On the Donaldson-Scaduto conjecture

Saman Habibi Esfahani (Duke University)
based on arXiv:2401.15432
joint with Yang Li (MIT)

SCSHGAP meeting, 16 May, 2024

Introduction

- Donaldson initiated a program to study G_{2}-manifolds with coassociative $K 3$ fibrations

$$
\pi: M^{\top} \rightarrow B^{3},
$$

in the adiabatic limit where the diameters of the K3 fibers shrink to zero.

Introduction

- Donaldson initiated a program to study G_{2}-manifolds with coassociative $K 3$ fibrations

$$
\pi: M^{7} \rightarrow B^{3}
$$

in the adiabatic limit where the diameters of the K3 fibers shrink to zero.

- Local Model, away from singularities,

$$
M^{7} \approx K 3 \times \mathbb{R}^{3} .
$$

Conjecture

- Goal: Describe associative submanifolds in M^{7}.

Conjecture

- Goal: Describe associative submanifolds in M^{7}.
- Donaldson-Scaduto: description of associative submanifolds in the adiabatic limit.

Conjecture

- Goal: Describe associative submanifolds in M^{7}.
- Donaldson-Scaduto: description of associative submanifolds in the adiabatic limit.

Figure 1: Local diagram of gradient cycle Γ which has one univalent vertex terminating at the link L.

Conjecture

- In search of the building block pair of pants!

Donaldson-Scaduto conjecture

From "Associative submanifolds and gradient cycles" by Donaldson and Scaduto,
Conjecture 1 Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be -2 classes on the K3 manifold X with $\alpha_{1}+\alpha_{2}+\alpha_{3}=0$. Let $\mathbf{R}^{3}=H \subset H^{2}(X)$ be a maximal positive subspace corresponding to a hyperkähler structure and v_{i} be the projection of α_{i} to H. Assume that the $\left(\alpha_{i}, H\right)$ are irreducible. Then there is an associative submanifold $\Pi \subset X \times \mathbf{R}^{3}$ with three ends asymptotic to $\Sigma_{i} \times \mathbf{R}^{+} v_{i}$ where Σ_{i} is the complex curve representing α_{i}, for the complex structure defined by v_{i}, and Π is unique up to the translations of \mathbf{R}^{3}.

Donaldson-Scaduto conjecture

From "Associative submanifolds and gradient cycles" by Donaldson and Scaduto,
Conjecture 1 Let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be -2 classes on the K3 manifold X with $\alpha_{1}+\alpha_{2}+\alpha_{3}=0$. Let $\mathbf{R}^{3}=H \subset H^{2}(X)$ be a maximal positive subspace corresponding to a hyperkähler structure and v_{i} be the projection of α_{i} to H. Assume that the $\left(\alpha_{i}, H\right)$ are irreducible. Then there is an associative submanifold $\Pi \subset X \times \mathbf{R}^{3}$ with three ends asymptotic to $\Sigma_{i} \times \mathbf{R}^{+} v_{i}$ where Σ_{i} is the complex curve representing α_{i}, for the complex structure defined by v_{i}, and Π is unique up to the translations of \mathbf{R}^{3}.

Donaldson-Scaduto conjecture.

Gluing

- A plumbing conjecture:

Local Donaldson-Scaduto conjecture

- Local Donaldson-Scaduto conjecture:

The K3 surface is replaced with an A2-type ALE hyperkähler manifold $X_{A_{2}}$.

Local Donaldson-Scaduto conjecture

- Local Donaldson-Scaduto conjecture:

The K3 surface is replaced with an A2-type ALE hyperkähler manifold $X_{A_{2}}$.

- Idea: the non-compact manifold $X_{A_{2}}$ can be emebedded in a Kummer $K 3$ surface + deformation theory \rightarrow global Donaldson-Scaduto conjecture for an open subset of moduli space of $K 3$ surfaces.

Local Donaldson-Scaduto conjecture

- Local Donaldson-Scaduto conjecture. There exists a $U(1)$-invariant associative submanifold $L \subset X_{A_{2}} \times \mathbb{R}^{3}$ homeomorphic to a three-holed 3-sphere, with three ends asymptotic to the associative cylinders.

