An introduction to some aspects of the swampland distance conjectures

Thibault Langlais

Simons Collaboration on Special Holonomy in Geometry, Analysis, and Physics

January 12, 2023
Introduction

(Compact) manifolds with special geometric structures play an important role in the construction of quantum gravity vacua.

▶ e.g. string theory on $\mathbb{R}^4 \times CY_3$, M-theory on $\mathbb{R}^4 \times G_2$, etc.
(Compact) manifolds with special geometric structures play an important role in the construction of quantum gravity vacua.

- e.g. string theory on $\mathbb{R}^4 \times CY_3$, M-theory on $\mathbb{R}^4 \times G_2$, etc.

The geometry of the internal manifold governs the low-energy physics about each such vacuum.
(Compact) manifolds with special geometric structures play an important role in the construction of quantum gravity vacua.

- e.g. string theory on $\mathbb{R}^4 \times CY_3$, M-theory on $\mathbb{R}^4 \times G_2$, etc.

The geometry of the internal manifold governs the low-energy physics about each such vacuum \Rightarrow deforming the internal manifold amounts to varying the parameters of the effective field theory (EFT).
(Compact) manifolds with special geometric structures play an important role in the construction of quantum gravity vacua.

- e.g. string theory on $\mathbb{R}^4 \times CY_3$, M-theory on $\mathbb{R}^4 \times G_2$, etc.

The geometry of the internal manifold governs the low-energy physics about each such vacuum \Rightarrow deforming the internal manifold amounts to varying the parameters of the effective field theory (EFT).

The *swampland distance conjectures* concern the moduli spaces of EFTs that can arise as low-energy limit of a consistent quantum gravity theory.
(Compact) manifolds with special geometric structures play an important role in the construction of quantum gravity vacua.

- e.g. string theory on $\mathbb{R}^4 \times CY_3$, M-theory on $\mathbb{R}^4 \times G_2$, etc.

The geometry of the internal manifold governs the low-energy physics about each such vacuum \Rightarrow deforming the internal manifold amounts to varying the parameters of the effective field theory (EFT).

The swampland distance conjectures concern the moduli spaces of EFTs that can arise as low-energy limit of a consistent quantum gravity theory.

Given the above correspondence, they lead to the formulation of many interesting problems at the intersection of geometry and physics.
Plan

Motivation for the swampland program

Low-energy limits and moduli spaces

The distance conjectures

Relation to special holonomy
Motivation for the swampland program

Low-energy limits and moduli spaces

The distance conjectures

Relation to special holonomy
Context

Quantum gravity theories tend to be essentially *unique* at high energies:
Context

Quantum gravity theories tend to be essentially *unique* at high energies:

- string theory (5 types of superstring theories in 10-dimensional space-time, related by dualities).
Context

Quantum gravity theories tend to be essentially \textit{unique} at high energies:

- string theory (5 types of superstring theories in 10-dimensional space-time, related by dualities).
- M-theory (conjectural 11-dimensional theory).
Context

Quantum gravity theories tend to be essentially *unique* at high energies:
- string theory (5 types of superstring theories in 10-dimensional space-time, related by dualities).
- M-theory (conjectural 11-dimensional theory).

This contrasts with the *huge number* of possible vacua, leading to an equally huge number of possible low-energy effective field theories.
Motivation for the swampland program

Context

Quantum gravity theories tend to be essentially *unique* at high energies:
- string theory (5 types of superstring theories in 10-dimensional space-time, related by dualities).
- M-theory (conjectural 11-dimensional theory).

This contrasts with the *huge number* of possible vacua, leading to an equally huge number of possible low-energy effective field theories.

Question

Is any self-consistent effective field theory the low-energy limit of a consistent quantum gravity theory, for some choice of vacuum?
Landscape vs swampland

There is compelling evidence that the answer to the previous question must be *negative*.
Landscape vs swampland

There is compelling evidence that the answer to the previous question must be *negative*.

- The set of effective field theories that can be obtained as the low-energy limit of quantum gravity is termed the *landscape*.

 It is opposed to the *swampland*, which refers to the apparently self-consistent effective field theories that cannot be coupled to gravity at high energies.
Landscape vs swampland

There is compelling evidence that the answer to the previous question must be *negative*.

- The set of effective field theories that can be obtained as the low-energy limit of quantum gravity is termed the *landscape*.
- It is opposed to the *swampland*, which refers to the apparently self-consistent effective field theories that cannot be coupled to gravity at high energies.
Landscape vs swampland

There is compelling evidence that the answer to the previous question must be *negative*.

- The set of effective field theories that can be obtained as the low-energy limit of quantum gravity is termed the *landscape*.
- It is opposed to the *swampland*, which refers to the apparently self-consistent effective field theories that cannot be coupled to gravity at high energies.

