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Motivation

Swampland Conjectures make profound predictions for geometry.

Key Example: see talks by Langlais, Grimm

Swampland Distance Conjecture and asymptotics of moduli spaces

This talk:

1) Interpretation and tests of Swampland Distance Conjecture

• Propose universal interpretation of asymptotically massless states

=⇒ Emergent String Conjecture

• Test in classical Kähler moduli space of CY 3-folds (5d M-theory)

2) Tower Weak Gravity Conjecture

• Predicts existence of certain states, i.e. non-vanishing ’invariants’

• String dualities plus results from state counting imply the WGC.
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Motivation

Swampland Conjectures make profound predictions for geometry.

Key Example: see talks by Langlais, Grimm

Swampland Distance Conjecture and asymptotics of moduli spaces

This talk:

1) Interpretation and tests of Swampland Distance Conjecture

2) Tower Weak Gravity Conjecture

Specifically: Cota,Mininno,TW,Wiesner’22

• Show Tower WGC in M-theory on CY3 with a weak coupling limit

=⇒ Asymptotic Tower WGC

• Mathematical Input:

1. Kähler geometry of CY3 (see part 1)

2. Counting of BPS and of non-BPS states via DT-invariants on CY3
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Part I: Emergent String Conjecture

Motivating questions:

• What is the interpretation of the asymptotically massless states?

• What type of theory does one approach at infinite distance in moduli

space?
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Emergent String Conjecture
Proposal: [Lee,Lerche,TW’19]

If a quantum gravity theory admits an infinite distance limit, then

• either it reduces to a weakly coupled string theory

⇒ Leading tower of states:

string excitations + Kaluza-Klein (KK) states at same scale

• or it decompactifies

⇒ Leading tower of states: Kaluza-Klein excitations

Note: The KK states may come in disguise, e.g. as wrapped branes

Confirmed in highly-non-trival (non-perturbative) setups:

Existence and uniqueness of

emergent critical string ⇐⇒

(Quantum) geometry of

string compactification

[Lee,Lerche,TW’19],[Baume,Marchesano,Wiesner’19]

[Klaewer,Lee,TW,Wiesner’20]
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String Emergence - Overview
Provide evidence in Kähler moduli space of CY 3-folds X3 probed by

M-theory (classical moduli space)

1) Geometric analysis: [Lee,Lerche,TW,’19]

Classification of infinite distance limits in classical Kähler moduli space of

CY3

Up to scaling of overall volume, an infinite distance limit is of the form

π : F → X3

↓

B

VB ∼ λ→∞ VF ∼
1
λ

λ→∞

1. CY3 is T 2-fibration

2. CY3 is K3-fibration

3. CY3 is T 4-fibration

In presence of several fibrations:

a unique fiber vanishes at fastest

rate
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String Emergence - Overview
2) M-theory at infinite distance (finite volume) [Lee,Lerche,TW’19]

Limit of Type T 2

Limit of Type K3

Limit of Type T 4

F-theory limit (decompactification to 6d)

Emergence of heterotic string in 5d

Emergence of Type II string in 5d

3) Asymptotic tower WGC for 5d M-theory [Cota,Mininno,TW,Wiesner’22]

follows from this, making use of excitations of emergent fundamental string

• Physics: Reinterpretation partially as non-BPS string excitations

Solves puzzle of missing BPS states raised in [Alim,Heidenreich,Rudelius’21]

• Mathematical machinery: BPS state counting
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String Emergence - Overview
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Classical infinite distance limits
CY 3-fold X3 classical Kähler form J ′ =

∑
i∈I

v′
i
Ji , v′

i
≥ 0

V ′
X3

= 1
3!

∫
X3

J ′3

Geometric infinite distance limit:

• (some) v′
i
→∞ ⇒ V ′

X3
∼ µ→∞ or finite

• rescale J = µ−1/3J ′ =:
∑

viJi ⇒ VX3 = µ−1 V ′
X3

VX3 finite

If all vi finite =⇒

no further inf. distance limit

All vanishing cycles contractible

no towers of weakly coupled states

(except from overall expansion)

If some vi →∞

others to zero
=⇒

residual finite volume infinite dis-

tance limit

non-contractible cycle shrinks
Oxford, 12/01/2023 – p.9



Classical infinite distance limits

J =
∑

i

viJi , VY =
1

3!