Gluing

- Features of the conjecture:
(1) Compactness with respect to the deformation of the hyperkähler structure of X.
(2) Relevance to the Joyce conjecture.
- Theorem (E-Yang Li) Local Donaldson-Scaduto conjecture holds.
II. The model Calabi-Yau 3-fold

Model

- The conjectured associative can be interpreted as a special Lagrangian

$$
L \subset X \times \mathbb{R}^{2} \subset X \times \mathbb{R}^{3}
$$

Hyperkähler 4-manifolds

- Smooth real 4-dimensional manifold $\left(X, g_{X}, I, J, K\right)$,

Hyperkähler 4-manifolds

- Smooth real 4-dimensional manifold $\left(X, g_{X}, I, J, K\right)$,
- complex structures $I, J, K: T X \rightarrow T X$ such that $I^{2}=J^{2}=K^{2}=-I d_{T X}$ and $I J=K$,

Hyperkähler 4-manifolds

- Smooth real 4-dimensional manifold (X, g_{X}, I, J, K),
- complex structures $I, J, K: T X \rightarrow T X$ such that $I^{2}=J^{2}=K^{2}=-I d_{T X}$ and $I J=K$,
- symplectic structures $\omega_{1}, \omega_{2}, \omega_{3} \in \Omega^{2}(X)$, closed non-degenerate 2 -forms,

$$
g(u, v)=\omega_{1}(u, I v), \quad g(u, v)=\omega_{2}(u, J v), \quad g(u, v)=\omega_{3}(u, K v)
$$

Hyperkähler 4-manifolds

- Smooth real 4-dimensional manifold (X, g_{X}, I, J, K),
- complex structures $I, J, K: T X \rightarrow T X$ such that $I^{2}=J^{2}=K^{2}=-I d_{T X}$ and $I J=K$,
- symplectic structures $\omega_{1}, \omega_{2}, \omega_{3} \in \Omega^{2}(X)$, closed non-degenerate 2 -forms,

$$
g(u, v)=\omega_{1}(u, I v), \quad g(u, v)=\omega_{2}(u, J v), \quad g(u, v)=\omega_{3}(u, K v)
$$

- Kodaira: Any compact hyperkähler 4-manifold is either a K3 surface or a torus \mathbb{T}^{4}.

Hyperkühler 4-manifolds

- Hyperkähler 4-manifold (X, g_{X}, I, J, K).

Hyperkühler 4-manifolds

- Hyperkähler 4-manifold $\left(X, g_{X}, I, J, K\right)$.
- For any $(a, b, c) \in S^{2} \subset \mathbb{R}^{3}$ with $a^{2}+b^{2}+c^{2}=1$, complex structure: $a l+b J+c K$, symplectic structure: $a \omega_{1}+b \omega_{2}+c \omega_{3}$.

Hyperkähler 4-manifolds

- Hyperkähler 4-manifold $\left(X, g_{X}, I, J, K\right)$.
- For any $(a, b, c) \in S^{2} \subset \mathbb{R}^{3}$ with $a^{2}+b^{2}+c^{2}=1$, complex structure: $a l+b J+c K$, symplectic structure: $a \omega_{1}+b \omega_{2}+c \omega_{3}$.
- There is a 2-sphere family of complex structures on X.

Gibbons-Hawking

- Gibbons-Hawking spaces: non-compact hyperkähler 4-manifolds.

Gibbons-Hawking

- Gibbons-Hawking spaces: non-compact hyperkähler 4-manifolds.
- Let p_{1}, \ldots, p_{n} be n points in \mathbb{R}^{3}.

Gibbons-Hawking

- Gibbons-Hawking spaces: non-compact hyperkähler 4-manifolds.
- Let p_{1}, \ldots, p_{n} be n points in \mathbb{R}^{3}.
- $U(1)$-bundle $\pi: X \rightarrow \mathbb{R}^{3} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

Gibbons-Hawking

- Gibbons-Hawking spaces: non-compact hyperkähler 4-manifolds.
- Let p_{1}, \ldots, p_{n} be n points in \mathbb{R}^{3}.
- $U(1)$-bundle $\pi: X \rightarrow \mathbb{R}^{3} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

Gibbons-Hawking

- Gibbons-Hawking Ansatz: non-compact hyperkähler 4-manifolds.
- Let p_{1}, \ldots, p_{n} be n points in \mathbb{R}^{3}.
- X a $U(1)$-bundle over $\mathbb{R}^{3} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$.