Question

How to distinguish the theories forming the landscape from those belonging to the swampland?
The swampland program

The aim of the swampland program is to find a set of criteria to decide whether a given effective field theory can be consistently completed into quantum gravity at high energies or not.
The swampland program

The aim of the swampland program is to find a set of criteria to decide whether a given effective field theory can be consistently completed into quantum gravity at high energies or not.

▶ Most (if not all) of the proposed criteria are still conjectural.
The swampland program

The aim of the swampland program is to find a set of criteria to decide whether a given effective field theory can be consistently completed into quantum gravity at high energies or not.

- Most (if not all) of the proposed criteria are still conjectural.
- Some of them are backed by substantial evidence, and are satisfied by large classes of examples.
The swampland program

The aim of the swampland program is to find a set of criteria to decide whether a given effective field theory can be consistently completed into quantum gravity at high energies or not.

- Most (if not all) of the proposed criteria are still conjectural.
- Some of them are backed by substantial evidence, and are satisfied by large classes of examples.
- As swampland criteria are formulated in terms of the EFT itself, they yield well-defined mathematical problems.
The swampland program

The aim of the swampland program is to find a set of criteria to decide whether a given effective field theory can be consistently completed into quantum gravity at high energies or not.

- Most (if not all) of the proposed criteria are still conjectural.
- Some of them are backed by substantial evidence, and are satisfied by large classes of examples.
- As swampland criteria are formulated in terms of the EFT itself, they yield *well-defined* mathematical problems.

Conversely, mathematical objects that were developed a priori without relation to physics were found to be powerful tools in the exploration of the swampland program.
Motivation for the swampland program

Low-energy limits and moduli spaces

The distance conjectures

Relation to special holonomy
Energy and length scales

The action of a string $X : (\Sigma^2, h) \to (M^D, g)$ moving in space-time is:

$$S[X] = -\frac{1}{4\pi\alpha'} \int h^{ab} g_{\mu\nu}(X) \frac{\partial X^\mu}{\partial \sigma^a} \frac{\partial X^\nu}{\partial \sigma^b} \sqrt{-h} d\sigma^2.$$
Energy and length scales

The action of a string $X : (\Sigma^2, h) \rightarrow (M^D, g)$ moving in space-time is:

$$S[X] = -\frac{1}{4\pi \alpha'} \int h^{ab} g_{\mu\nu}(X) \frac{\partial X^\mu}{\partial \sigma^a} \frac{\partial X^\nu}{\partial \sigma^b} \sqrt{-h} d\sigma^2.$$

The parameter α' has dimension $(\text{length})^2 = (\text{mass})^{-2}$. Define:
Energy and length scales

The action of a string $X : (\Sigma^2, h) \rightarrow (M^D, g)$ moving in space-time is:

$$S[X] = -\frac{1}{4\pi\alpha'} \int h^{ab} g_{\mu\nu}(X) \frac{\partial X^\mu}{\partial \sigma^a} \frac{\partial X^\nu}{\partial \sigma^b} \sqrt{-hd\sigma^2}.$$

The parameter α' has dimension $(\text{length})^2 = (\text{mass})^{-2}$. Define:

$\triangleright \quad l_s = \sqrt{\alpha'}$ (string length scale)
Energy and length scales

The action of a string $X : (\Sigma^2, h) \rightarrow (M^D, g)$ moving in space-time is:

$$S[X] = -\frac{1}{4\pi\alpha'} \int h^{ab} g_{\mu\nu}(X) \frac{\partial X^\mu}{\partial \sigma^a} \frac{\partial X^\nu}{\partial \sigma^b} \sqrt{-h} d\sigma^2.$$

The parameter α' has dimension $(\text{length})^2 = (\text{mass})^{-2}$. Define:

- $l_s = \sqrt{\alpha'}$ (string length scale)
- $m_s = \frac{1}{\sqrt{\alpha'}}$ (string mass scale)
Energy and length scales

The action of a string $X : (\Sigma^2, h) \rightarrow (M^D, g)$ moving in space-time is:

$$S[X] = -\frac{1}{4\pi \alpha'} \int h^{ab} g_{\mu\nu}(X) \frac{\partial X^\mu}{\partial \sigma^a} \frac{\partial X^\nu}{\partial \sigma^b} \sqrt{-h} d\sigma^2.$$

The parameter α' has dimension $(\text{length})^2 = (\text{mass})^{-2}$. Define:

- $l_s = \sqrt{\alpha'}$ (string length scale)
- $m_s = \frac{1}{\sqrt{\alpha'}}$ (string mass scale)

Consequence

The massive states in the string spectrum have mass of order m_s. Thus at energies $E \ll m_s$ only the massless modes are relevant.
Energy and length scales