∫

Y

J3

Classify finite volume limits via refinement of analysis in

[Lee,Lerche,TW’18/’19]

vi ∼ λ→∞ ∀i ∈ Iλ , vj ≺ λ ∀j ∈ I \ Iλ

Finite volume requires: J3
i = 0 ∀ i ∈ Iλ [Lee,Lerche,TW’19]

J-class A: J2
i 6= 0 for some i ∈ Iλ J-class B: J2

i = 0 ∀ i ∈ Iλ

independent classification: [Corvilain,Grimm,Valenzuela’18]

via mirror symmetry to [Grimm,Palti,Valenzuela’18]

Key to understand the physics: [Lee,Lerche,TW ’04/19 and ’10/19]

By Oguiso’s theorem each such limit implies a fibration structure
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Classical infinite distance limits
Oguiso’s theorem:

If there exists a nef divisor D with D3 = 0 on Calabi-Yau 3-fold X3:

D2 6= 0

(and D effective or D · c2 > 0)
=⇒

X3 is genus-one fibration

with fiber D2

D2 = 0

D · c2(X3) > 0

D · c2(X3) = 0

=⇒

Y is surface fibration with

fiber F = D: K3

fiber F = D : T 4

Apply to infinite distance limits:

J-class A:

J2
i 6= 0 for some i ∈ Iλ =⇒ exists T 2-fibration

J-class B:

J2
i = 0 ∀ i ∈ Iλ =⇒ exists K3/T 4-fibration

Crucial: several fibrations can coexist and we must look closer
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Classical infinite distance limits
• There always exists a unique fiber whose volume scales to zero at the

fastest rate.

• No ambiguity in identification of fastest shrinking curve possible

Limit of





TypeT 2

TypeK3

TypeT 4




⇐⇒ fastest shrinking fiber of X3 is





T 2

K3

T 4




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Classical infinite distance limits
• There always exists a unique fiber whose volume scales to zero at the

fastest rate.

• No ambiguity in identification of fastest shrinking curve possible

Limit of





TypeT 2

TypeK3

TypeT 4




⇐⇒ fastest shrinking fiber of X3 is





T 2

K3

T 4





Key result: [Lee,Lerche,TW’19]

Every classical finite volume limit uniquely falls into one of these classes.

Example: Suppose X3 admits two K3-fibrations with fiber F1 and F2 such that

VF1 ∼ VF2 ∼ λ−1 → 0:

• Then X3 admits a T 2-fibration and VT2 ∼ λ−1/2−δ ≺
√

VFi
for δ > 0,

• and if X3 admits several such T 2-fibrations, then there exists precisely one whose

fiber shrinks at fastest rate.
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Limits of Type K3

VK3 ∼ λ−1 , VP1
b
∼ λ , λ→∞

M5 brane on K3: (MSW) string: T
M2

Pl
∼ VK3 → 0

M5 brane on K3:

• (MSW) string in R
1,4

• tension: T
M2

Pl
∼ VK3 → 0

Interpretation:

emergent critical heterotic string

Duality:

M-theory on X3 × R
1,4 ⇐⇒ Heterotic on K̂3het × S1

A ×R
1,4
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Limits of Type K3

VK3 ∼ λ−1 , VP1
b
∼ λ , λ→∞

M5 brane on K3: (MSW) string: T
M2

Pl
∼ VK3 → 0

M-theory on X3

M5 on K3-fiber

=⇒ tower of non-BPS

excitations

M2 on C ⊂ K3

C ·K3 C ≥ 0

=⇒ tower of BPS excitations

⇐⇒

Heterotic on K̂3× S1
A

fundamental het. string

=⇒ 5d heterotic string

excitations

winding and KK modes of

het string on S1
A

=⇒ effective/dual KK tower

Gopakumar-Vafa invariants for M2-brane on C ⊂ K3: [Harvey,Moore’99], . . .