Gibbons-Hawking

- Let $\pi: X \rightarrow \mathbb{R}^{3} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ be a $U(1)$-bundle.

Gibbons-Hawking

- Let $\pi: X \rightarrow \mathbb{R}^{3} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ be a $U(1)$-bundle.
- Let $V: \mathbb{R}^{3} \backslash\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \rightarrow \mathbb{R}$ be the positive harmonic function $V\left(u_{1}, u_{2}, u_{3}\right)=A+\sum_{i=1}^{n} \frac{1}{2\left|u-p_{i}\right|}, \quad u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}, \quad A=$ constant ≥ 0.

Gibbons-Hawking

- Let $\pi: X \rightarrow \mathbb{R}^{3} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ be a $U(1)$-bundle.
- Let $V: \mathbb{R}^{3} \backslash\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \rightarrow \mathbb{R}$ be the positive harmonic function $V\left(u_{1}, u_{2}, u_{3}\right)=A+\sum_{i=1}^{n} \frac{1}{2\left|u-p_{i}\right|}, \quad u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}, \quad A=$ constant ≥ 0.
- symplectic forms
$\omega_{1}=\theta \wedge d u_{1}+V d u_{2} \wedge d u_{3}, \quad \omega_{2}=\theta \wedge d u_{2}+V d u_{3} \wedge d u_{1}, \quad \omega_{3}=\theta \wedge d u_{3}+V d u_{1} \wedge d u_{2}$,

Gibbons-Hawking

- Let $\pi: X \rightarrow \mathbb{R}^{3} \backslash\left\{p_{1}, \ldots, p_{n}\right\}$ be a $U(1)$-bundle.
- Let $V: \mathbb{R}^{3} \backslash\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \rightarrow \mathbb{R}$ be the positive harmonic function $V\left(u_{1}, u_{2}, u_{3}\right)=A+\sum_{i=1}^{n} \frac{1}{2\left|u-p_{i}\right|}, \quad u=\left(u_{1}, u_{2}, u_{3}\right) \in \mathbb{R}^{3}, \quad A=$ constant ≥ 0.
- symplectic forms
$\omega_{1}=\theta \wedge d u_{1}+V d u_{2} \wedge d u_{3}, \quad \omega_{2}=\theta \wedge d u_{2}+V d u_{3} \wedge d u_{1}, \quad \omega_{3}=\theta \wedge d u_{3}+V d u_{1} \wedge d u_{2}$,
- The metric is given by $g_{X}=V^{-1} \theta^{2}+V \sum_{i=1}^{3} d u_{i}^{2}$.

Gibbons-Hawking

- A_{2} type ALE hyperkähler manifold $X_{A_{2}}$: let $n=3$ and $V=\sum_{i=1}^{3} \frac{1}{2\left|u-p_{i}\right|}$.
- Three 2-sphere $\Sigma_{i}:=\pi^{-1}\left[p_{i}, p_{i+1}\right] \subset X$ is holomorphic.

Model Calabi-Yau 3-folds

- Let $X=$ hyperkähler 4-manifold.

Model Calabi-Yau 3-folds

- Let $X=$ hyperkähler 4-manifold.
- Let $Z=X \times \mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.

Model Calabi-Yau 3-folds

- Let $X=$ hyperkähler 4-manifold.
- Let $Z=X \times \mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.
- Z is a Calabi-Yau 3-fold.

Model Calabi-Yau 3-folds

- Let $X=$ hyperkähler 4-manifold.
- Let $Z=X \times \mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.
- Z is a Calabi-Yau 3-fold.
- Product Calabi-Yau structure

$$
g_{z}=g_{X}+g_{\mathbb{R}^{2}}, \quad \omega=\omega_{3}+d y_{2} \wedge d y_{1}, \quad \Omega=\left(\omega_{1}+i \omega_{2}\right) \wedge\left(d y_{2}+i d y_{1}\right)
$$

Model Calabi-Yau 3-folds

- Let $X=$ hyperkähler 4-manifold.
- Let $Z=X \times \mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.
- Z is a Calabi-Yau 3-fold.
- Product Calabi-Yau structure

$$
g_{z}=g_{X}+g_{\mathbb{R}^{2}}, \quad \omega=\omega_{3}+d y_{2} \wedge d y_{1}, \quad \Omega=\left(\omega_{1}+i \omega_{2}\right) \wedge\left(d y_{2}+i d y_{1}\right)
$$