The action of a string $X : (\Sigma^2, h) \to (M^D, g)$ moving in space-time is:

$$S[X] = -\frac{1}{4\pi \alpha'} \int h^{ab} g_{\mu\nu}(X) \frac{\partial X^\mu}{\partial \sigma^a} \frac{\partial X^\nu}{\partial \sigma^b} \sqrt{-h} d\sigma^2.$$

The parameter α' has dimension $(\text{length})^2 = (\text{mass})^{-2}$. Define:

- $l_s = \sqrt{\alpha'}$ (string length scale)
- $m_s = \frac{1}{\sqrt{\alpha'}}$ (string mass scale)

Consequence

The massive states in the string spectrum have mass of order m_s. Thus at energies $E \ll m_s$ only the massless modes are relevant.

- $\gamma_{\mu\nu}$ symmetric 2-tensor, $B_{\mu\nu}$ 2-form, Φ scalar
- graviton, Ramond-Kalb field, dilaton
Low-energy limits and moduli spaces

Low-energy limit

Effective field theory

Low-energy physics is given by a Lagrangian theory of fields which only describes the dynamics of the massless modes.
Low-energy limits and moduli spaces

Low-energy limit

Effective field theory

Low-energy physics is given by a Lagrangian theory of fields which only describes the dynamics of the massless modes.

In the limit of low energies $E \ll m_s$ and small curvature backgrounds $l_s \ll L$ the effective action is:

$$S_{\text{eff}}[g, B, \Phi] = \frac{1}{2\kappa_0^2} \int_M e^{-2\Phi} \left(R_g - \frac{1}{12} |dB|^2 + 4|d\Phi|^2 \right) d\text{Vol}_g.$$
Low-energy limits and moduli spaces

Low-energy limit

Effective field theory

Low-energy physics is given by a Lagrangian theory of fields which only describes the dynamics of the massless modes.

In the limit of low energies $E \ll m_s$ and small curvature backgrounds $l_s \ll L$ the effective action is:

$$S_{\text{eff}}[g, B, \Phi] = \frac{1}{2\kappa_0^2} \int_M e^{-2\Phi} \left(R_g - \frac{1}{12} |dB|^2 + 4 |d\Phi|^2 \right) d\text{Vol}_g.$$

Possible string vacua correspond to configurations $(\langle g \rangle, \langle B \rangle, \langle \Phi \rangle)$ that solve the corresponding Euler-Lagrange equations.
Low-energy limits and moduli spaces

Low-energy limit

Effective field theory

Low-energy physics is given by a Lagrangian theory of fields which only describes the dynamics of the massless modes.

In the limit of low energies $E \ll m_s$ and small curvature backgrounds $l_s \ll L$ the effective action is:

$$S_{\text{eff}}[g, B, \Phi] = \frac{1}{2\kappa_0^2} \int_M e^{-2\Phi} \left(R_g - \frac{1}{12} |dB|^2 + 4|d\Phi|^2 \right) d\text{Vol}_g.$$

Possible string vacua correspond to configurations $(\langle g \rangle, \langle B \rangle, \langle \Phi \rangle)$ that solve the corresponding Euler-Lagrange equations. The graviton, Ramond-Kalb and dilaton fields appear as perturbations

$$g = \langle g \rangle + \delta g, \quad B = \langle B \rangle + \delta B, \quad \Phi = \langle \Phi \rangle + \delta \Phi$$
Low-energy limit

Effective field theory

Low-energy physics is given by a Lagrangian theory of fields which only describes the dynamics of the massless modes.

In the limit of low energies \(E \ll m_s \) and small curvature backgrounds \(l_s \ll L \) the effective action is:

\[
S_{\text{eff}}[g, B, \Phi] = \frac{1}{2\kappa^2_0} \int_M e^{-2\Phi} \left(R_g - \frac{1}{12} |dB|^2 + 4|d\Phi|^2 \right) d\text{Vol}_g .
\]

After redefinition of the space-time metric \(g \rightarrow \tilde{g} \) to absorb the factor \(e^{-2\Phi} \) the effective action can be put in the form:

\[
S_D = \frac{1}{2\kappa^2} \int_M \left(R_{\tilde{g}} - \frac{1}{12} |dB|^2 - C_D |d\Phi|^2 \right) d\text{Vol}_{\tilde{g}}
\]
Dimensional reduction

To obtain a field theory in 4 dimensions, take $M^D = \mathbb{R}^4 \times Y^{D-4}$ with:

$$\langle g \rangle = \eta^{(4)} \times g_Y, \quad \langle B \rangle \in \mathcal{H}^2(Y), \quad \langle \Phi \rangle \equiv \text{cst.}$$
Dimensional reduction

To obtain a field theory in 4 dimensions, take $M^D = \mathbb{R}^4 \times Y^{D-4}$ with:

$$\langle g \rangle = \eta^{(4)} \times g_Y, \quad \langle B \rangle \in \mathcal{H}^2(Y), \quad \langle \Phi \rangle \equiv \text{cst}.$$

The effective action in \mathbb{R}^4 is obtained by integrating along Y.