NC = c(
C2

2
) f(q) =

∞
∑

n=−1

c(n)qn modular form

Infinite tower on nC ↔ C · C ≥ 0 = non-contractible curves inside K3
Oxford, 12/01/2023 – p.16



Limits of Type T
4

VT 4 ∼ λ−1 , VP1
b
∼ λ , λ→∞

Emergent Type II string probes (non-geometric) D-manifold

M-theory on

Abelian surface fibration

X3

←→

Type IIB theory on

Z × S1
A
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Part II: (Asymptotic) Tower Weak Gravity Conjecture
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Weak Gravity Conjecture
(Tower) WGC initiated in [Arkani-Hamed,Motl,Nicolis,Vafa’06]

Consider a gauge theory coupled to quantum gravity, (for simplicity)

with abelian gauge factors U(1) and charge lattice ΛQ. Then every ray

in the lattice ΛQ must support a tower of super-extremal states.

• super-extremal (=self-repulsive for us):

FCoulomb ≥ FGrav. + FYukawa

• FYukawa in presence of massless scalars - first pointed out in [Palti,’17]

• in general self-repulsiveness not equivalent to super-extremal

[Heidenreich,Reece,Rudelius,’19],

but in asymptotic weak coupling limit they are [Lee,Lerche,TW’18]

• Tower: [Heidenreich,Reece,Rudelius’15-16] [Montero,Shiu,Soler’16] [Andriolo et al.’16]

∃ super-extremal particle of charge nQ for n ∈ I an infinite set
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WGC in 5d M-theory
M-theory on CY3 X3: 5d N=1 theory (8 supercharges)

• Basis of U(1) gauge groups from expanding

C3 = Aα ∧ Jα , α = 1, . . . , h1,1(X3)

• Jα: Basis of Kähler cone generators J = vαJα

• Gauge kinetic terms

S5d =
M3

Pl

2

∫

R1,4
R ⋆ 1−

1

2g25

∫

R1,4
fαβF

α ∧ ⋆Fβ + . . . Fα = dAα

Gauge kinetic matrix fαβ ⇐⇒ Kähler moduli (modulo overall volume)

fαβ =
1

V1/3

∫

X3

Jα ∧ ⋆Jβ =
(

V̂αV̂β − V̂αβ

)

V =
1

6

∫

X3

J3 , Vα =
1

2V

∫

X3

Jα ∧ J2 , Vαβ =
1

V

∫

X3

Jα ∧ Jβ ∧ J , v̂α =
vα

V
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WGC in 5d M-theory
Self-repulsiveness condition for states of

• charges Qα under U(1)α

• Kähler moduli dependent mass Mk(v
α)

FCoulomb

!

≥ Fgrav + FYukawa

(MPlg
2
5)(Qαf

αβQβ)

M2
k/M

2
Pl

!

≥
d− 3

d− 2

∣∣∣∣
d=5

+
1

2

M4
Pl

M4
k

(
fαβ −

1

3
v̂αv̂β

)
∂α

(
M2

k

M2
Pl

)
∂β

(
M2

k

M2
Pl

)

basis of U(1) gauge groups from expanding

C3 = Aα ∧ Jα , α = 1, . . . , h1,1(X3)

Jα: Basis of Kähler cone generators J = vαJα

S5d =
M3

Pl

2

∫

R1,4
R ⋆ 1−

1

2g25

∫

R1,4
fαβF

α ∧ ⋆Fβ + . . .
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WGC: BPS Towers
First source for super-extremal tower:

particles in 5d from M2-branes on curves on X3

Fact: Every BPS state is automatically super-extremal

=⇒ Existence of tower of BPS states along ray in charge lattice

sufficient for tower WGC in that direction

Conjecture: [Alim,Heidenreich,Rudelius’21]

Every curve class C ∈ Mov1(X3) supports a tower of BPS states, i.e.

Ng=0(nC) 6= 0 ∀C ∈ Mov1(X3)

Recall: Movable curve cone Mov1(X3) is dual to cone of effective divisors Eff1(X3)

X confirmed in many examples in [Alim,Heidenreich,Rudelius’21]

X extremality = BPS condition for such C ∈ Mov1(X3)

Challenge for tower WGC: What if there are no BPS towers?

Example: Conifold
Oxford, 12/01/2023 – p.22



Beyond BPS Towers
Main result: [Cota,Mininno,TW,Wiesner’22]

Whenever there is no BPS tower, then

• either there is no weak coupling limit for the U(1)s

• or there does exist a super-extremal non-BPS tower.