- Special interests:

$$
Z=\mathrm{K} 3 \times \mathbb{R}^{2}, \quad Z=X_{A_{2}} \times \mathbb{R}^{2}
$$

III. Donaldson-Scaduto conjecture

Model Calabi-Yau 3-folds

- Let $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ be three holomorphic curves with respect to $v_{1}, v_{2}, v_{3} \in U(1) \subset S^{2}$.

Model Calabi-Yau 3-folds

- Let $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ be three holomorphic curves with respect to $v_{1}, v_{2}, v_{3} \in U(1) \subset S^{2}$.
- Let \widetilde{v}_{i} be the (clockwise) 90-degree rotation of v_{i} in $\mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.

Model Calabi-Yau 3-folds

- Let $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ be three holomorphic curves with respect to $v_{1}, v_{2}, v_{3} \in U(1) \subset S^{2}$.
- Let \widetilde{v}_{i} be the (clockwise) 90-degree rotation of v_{i} in $\mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.
- $L_{i}=\Sigma_{i} \times\left(\mathbb{R}_{+} \cdot \widetilde{v}_{i}\right) \subset X \times \mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$ are half-cylinder special Lagrangians.

Model Calabi-Yau 3-folds

- Let $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ be three holomorphic curves with respect to $v_{1}, v_{2}, v_{3} \in U(1) \subset S^{2}$.
- Let \widetilde{v}_{i} be the (clockwise) 90-degree rotation of v_{i} in $\mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.
- $L_{i}=\Sigma_{i} \times\left(\mathbb{R}_{+} \cdot \widetilde{v}_{i}\right) \subset X \times \mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$ are half-cylinder special Lagrangians.

Donaldson-Scaduto conjectures

Theorem (E - Yang Li, Local Donaldson-Scaduto)

There exists special Lagrangian $P \subset X_{A_{2}} \times \mathbb{R}^{2}$ homeomorphic to a three-holed 3-sphere, with three ends asymptotic to the half-cylinders L_{1}, L_{2}, L_{3}.

Donaldson-Scaduto conjectures

- We can generalize the local Donaldson-Scaduto conjecture.

Donaldson-Scaduto conjectures

- We can generalize the local Donaldson-Scaduto conjecture.
- $X=$ ALE/ALF $G H$ space with n points $p_{1}, \ldots, p_{n} \in \mathbb{R}^{2} \subset \mathbb{R}^{3}$ in a convex position. X contains n holomorphic spheres $\Sigma_{1}, \ldots, \Sigma_{n}$.

Donaldson-Scaduto conjectures

- We can generalize the local Donaldson-Scaduto conjecture.
- $X=$ ALE/ALF $G H$ space with n points $p_{1}, \ldots, p_{n} \in \mathbb{R}^{2} \subset \mathbb{R}^{3}$ in a convex position. X contains n holomorphic spheres $\Sigma_{1}, \ldots, \Sigma_{n}$.
- Let $Z=X \times \mathbb{R}^{2}$, with n cylindrical special Lagrangians $L_{i}=\Sigma_{i} \times \mathbb{R}^{+} \tilde{v}_{i}$.

Donaldson-Scaduto conjectures

- We can generalize the local Donaldson-Scaduto conjecture.
- $X=$ ALE/ALF $G H$ space with n points $p_{1}, \ldots, p_{n} \in \mathbb{R}^{2} \subset \mathbb{R}^{3}$ in a convex position.
X contains n holomorphic spheres $\Sigma_{1}, \ldots, \Sigma_{n}$.
- Let $Z=X \times \mathbb{R}^{2}$, with n cylindrical special Lagrangians $L_{i}=\Sigma_{i} \times \mathbb{R}^{+} \tilde{v}_{i}$.

Theorem (Generalized local Donaldson-Scaduto conjecture, E-Li)

There exists an $(n-3)$-dimensional family of special Lagrangians $L \subset X \times \mathbb{R}^{2}$ homeomorphic to a n-holed 3-sphere, with n ends asymptotic to the translations of half-cylinders L_{1}, \ldots, L_{n}.