Example: modes generated by $B_{\delta B}(x, y) = P \phi_n(x) \beta_n(y) + \cdots$ where β_n is an L^2-basis of $\Omega^2(Y)$ with $\Delta_Y \beta_n = \lambda_n \beta_n$, $\|\beta_n\|_{L^2} = 1$ and $d^* \beta_n = 0$.

Remark 1: Kaluza-Klein states. Expansions of B and Φ yield towers of states with masses determined by the spectrum of Δ_Y. Harmonic forms correspond to massless states.
Dimensional reduction

To obtain a field theory in 4 dimensions, take $M^D = \mathbb{R}^4 \times Y^{D-4}$ with:

\[
\langle g \rangle = \eta^{(4)} \times g_Y, \quad \langle B \rangle \in \mathcal{H}^2(Y), \quad \langle \Phi \rangle \equiv \text{cst}.
\]

The effective action in \mathbb{R}^4 is obtained by integrating along Y.

Example: modes generated by B

\[
\delta B(x, y) = \sum \phi_n(x)\beta_n(y) + \cdots \quad \text{where} \quad \beta_n \text{ is an } L^2\text{-basis of } \Omega^2(Y) \text{ with}
\]

\[
\Delta_Y \beta_n = \lambda_n \beta_n, \quad \|\beta_n\|_{L^2} = 1 \quad \text{and} \quad d^* \beta_n = 0.
\]
Dimensional reduction

To obtain a field theory in 4 dimensions, take $M^D = \mathbb{R}^4 \times Y^{D-4}$ with:

$$\langle g \rangle = \eta^{(4)} \times g_Y, \quad \langle B \rangle \in \mathcal{H}^2(Y), \quad \langle \Phi \rangle \equiv \text{cst}.$$

The effective action in \mathbb{R}^4 is obtained by integrating along Y.

Example: modes generated by B

$$\delta B(x, y) = \sum \phi_n(x) \beta_n(y) + \cdots$$

where β_n is an L^2-basis of $\Omega^2(Y)$ with $\Delta_Y \beta_n = \lambda_n \beta_n$, $\|\beta_n\|_{L^2} = 1$ and $d^* \beta_n = 0$.

$$- \int_{\mathbb{R}^4 \times Y} |dB|^2 d\text{Vol} = - \int_{\mathbb{R}^4} \sum_n \partial_{\mu} \phi_n(x) \partial^{\mu} \phi_n(x) + \lambda_n \phi_n^2(x) dx^4 + \cdots$$
Dimensional reduction

To obtain a field theory in 4 dimensions, take $M^D = \mathbb{R}^4 \times Y^{D-4}$ with:

$$\langle g \rangle = \eta^{(4)} \times g_Y, \quad \langle B \rangle \in \mathcal{H}^2(Y), \quad \langle \Phi \rangle \equiv \text{cst.}$$

The effective action in \mathbb{R}^4 is obtained by integrating along Y.

Example: modes generated by B

$$\delta B(x, y) = \sum \phi_n(x) \beta_n(y) + \cdots$$

where β_n is an L^2-basis of $\Omega^2(Y)$ with $\Delta_Y \beta_n = \lambda_n \beta_n$, $\|\beta_n\|_{L^2} = 1$ and $d^* \beta_n = 0$.

$$- \int_{\mathbb{R}^4 \times Y} |dB|^2 d\text{Vol} = - \int_{\mathbb{R}^4} \partial_\mu \phi_n(x) \partial^\mu \phi_n(x) + \lambda_n \phi_n^2(x) dx^4 + \cdots$$

$$\implies$$

each mode ϕ_n corresponds to a scalar field of mass $m_n^2 = \lambda_n$.

Remark 1: Kaluza-Klein states

Expansions of B and Φ yield towers of states with masses determined by the spectrum of Δ_Y. Harmonic forms correspond to massless states.
Dimensional reduction

To obtain a field theory in 4 dimensions, take $M^D = \mathbb{R}^4 \times Y^{D-4}$ with:

$$\langle g \rangle = \eta^{(4)} \times g_Y, \quad \langle B \rangle \in \mathcal{H}^2(Y), \quad \langle \Phi \rangle \equiv \text{cst.}$$

The effective action in \mathbb{R}^4 is obtained by integrating along Y.

