ Ω3

48, Ω4 = Ω4
1 ⊕ Ω4

35︸ ︷︷ ︸
∼=�S2(M)

⊕ Ω4
7︸︷︷︸

∼=�Ω2
7

⊕Ω4
27.

• The torsion tensor T ∈ Ω1
8 ⊗ Ω2

7 and is given in terms of ∇Φ as

Tm;ab =
1

96
(∇mΦajklΦ

jkl
b )

and in fact, T can be viewed as a 3-form with T = T8 + T48 with T8 being

identified as a vector field.
22 / 27



On (M, ϕ), any 4-form in Ω4
1+7+35 can be described by a pair

(h,X ), h ∈ S2(TM), X ∈ Ω2
7. From (Karigiannis, ’07), any flow of

Spin(7)-structures can be written as

∂Φ(t)

∂t
= (h(t) + X (t)) �t Φ(t).

Facts: Along the above flow,

∂tg(t) = 2h(t), ∂tg(t)−1 = −2h(t), ∂t volt = tr h(t) volt .

Using similar strategies as in the G2-case, we show that the only linearly

independent second order differential invariants of Φ that can occur for a flow

of Spin(7)-structures are: Ric0, Rg , LT8g for h and (divT )ab = ∇mTm;ab for

X .

Rmk: There is a 27-dim Weyl curvature tensor in this case as well, but that

cannot occur as a variation of Spin(7)-structures.

Since the above h and X all occur in the negative gradient flow of

E(Φ) =

∫
M

|TΦ|2 volΦ (EF)

we look at this flow as this naturally gives us the lower order terms as well.

Also studied by Ammann–Weiss–Witt, ’16 using spinorial approach (and more

generally by Collins–Phong.)
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Flows of Spin(7)-structures

Let (M8,Φ0) be a compact manifold. The negative gradient flow of (EF) is

the initial value problem

∂Φ

∂t
=
(
−Ric +2(LT8g) + (T ∗ T )− |T |2g + 2 divT

)
� Φ,

Φ(0) = Φ0.

(GSF)

with (T ∗ T )ij = 8T l
b;i T

b
j ;l − 8T l

j ;i T
b

b;l + 2Ti ;lbT
lb

j ; .

• The isometric flow of Spin(7)-structures ∂tΦ(t) = divT � Φ studied by

D.–Loubeau–Sa’ Earp, ’21 is a special case of (GSF).

Theorem (D., ’24)

Let (M8,Φ0) be a compact 8-manifold with a Spin(7)-structure Φ0. Then

there exists a unique Φ(t), t ∈ [0, ε) which is a solution to (GSF).
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Solitons

A soliton for (GSF) is a triple (Φ,Y , λ) with Y ∈ Γ(TM) and λ ∈ R such that(
−Ric +2(LT8g) + T ∗ T − |T |2g + 2 divT

)
� Φ = λΦ + LY Φ

where (T ∗ T )ij = 8T l
b;i T

b
j ;l − 8T l

j ;i T
b

b;l + 2Ti ;lbT
lb

j ; .

expanding λ > 0, steady λ < 0 and steady λ = 0.

Lemma (D., ’24)

Let (Φ,Y , λ) be a soliton of the (GSF).

1. There are no compact expanding solitons.

2. The only compact steady solitons are given by torsion-free

Spin(7)-structures.
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Future Problems

• Find the flow with the “nicest” evolution of the torsion/norm of torsion. This

will involve the lower order terms as well. We have a ”heat-type” equation for

T or |T |2 along the negative gradient flow of ϕ 7→
∫
M
|T |2 Vol functional

(β = b2 = 0, a = − 1
2
, b1 = 1 case).

• Examine the flows which might give some ”preserved” conditions for the

torsion or closedness of certain tensors along the flow (e.g., strong

G2T-structures as in A. Fino’s talk).

• A monotone quantity, just like the case of the isometric flow and if possible,

an entropy functional, “smallness” of which guarantees long time existence.

• Examples of solutions and solitons.

• Dynamical stability of stationary points (e.g. torsion-free

G2/Spin(7)-structures ) along the flows considered here.
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Thank you for your attention.
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