IV. Proof

Proof

- Step 1. Write a ‘good’ PDE to describe the conjectured SLag.

Proof

- Step 1. Write a ‘good’ PDE to describe the conjectured SLag.
- Step 2. Solve the PDE.

Proof

- Step 1. Write a 'good’ PDE to describe the conjectured SLag.
- Step 2. Solve the PDE.
- Step 3. Show the special Lagrangians are smooth.

Proof

- Step 1. Write a 'good’ PDE to describe the conjectured SLag.
- Step 2. Solve the PDE.
- Step 3. Show the special Lagrangians are smooth.
- Step 4. Show the special Lagrangians satisfy the conjecture.

Towards a 'good' PDE

- There is a $U(1)$-action on X.

Towards a 'good' PDE

- There is a $U(1)$-action on X.
- $U(1)$ acts on X, which extends to $X \times \mathbb{R}^{2}$ by $e^{i \theta} \cdot(x, y)=\left(e^{i \theta} \cdot x, y\right)$.

Towards a 'good' PDE

- There is a $U(1)$-action on X.
- $U(1)$ acts on X, which extends to $X \times \mathbb{R}^{2}$ by $e^{i \theta} \cdot(x, y)=\left(e^{i \theta} \cdot x, y\right)$.
(1) The action preserves the symplectic structure ω on Z.

Towards a 'good' PDE

- There is a $U(1)$-action on X.
- $U(1)$ acts on X, which extends to $X \times \mathbb{R}^{2}$ by $e^{i \theta} \cdot(x, y)=\left(e^{i \theta} \cdot x, y\right)$.
(1) The action preserves the symplectic structure ω on Z.
(2) This action is Hamiltonian with moment maps $u_{3}: Z \rightarrow \mathbb{R}$.

Towards a 'good' PDE

- There is a $U(1)$-action on X.
- $U(1)$ acts on X, which extends to $X \times \mathbb{R}^{2}$ by $e^{i \theta} \cdot(x, y)=\left(e^{i \theta} \cdot x, y\right)$.
(1) The action preserves the symplectic structure ω on Z.
(2) This action is Hamiltonian with moment maps $u_{3}: Z \rightarrow \mathbb{R}$.
(3) The cylindrers L_{1}, L_{2}, L_{3} are $U(1)$-invariant and $L_{i} \subset u_{3}^{-1}(0)$.

Towards a 'good' PDE

- There is a $U(1)$-action on X.
- $U(1)$ acts on X, which extends to $X \times \mathbb{R}^{2}$ by $e^{i \theta} \cdot(x, y)=\left(e^{i \theta} \cdot x, y\right)$.
(1) The action preserves the symplectic structure ω on Z.
(2) This action is Hamiltonian with moment maps $u_{3}: Z \rightarrow \mathbb{R}$.
(3) The cylindrers L_{1}, L_{2}, L_{3} are $U(1)$-invariant and $L_{i} \subset u_{3}^{-1}(0)$.
- The conjectured special Lagrangian $L \subset u_{3}^{-1}(0)$.

Towards a 'good' PDE

- There is a $U(1)$-action on X.
- $U(1)$ acts on X, which extends to $X \times \mathbb{R}^{2}$ by $e^{i \theta} \cdot(x, y)=\left(e^{i \theta} \cdot x, y\right)$.
(1) The action preserves the symplectic structure ω on Z.
(2) This action is Hamiltonian with moment maps $u_{3}: Z \rightarrow \mathbb{R}$.
(3) The cylindrers L_{1}, L_{2}, L_{3} are $U(1)$-invariant and $L_{i} \subset u_{3}^{-1}(0)$.
- The conjectured special Lagrangian $L \subset u_{3}^{-1}(0)$.
- The symplectic reduction of Z,

$$
Z_{\mathrm{red}}=u_{3}^{-1}(0) / U(1)=\mathbb{R}_{\left(u_{1}, u_{2}, y_{1}, y_{2}\right)}^{4} .
$$