Example: modes generated by B

$$\delta B(x, y) = \sum \phi_n(x) \beta_n(y) + \cdots$$

where β_n is an L^2-basis of $\Omega^2(Y)$ with

$$\Delta_Y \beta_n = \lambda_n \beta_n, \quad \|\beta_n\|_{L^2} = 1 \quad \text{and} \quad d^* \beta_n = 0.$$

$$- \int_{\mathbb{R}^4 \times Y} |dB|^2 d\text{Vol} = - \int_{\mathbb{R}^4} \partial_\mu \phi_n(x) \partial^{\mu} \phi_n(x) + \lambda_n \phi_n^2(x) dx^4 + \cdots$$

\implies each mode ϕ_n corresponds to a scalar field of mass $m_n^2 = \lambda_n$.

Remark 1: Kaluza-Klein states

Expansions of B and Φ yield towers of states with masses determined by the spectrum of Δ_Y. Harmonic forms correspond to massless states.
Dimensional reduction

To obtain a field theory in 4 dimensions, take $M^D = \mathbb{R}^4 \times Y^{D-4}$ with:

$$\langle g \rangle = \eta^{(4)} \times g_Y, \quad \langle B \rangle \in H^2(Y), \quad \langle \Phi \rangle \equiv \text{cst}. $$

The effective action in \mathbb{R}^4 is obtained by integrating along Y.

Example: modes generated by B

$$\delta B(x, y) = \sum \phi_n(x) \beta_n(y) + \cdots$$

where β_n is an L^2-basis of $\Omega^2(Y)$ with $\Delta_Y \beta_n = \lambda_n \beta_n$, $\| \beta_n \|_{L^2} = 1$ and $d^* \beta_n = 0$.

$$- \int_{\mathbb{R}^4 \times Y} |dB|^2 d \text{Vol} = - \int_{\mathbb{R}^4} \partial_\mu \phi_n(x) \partial^\mu \phi_n(x) + \lambda_n \phi_n^2(x) dx^4 + \cdots$$

\implies each mode ϕ_n corresponds to a scalar field of mass $m_n^2 = \lambda_n$.

Remark 2: Kaluza-Klein reduction

At low energies, the massive modes can be discarded. Only a finite number of massless fields in 4D remain.
Moduli spaces

The massless scalars generated by B correspond to perturbations $\delta B = \sum \phi^k(x) \beta_k(y)$, with $\beta_1, \ldots, \beta_{b^2(Y)}$ harmonic 2-forms on Y.

The moduli spaces are parametrised by the vacuum expectation value of scalar fields. The effective Lagrangian for such variations reads (up to constant):

$$L(\phi^k) = -g^{k \ell} \partial_\mu \phi^k(x) \partial^\mu \phi^\ell(x),$$

with $g^{k \ell} = \langle \beta_k, \beta_\ell \rangle$.

Moduli spaces come naturally equipped with a metric, corresponding to the kinetic term in the effective Lagrangian in 4D.
Moduli spaces

The massless scalars generated by B correspond to perturbations
\[\delta B = \sum \phi^k(x) \beta_k(y), \]
with $\beta_1, \ldots, \beta_{b^2(Y)}$ harmonic 2-forms on Y.

Principle

In general, the moduli spaces of vacua are parametrised by the vacuum expectation value of scalar fields.
Moduli spaces

The massless scalars generated by B correspond to perturbations
\[\delta B = \sum \phi^k(x) \beta_k(y), \]
with $\beta_1, \ldots, \beta_{b_2(Y)}$ harmonic 2-forms on Y.

Principle

In general, the moduli spaces of vacua are parametrised by the vacuum expectation value of scalar fields.

The effective Lagrangian for such variations reads (up to constant):
\[\mathcal{L}(\phi^k) = -g_{kl} \partial_\mu \phi^k(x) \partial^\mu \phi^l(x), \quad g_{kl} = \langle \beta_k, \beta_l \rangle_{L^2} \]
Moduli spaces

The massless scalars generated by B correspond to perturbations $\delta B = \sum \phi^k(x) \beta_k(y)$, with $\beta_1, \ldots, \beta_{b^2(Y)}$ harmonic 2-forms on Y.

Principle

In general, the moduli spaces of vacua are parametrised by the vacuum expectation value of scalar fields.

The effective Lagrangian for such variations reads (up to constant):

$$\mathcal{L}(\phi^k) = -g_{kl} \partial_\mu \phi^k(x) \partial^\mu \phi^l(x), \quad g_{kl} = \langle \beta_k, \beta_l \rangle_{L^2}$$

Metric

Moduli spaces come naturally equipped with a metric, corresponding to the kinetic term in the effective Lagrangian in 4D.
Motivation for the swampland program

Low-energy limits and moduli spaces

The distance conjectures

Relation to special holonomy
Infinite distance limits

Conjecture 1

Moduli spaces of field theories that admit a consistent completion into quantum gravity at high energies have infinite diameter.
Infinite distance limits

Conjecture 1

Moduli spaces of field theories that admit a consistent completion into quantum gravity at high energies have infinite diameter.