=⇒ Establishes asymptotic tower WGC in 5d M-theory

Strategy:

1. Characterise all weak coupling limits ⇐⇒ Kähler geometry

2. Identify towers of super-extremal BPS or non-BPS states for U(1)s

with a weak coupling limit

⇐⇒ DT invariants/Noether-Lefschetz theory
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Weak Coupling Limits

S5d =
M3

Pl

2

∫

R1,4
R ⋆ 1−

1

2g25

∫

R1,4
fαβF

α ∧ ⋆Fβ + . . .

Gauge kinetic matrix fαβ ⇐⇒ Kähler moduli (modulo overall volume)

fαβ =
1

V1/3

∫

X3

Jα ∧ ⋆Jβ =
(

V̂αV̂β − V̂αβ

)

Weak coupling limits:

entries of fαβ →∞ ↔ infinite distance limits (at fixed overall volume V)

More precise formulation:

U(1)C = cαU(1)α basis U(1)α ↔ Aα in C3 = AαJα

Λ2
WGC (U(1)C) = g2YM,CM

3
Pl = g25

(
cαf

αβcβ
)
M3

Pl

Λ2
WGC (U(1)C)

Λ2
QG

→ 0 Λ2
QG : species scale
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Weak Coupling Limits
Characterisation of weak coupling limits: [Cota,Mininno,TW,Wiesner’22]

In M-theory compactified on a Calabi–Yau X3, the only U(1)s which

admit a weak coupling limit are obtained as U(1)C = cαU(1)α for

C = cαω
α ∈ H2(X3) a curve class with

1. C = T 2 - a generic torus fiber of X3

2. C ⊂ S for S a generic K3 or T 4 fiber of X3 or a degenerate such fiber

occuring at finite distance in the fiber moduli space.
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Elliptic tower counting
Suppose X3 admits fibration π : T 2 → B2 with generic fiber T 2 ≡ E .

1. Unless X3 also admits a K3 or T 4 surface (see next case), the only

U(1) which can undergo a weak coupling limit is

U(1)E = cαU(1)α E = cαω
α

2. ∃ tower of BPS states charged under U(1)E :

M2-branes wrapped n-times on T 2 fiber

N0
nE = −χ(X3)

=⇒ super-extremal BPS tower in agreement with asymptotic tower WGC

Interpretation: KK tower for decompactification 5d to 6d
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K3 tower counting
Suppose X3 admits fibration ρ : K3→ P

1

The onlya U(1) which can undergo a weak coupling limit is

U(1)C = cαU(1)α C = cαω
α

for C a curve in a generic K3 fiber or in a special K3 fiber at finite

distance in moduli space.

Such curves lie in a lattice

Λ∗
R
= Λ∗

+ ⊕ Λ∗
−

Λ∗
R
lattice of charges with respect to such U(1) of signature (1, r), r ≤ 19

• Q2 ≥ 0: BPS tower exists

Xsuch curves are movable inside K3 fiber and hence in movable cone

Xin agreement with BPS index counting via modular forms - see before

• Q2 < 0: No BPS tower exists

Xcurves are rigid inside K3 fiber and hence not in movable cone

aUnless other fibrations exist of course. Oxford, 12/01/2023 – p.27



K3 tower counting
Claim: Tower of non-BPS states takes over [Cota,Mininno,TW,Wiesner’22]

• Special set of states from excitations of MSW-type heterotic string

obtained by wrapping M5-brane on K3 fiber turns out to be

super-extremal.

• Existence of these states established via relation of elliptic genus and

4d BPS invariants in Type IIA on CY3a

[cf. talk by Pioline]

⇐⇒ Uses related results such as

[Bouchard,Creutzig,Diaconescu,Doran,Quigley,Sheshmani16] [Pandharipande,Thomas’16]

aAnalysis most explicitly in absence of multi-components fibers, but expect results to

carry over more generally.
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K3 tower counting
M-theory on X3 × S1

M

bound state of M5-brane on K3

winding number r on S1
M

M2 brane on curve Q on K3

Type IIA string on X3

D4-D2-D0 bound state

of charge vector

γ = (rΣK3,Q, n)

Can view these states as winding modes of heterotic string from M5 on K3

at KK level n and charge vector Q

Special case r = 1:

By level matching: n = nL = (left-moving) excitation level of single

heterotic string

4d BPS states of charge

vector γ = (ΣK3,Q, n)
=⇒

existence of non-BPS string

excitations in 5d at level

nL = n and charge Q

For simplicity focus on Q ∈ Λ∗
−

Goal: Show existence of super-extremal state at n = − 1
2
Q2
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K3 tower counting
Modified elliptic genus of wrapped heterotic string [Gaiotto,Strominger,Yin’06]:

Z
(r=1)
S

(τ, τ̄ , z) = TrRRF
2
R (−1)FRqL0−

cL
24 q̄L̄0−

cR
24 e2πiziQi

=
∑

nL,nR

N(nL, nR,Q) qnL q̄nRe2πiziQi

Expression in terms of 4d BPS numbers:

Z
(r=1)
S

(τ, τ̄ , z) =
∑

µ∈Λ∗/Λ

Zµ(τ)Θ
∗
µ(τ, τ̄ , z)

Zµ(τ) =
∞
∑

n=0

Ω(γ)qn+Q2/2−1 , Θ∗
µ(τ, τ̄ , z) =

∑

λ∈µ+Λ

q−
1
2
(λ)2

− q̄+
1
2
(λ)2+ e2πi(λ)·z

Ω(γ): 4d BPS index for D4-D2-D0 states (Donaldson-Thomas invariants)

Focus on Q = Q− ∈ Λ∗
−

If Ω(γ) 6= 0 for n = −Q2

2
> 0, then have states at excitaton level n in 5d

Recall:

n: KK number on S1
M , but by level matching identified with excitation level in 5d
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K3 tower counting

Ω(γ) 6= 0 for γ = (ΣK3,Q, n) at n = −
Q2

2
, Q ∈ Λ∗

−

Key insight: [Bouchard,Creutzig,Diaconescu,Doran,Quigley,Sheshmani16]

Zµ(τ) =
∞
∑

n=0

Ω(γ)qn+Q2/2−1

= η−24(τ)Φµ(τ) =
[

q−1 + 24 +O(q)
]

Φµ(τ)

for Φµ(τ) a component of a vector-valued modular form

Expansion coefficients related to Noether-Lefschetz numbers [Maulik,Pandharipande’13]

[Pandharipande,Thomas’16]

NL(h,Q) = Coeff
(

Φµ, q
∆NL

)

, ∆NL =
1

2
ηijQiQj + 1− h

• If ∆NL < 0, then NL(h,Q) = 0

• If ∆NL = 0, then NL(h,Q) = −2

• If ∆NL > 0, then NL(h,Q) ∈ Z

=⇒ States with n = −Q2

2
appear at order q−1 in

Z0(τ) = η−24(τ)Φ0(τ) =
[

q−1 + 24 +O(q)
]

[−2 +O(q)] = −2q−1 +O(q0)
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Super-extremality

FCoulomb

!
≥ Fgrav + FYukawa

(MPlg25)(QαfαβQβ)

M2
k/M

2
Pl

!
≥

d− 3

d− 2

∣

∣

∣

∣

d=5

+
1

2

M4
Pl

M4
k

(

fαβ −
1

3
v̂αv̂β

)

∂α

(

M2
k

M2
Pl

)

∂β

(

M2
k

M2
Pl

)

Explicitly check this for states at excitation level nk = − 1
2
Q2

Input from string theory:

M2
k = 8π(nk − 1)Ts +∆CB

• First term: Contribution from string oscillators, with string tension

Ts = 2πVSM
2
11d = 2π(4π)−2/3V̂SM

2
Pl

• ∆CB: contribution from Coulomb branch in 5d

∆CB = 4π2(4π)−2/3QiQj v̂
iv̂j M2

Pl v̂i : Kähler moduli of K3 fiber

In the asymptotic limit a number of simplifications occur

=⇒ Together with nk = − 1
2
Q2 the equality is marginally obeyed
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Summary
Exemplified two related Swampland Conjectures in M-theory on CY3

Emergent String Conjecture

in Kähler moduli sector
⇐⇒

Natural fibration structure for

infinite distance limits

Asymptotic Tower

Weak Gravity Conjecture
⇐⇒

Kähler geometry and (non-)

BPS counting

Related studies for theories in 6d N=1 [Lee,Lerche,TW’18]

and 4d N=1 [Lee,Lerche,TW’18] [Kläwer,Lee,TW,Wiesner’20] [Cota,Mininno,TW,Wiesner’22]

Mysterious:

Tower WGC for theories without weak coupling limits?
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