Towards a 'good' PDE

- There is a $U(1)$-action on X.
- $U(1)$ acts on X, which extends to $X \times \mathbb{R}^{2}$ by $e^{i \theta} \cdot(x, y)=\left(e^{i \theta} \cdot x, y\right)$.
(1) The action preserves the symplectic structure ω on Z.
(2) This action is Hamiltonian with moment maps $u_{3}: Z \rightarrow \mathbb{R}$.
(3) The cylindrers L_{1}, L_{2}, L_{3} are $U(1)$-invariant and $L_{i} \subset u_{3}^{-1}(0)$.
- The conjectured special Lagrangian $L \subset u_{3}^{-1}(0)$.
- The symplectic reduction of Z,

$$
Z_{\mathrm{red}}=u_{3}^{-1}(0) / U(1)=\mathbb{R}_{\left(u_{1}, u_{2}, y_{1}, y_{2}\right)}^{4} .
$$

- The dimensionally reduced Lagrangian is

$$
L_{\text {red }}:=L / U(1) \subset Z_{\text {red }}:=u_{3}^{-1}(0) / U(1) .
$$

A 'good' PDE

- The SLag condition reduces to a holomorphicity condition:

$$
V d u_{1} \wedge d u_{2}-d y_{1} \wedge d y_{2}=0, \quad \text { and } \quad d u_{1} \wedge d y_{1}+d u_{2} \wedge d y_{2}=0
$$

A 'good' PDE

- The SLag condition reduces to a holomorphicity condition:

$$
V d u_{1} \wedge d u_{2}-d y_{1} \wedge d y_{2}=0, \quad \text { and } \quad d u_{1} \wedge d y_{1}+d u_{2} \wedge d y_{2}=0
$$

A 'good' PDE

- Graphical case: the conjectured curve $=$ graph of a map $F: U \subset \mathbb{R}_{\left(u_{1}, u_{2}\right)}^{2} \rightarrow \mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.

A 'good' PDE

- Graphical case: the conjectured curve $=$ graph of a map $F: U \subset \mathbb{R}_{\left(u_{1}, u_{2}\right)}^{2} \rightarrow \mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.

- The 'special' condition $d u_{1} \wedge d y_{1}+d u_{2} \wedge d y_{2}=0$ implies $F=\left(F_{1}, F_{2}\right)$ satisfies $\partial_{u_{1}} F_{2}=\partial_{u_{2}} F_{1}$, and therefore, $F=\nabla \varphi$, for some $\varphi: U \subset \mathbb{R}_{\left(u_{1}, u_{2}\right)}^{2} \rightarrow \mathbb{R}$.

A 'good' PDE

- Graphical case: the conjectured curve $=$ graph of a map $F: U \subset \mathbb{R}_{\left(u_{1}, u_{2}\right)}^{2} \rightarrow \mathbb{R}_{\left(y_{1}, y_{2}\right)}^{2}$.

- The 'special' condition $d u_{1} \wedge d y_{1}+d u_{2} \wedge d y_{2}=0$ implies $F=\left(F_{1}, F_{2}\right)$ satisfies
$\partial_{u_{1}} F_{2}=\partial_{u_{2}} F_{1}$, and therefore, $F=\nabla \varphi$, for some $\varphi: U \subset \mathbb{R}_{\left(u_{1}, u_{2}\right)}^{2} \rightarrow \mathbb{R}$.
- The second condition (Lag) implies a degenerate Monge-Ampère equation:

$$
\operatorname{det} D^{2} \varphi=V=A+\sum_{i=1}^{n} \frac{1}{2\left|u-p_{i}\right|}
$$

A 'good' PDE

- Find $\varphi: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\operatorname{det} D^{2} \varphi=V=A+\sum_{i=1}^{n} \frac{1}{2\left|u-p_{i}\right|},
$$

with a suitable Dirichlet boundary condition.

Solve the PDE

- Solving the Dirichlet problem: an approximation method and a compactness argument.

Solve the PDE

- Solving the Dirichlet problem: an approximation method and a compactness argument.

- Uniform bound:

$$
\bar{\phi}_{t}(u)-C \operatorname{dist}(u, \partial U)^{1 / 2} \leq \varphi_{t}(u) \leq \bar{\phi}_{t}(u)+C \operatorname{dist}(u, \partial U) .
$$

Solve the PDE

- Solving the Dirichlet problem: an approximation method and a compactness argument.

Solve the PDE

- Solving the Dirichlet problem: an approximation method and a compactness argument.