An interesting problem is to test it for moduli spaces that have a geometric origin (complex structure moduli spaces on CY manifolds, moduli spaces of Kähler forms, moduli spaces of G_2-manifolds, etc.).
Conjecture 1

Moduli spaces of field theories that admit a consistent completion into quantum gravity at high energies have infinite diameter.

An interesting problem is to test it for moduli spaces that have a geometric origin (complex structure moduli spaces on CY manifolds, moduli spaces of Kähler forms, moduli spaces of G_2-manifolds, etc.).

▶ Is there always an infinite distance limit?
Infinite distance limits

Conjecture 1

Moduli spaces of field theories that admit a consistent completion into quantum gravity at high energies have infinite diameter.

An interesting problem is to test it for moduli spaces that have a geometric origin (complex structure moduli spaces on CY manifolds, moduli spaces of Kähler forms, moduli spaces of G_2-manifolds, etc.).

- Is there always an infinite distance limit?
- Can such limits be characterised?
Infinite distance limits

Conjecture 1

Moduli spaces of field theories that admit a consistent completion into quantum gravity at high energies have infinite diameter.

An interesting problem is to test it for moduli spaces that have a geometric origin (complex structure moduli spaces on CY manifolds, moduli spaces of Kähler forms, moduli spaces of G_2-manifolds, etc.).

- Is there always an infinite distance limit?
- Can such limits be characterised?

The rest of the distance conjectures are concerned with what happens near an infinite distance limit in such moduli space M.
Volume and curvatures

Conjecture 2

Near the boundary at infinity in \mathcal{M}, the scalar curvature becomes non-positive (negative if the dimension is greater than 1).

Remark

There are moduli spaces for which the scalar curvature can take positive values. Thus this is really an asymptotic statement.

A related fact is that the relevant moduli spaces often have finite volume.

Moreover, there are other notions of curvature worth considering (Ricci curvature, sectional and holomorphic sectional curvatures).
Volume and curvatures

Conjecture 2

Near the boundary at infinity in \mathcal{M}, the scalar curvature becomes non-positive (negative if the dimension is greater than 1).

Remark

There are moduli spaces for which the scalar curvature can take positive values. Thus this is really an asymptotic statement.
Volume and curvatures

Conjecture 2

Near the boundary at infinity in \mathcal{M}, the scalar curvature becomes non-positive (negative if the dimension is greater than 1).

Remark

There are moduli spaces for which the scalar curvature can take positive values. Thus this is really an asymptotic statement.

A related fact is that the relevant moduli spaces often have finite volume. Moreover, there are other notions of curvature worth considering (Ricci curvature, sectional and holomorphic sectional curvatures).
Volume and curvatures

Conjecture 2

Near the boundary at infinity in \mathcal{M}, the scalar curvature becomes non-positive (negative if the dimension is greater than 1).

Remark

There are moduli spaces for which the scalar curvature can take positive values. Thus this is really an asymptotic statement.

A related fact is that the relevant moduli spaces often have finite volume. Moreover, there are other notions of curvature worth considering (Ricci curvature, sectional and holomorphic sectional curvatures).

▶ Asymptotic geometry?
Volume and curvatures

Conjecture 2

Near the boundary at infinity in \mathcal{M}, the scalar curvature becomes non-positive (negative if the dimension is greater than 1).

Remark

There are moduli spaces for which the scalar curvature can take positive values. Thus this is really an asymptotic statement.

A related fact is that the relevant moduli spaces often have finite volume. Moreover, there are other notions of curvature worth considering (Ricci curvature, sectional and holomorphic sectional curvatures).

▶ Asymptotic geometry?
▶ What can be said about the total volume, and about the positivity of various curvatures?
Towers of light states

Conjecture 3

As $d(P, P_0) \to \infty$ in \mathcal{M}, the EFT breaks down due to the appearance of an infinite tower of particles becoming light, with mass scale

$$m(P) \sim m(P_0) e^{-\alpha d(P, P_0)}.$$
Towers of light states

Conjecture 3

As $d(P, P_0) \to \infty$ in \mathcal{M}, the EFT breaks down due to the appearance of an infinite tower of particles becoming light, with mass scale

$$m(P) \sim m(P_0) e^{-\alpha d(P, P_0)}.$$

This means that the EFT cannot be trusted near a point at infinite distance, and corrections have to be taken into account in this limit.
The distance conjectures

Towers of light states

Conjecture 3

As $d(P, P_0) \to \infty$ in \mathcal{M}, the EFT breaks down due to the appearance of an infinite tower of particles becoming light, with mass scale

$$m(P) \sim m(P_0)e^{-\alpha d(P, P_0)}.$$

This means that the EFT cannot be trusted near a point at infinite distance, and corrections have to be taken into account in this limit.

Understanding these towers of states involves many interesting problems:
Towers of light states

Conjecture 3

As \(d(P, P_0) \to \infty \) in \(\mathcal{M} \), the EFT breaks down due to the appearance of an infinite tower of particles becoming light, with mass scale

\[
 m(P) \sim m(P_0) e^{-\alpha d(P, P_0)}.
\]

This means that the EFT cannot be trusted near a point at infinite distance, and corrections have to be taken into account in this limit.

Understanding these towers of states involves many interesting problems:

- What is the moduli dependence of the eigenvalues of the Laplacian acting on differential forms?
Towers of light states

Conjecture 3

As $d(P, P_0) \to \infty$ in \mathcal{M}, the EFT breaks down due to the appearance of an infinite tower of particles becoming light, with mass scale

$$m(P) \sim m(P_0)e^{-\alpha d(P, P_0)}.$$

This means that the EFT cannot be trusted near a point at infinite distance, and corrections have to be taken into account in this limit.

Understanding these towers of states involves many interesting problems:

- What is the moduli dependence of the eigenvalues of the Laplacian acting on differential forms?
- Which homology classes are represented by calibrated submanifolds (e.g. $SLag$ in $CY3$, associatives or co-associatives in G_2)?
Motivation for the swampland program

Low-energy limits and moduli spaces

The distance conjectures

Relation to special holonomy
Calabi-Yau threefold compactifications

An important class of string backgrounds are of the form $\mathbb{R}^4 \times X^6$, where the internal manifold is a compact Calabi-Yau threefold

- X complex threefold, Kähler, with trivial canonical bundle.
Calabi-Yau threefold compactifications

An important class of string backgrounds are of the form $\mathbb{R}^4 \times X^6$, where the internal manifold is a compact Calabi-Yau threefold

- X complex threefold, Kähler, with trivial canonical bundle.

The data of X equipped with a Ricci flat Kähler metric is equivalent to a torsion-free $SU(3)$-structure (ω, Ω).
Calabi-Yau threefold compactifications

An important class of string backgrounds are of the form $\mathbb{R}^4 \times X^6$, where the internal manifold is a compact Calabi-Yau threefold X

- X complex threefold, Kähler, with trivial canonical bundle.

The data of X equipped with a Ricci flat Kähler metric is equivalent to a torsion-free $SU(3)$-structure (ω, Ω).

Two important moduli spaces:
Calabi-Yau threefold compactifications

An important class of string backgrounds are of the form $\mathbb{R}^4 \times X^6$, where the internal manifold is a compact Calabi-Yau threefold X complex threefold, Kähler, with trivial canonical bundle.

The data of X equipped with a Ricci flat Kähler metric is equivalent to a torsion-free $SU(3)$-structure (ω, Ω).

Two important moduli spaces:

- The moduli space of complex structures on X (relevant for type IIB).
Calabi-Yau threefold compactifications

An important class of string backgrounds are of the form $\mathbb{R}^4 \times X^6$, where the internal manifold is a compact Calabi-Yau threefold

- X complex threefold, Kähler, with trivial canonical bundle.

The data of X equipped with a Ricci flat Kähler metric is equivalent to a torsion-free $SU(3)$-structure (ω, Ω).

Two important moduli spaces:

- The moduli space of complex structures on X (relevant for type IIB).
- The moduli space of complexified Kähler forms (in type IIA).
Calabi-Yau threefold compactifications

An important class of string backgrounds are of the form $\mathbb{R}^4 \times X^6$, where the internal manifold is a compact Calabi-Yau threefold X complex threefold, Kähler, with trivial canonical bundle. The data of X equipped with a Ricci flat Kähler metric is equivalent to a torsion-free $SU(3)$-structure (ω, Ω).

Two important moduli spaces:

- The moduli space of complex structures on X (relevant for type IIB).
- The moduli space of complexified Kähler forms (in type IIA).

According to mirror symmetry, there should be a form of duality between them, on different CY3 X and \hat{X}.
Moduli space of complex structures

Let X be a compact CY3 with $\pi_1(X)$ finite, and fix a Kähler class.
Moduli space of complex structures

Let X be a compact CY3 with $\pi_1(X)$ finite, and fix a Kähler class.

- The local universal family of deformations of complex structures on X is smooth and has dimension $b^{2,1}(X)$.