- The interior smoothness of the solution is based on two facts:
(1) Caffarelli: The singular set must propagate along some line segment to the boundary.
(2) Mooney's partial regularity: The singular set has codimension one Hausdorff measure zero.

Solve the PDE

- Solving the Dirichlet problem: an approximation method and a compactness argument.

- The interior smoothness of the solution is based on two facts:
(1) Caffarelli: The singular set must propagate along some line segment to the boundary.
(2) Mooney's partial regularity: The singular set has codimension one Hausdorff measure zero.
- This proves the existence of $\varphi \Rightarrow$ the dimensionally reduced conjectured SLag.

Smoothness

- $L^{\circ}=\pi^{-1}\left(\operatorname{Graph}(F)_{U}\right)$.

Smoothness

- $L^{\circ}=\pi^{-1}(\operatorname{Graph}(F) U)$.
- $L=$ current of integration of L°. We should show L is smooth.

Smoothness

- $L^{\circ}=\pi^{-1}\left(\operatorname{Graph}(F)_{U}\right)$.
- $L=$ current of integration of L°. We should show L is smooth.
- Let x be a singular point of L.

Smoothness

- $L^{\circ}=\pi^{-1}(\operatorname{Graph}(F) U)$.
- $L=$ current of integration of L°. We should show L is smooth.
- Let x be a singular point of L.
- $\pi_{\left(u_{1}, u_{2}\right)}(x)$ cannot be an interior point of U or any point over an open edge.

Smoothness

- $L^{\circ}=\pi^{-1}\left(\operatorname{Graph}(F)_{U}\right)$.
- $L=$ current of integration of L°. We should show L is smooth.
- Let x be a singular point of L.
- $\pi_{\left(u_{1}, u_{2}\right)}(x)$ cannot be an interior point of U or any point over an open edge.
- The only possibility $\pi_{\left(u_{1}, u_{2}\right)}(x) \in\left\{p_{1}, \ldots, p_{n}\right\}$.

Smoothness

- Method: Geometric measure theory, blow-up analysis, and tangent cones.

Smoothness

- Method: Geometric measure theory, blow-up analysis, and tangent cones.
- Any tangent cone $N \subset \mathbb{C}^{3}$ at x is a $U(1)$-invariant tangent cone in \mathbb{C}^{3}.

Smoothness

- Method: Geometric measure theory, blow-up analysis, and tangent cones.
- Any tangent cone $N \subset \mathbb{C}^{3}$ at x is a $U(1)$-invariant tangent cone in \mathbb{C}^{3}.
- Proposition: A point $x \in \operatorname{supp}(L)$ is a smooth point if and only if every tangent cone $N \subset \mathbb{C}^{3}$ at x is a 3-plane with multiplicity one.

Smoothness

- Method: Geometric measure theory, blow-up analysis, and tangent cones.
- Any tangent cone $N \subset \mathbb{C}^{3}$ at x is a $U(1)$-invariant tangent cone in \mathbb{C}^{3}.
- Proposition: A point $x \in \operatorname{supp}(L)$ is a smooth point if and only if every tangent cone $N \subset \mathbb{C}^{3}$ at x is a 3-plane with multiplicity one.
- There is a classification of $U(1)$-invariant special Lagrangian cones in \mathbb{C}^{3} due to Joyce/Haskins.

Smoothness

- Proposition (Joyce/Haskins): Let N be a $U(1)$-invariant SLag cone in \mathbb{C}^{3}. Then, exactly one of the following holds:
(1) N is a \mathbb{T}^{2}-cone.
(2) N is the singular union of two flat 3-planes.
(3) N is a SLag cone described in terms of Jacobi elliptic functions.
(4) N is a flat 3-plane with multiplicity $m \in \mathbb{Z}$.

Smoothness

- Proposition (Joyce/Haskins): Let N be a $U(1)$-invariant SLag cone in \mathbb{C}^{3}. Then, exactly one of the following holds:
(1) N is a \mathbb{T}^{2}-cone.
(2) N is the singular union of two flat 3-planes.
(3) N is a SLag cone described in terms of Jacobi elliptic functions.
(4) N is a flat 3-plane with multiplicity $m \in \mathbb{Z}$.
- Using properties of the Monge-Ampère equation, and the geometry of the problem, we rule out every case but a flat 3-plane with $m=1$.

Tangent cone analysis

- The projection of \mathbb{T}^{2}-cone is surjective.

Tangent cone analysis

- The projection of \mathbb{T}^{2}-cone is surjective.
- The projection of the union of two planes includes a line.

Tangent cone analysis

- The projection of \mathbb{T}^{2}-cone is surjective.
- The projection of the union of two planes includes a line.
- Ruling out the Jacobi elliptic case and flat 3-plane with $|m| \geq 1$ follows from a variation of Joyce graphicallity argument + some GMT ingredients.

Asymptotic analysis

- Asymptotically cylindrical:
(1) Using Legendre transform + quasi-Elliptic property: C^{0} convergence.
(2) Allard's regularity: $C^{1, \alpha}$-decay, and then C^{k}-decay.
(3) Exponential decay: three-annulus lemma or iteration method

$$
F(R)=\int_{\left\{y_{2} \leq-R\right\} \cap L}|\nabla \varphi|^{2} \Longrightarrow-C F^{\prime} \geq F .
$$

Topology

- Topology of $L=n$-holed 3 -sphere $=n$-holed pair of pants:
computing $\pi_{1}(L)$ (Poincare conjecture) or constructing a Heegaard splitting.

Topology

- Topology of $L=n$-holed 3 -sphere $=n$-holed pair of pants:
computing $\pi_{1}(L)$ (Poincare conjecture) or constructing a Heegaard splitting.
- This completes the proof.

Adiabatic limit

- Remark: The adiabatic limit of the pair of pants special Lagrangian is a trivalent graph.

V. Epilogue

Epilogue

- Deformation + gluing + capping-off:

Epilogue

- Future directions:
(1) Uniqueness in the Donaldson-Scaduto conjecture, following Imagi, Joyce, dos Santos.

Epilogue

- Future directions:
(1) Uniqueness in the Donaldson-Scaduto conjecture, following Imagi, Joyce, dos Santos. w Gorapada Bera (in progress): Fukaya category computations.

Epilogue

- Future directions:
(1) Uniqueness in the Donaldson-Scaduto conjecture, following Imagi, Joyce, dos Santos. w Gorapada Bera (in progress): Fukaya category computations.
(2) Donaldson-Segal conjecture:
weighted count of special Lagrangians $=$ CY monopoles.

Epilogue

- Future directions:
(1) Uniqueness in the Donaldson-Scaduto conjecture, following Imagi, Joyce, dos Santos. w Gorapada Bera (in progress): Fukaya category computations.
(2) Donaldson-Segal conjecture:
weighted count of special Lagrangians $=\mathrm{CY}$ monopoles.
(3) Weights = a 'count' of Fueter sections of moduli spaces of monopoles on \mathbb{R}^{3} on the 3-manifold.

Epilogue

- Future directions:
(1) Uniqueness in the Donaldson-Scaduto conjecture, following Imagi, Joyce, dos Santos. w Gorapada Bera (in progress): Fukaya category computations.
(2) Donaldson-Segal conjecture:
weighted count of special Lagrangians $=\mathrm{CY}$ monopoles.
3 Weights $=\mathrm{a}$ 'count' of Fueter sections of moduli spaces of monopoles on \mathbb{R}^{3} on the 3-manifold. Joint with Yang Li (in preparation): a Compactness theorem for the monopole Fueter sections.

Epilogue

- Future directions:

Towards categorifying the count of Fueter sections:

Epilogue

- Future directions:

Towards categorifying the count of Fueter sections:
(1) monopole Fueter Floer (Morse theoretic),

Epilogue

- Future directions:

Towards categorifying the count of Fueter sections:
(1) monopole Fueter Floer (Morse theoretic), (2) Lagrangian Fueter Floer (symplectic)

Epilogue

- Future directions:

Towards categorifying the count of Fueter sections:
(1) monopole Fueter Floer (Morse theoretic), (2) Lagrangian Fueter Floer (symplectic)

Atiyah-Floer type questions

Epilogue

- Future directions:

Towards categorifying the count of Fueter sections:
(1) monopole Fueter Floer (Morse theoretic), (2) Lagrangian Fueter Floer (symplectic)

Atiyah-Floer type questions + categorified Donaldson-Segal conjecture!

Thank you for your attention!