Much information on the deformations of X is captured in the variations of the Hodge decomposition:

$$H^3(X; \mathbb{C}) = H^3,0(X) \oplus H^2,1(X) \oplus H^1,2(X) \oplus H^0,3(X).$$

In fact g_{WP} can be expressed as the curvature of the first Hodge bundle.
Moduli space of complex structures

Let X be a compact CY3 with $\pi_1(X)$ finite, and fix a Kähler class.

The local universal family of deformations of complex structures on X is smooth and has dimension $b^{2,1}(X)$.

The relevant metric to consider is the Weil-Petersson metric:

$$g_{WP}(\eta, \xi) = \frac{\langle \eta, \xi \rangle_{L^2}}{Vol(X)}, \quad \eta, \xi \in H^{2,1}(X).$$
Moduli space of complex structures

Let X be a compact CY3 with $\pi_1(X)$ finite, and fix a Kähler class.

- The local universal family of deformations of complex structures on X is smooth and has dimension $b^{2,1}(X)$.
- The relevant metric to consider is the Weil-Petersson metric:

$$g_{WP}(\eta, \xi) = \frac{\langle \eta, \xi \rangle_{L^2}}{Vol(X)}, \quad \eta, \xi \in H^{2,1}(X).$$

Much information on the deformations of X is captured in the variations of the Hodge decomposition:

$$H^3(X; \mathbb{C}) = H^{3,0}(X) \oplus H^{2,1}(X) \oplus H^{1,2}(X) \oplus H^{0,3}(X)$$
Moduli space of complex structures

Let X be a compact CY3 with $\pi_1(X)$ finite, and fix a Kähler class.

- The local universal family of deformations of complex structures on X is smooth and has dimension $b^{2,1}(X)$.

- The relevant metric to consider is the Weil-Petersson metric:

$$g_{WP}(\eta, \xi) = \frac{\langle \eta, \xi \rangle_{L^2}}{\text{Vol}(X)}, \quad \eta, \xi \in \mathcal{H}^{2,1}(X).$$

Much information on the deformations of X is captured in the variations of the Hodge decomposition:

$$H^3(X; \mathbb{C}) = H^{3,0}(X) \oplus H^{2,1}(X) \oplus H^{1,2}(X) \oplus H^{0,3}(X)$$

In fact g_{WP} can be expressed as the curvature of the first Hodge bundle.
Support for the swampland conjectures

This period mapping and the general theory of variations of Hodge structures provides a lot of information on the geometry of the moduli space of complex structures on X, and many tools in the exploration of the swampland conjectures:

1. There are (partial) characterisations of infinite distance limits in terms of singularities of the period mapping.
2. The moduli spaces of polarized Calabi-Yau threefolds (or n-folds, $n \geq 4$) have finite Weil-Petersson volume.
3. The integral of the scalar curvature is also finite.
4. There is also a lot of work using the machinery of asymptotic Hodge theory to study various aspects of the swampland program.
Support for the swampland conjectures

This period mapping and the general theory of variations of Hodge structures provides a lot of information on the geometry of the moduli space of complex structures on X, and many tools in the exploration of the swampland conjectures:

- There are (partial) characterisations of infinite distance limits in terms of singularities of the period mapping.
Support for the swampland conjectures

This period mapping and the general theory of variations of Hodge structures provides a lot of information on the geometry of the moduli space of complex structures on X, and many tools in the exploration of the swampland conjectures:

- There are (partial) characterisations of infinite distance limits in terms singularities of the period mapping.
- The moduli spaces of polarized Calabi-Yau threefolds (or n-folds, $n \geq 4$) have finite Weil-Petersson volume.
Support for the swampland conjectures

This period mapping and the general theory of variations of Hodge structures provides a lot of information on the geometry of the moduli space of complex structures on X, and many tools in the exploration of the swampland conjectures:

- There are (partial) characterisations of infinite distance limits in terms singularities of the period mapping.
- The moduli spaces of polarized Calabi-Yau threefolds (or n-folds, $n \geq 4$) have finite Weil-Petersson volume.
- The integral of the scalar curvature is also finite.
Support for the swampland conjectures

This period mapping and the general theory of variations of Hodge structures provides a lot of information on the geometry of the moduli space of complex structures on X, and many tools in the exploration of the swampland conjectures:

- There are (partial) characterisations of infinite distance limits in terms singularities of the period mapping.
- The moduli spaces of polarized Calabi-Yau threefolds (or n-folds, $n \geq 4$) have finite Weil-Petersson volume.
- The integral of the scalar curvature is also finite.
- There is also a lot of work using the machinery of asymptotic Hodge theory to study various aspects of the swampland program.
Compactifications on G_2-manifolds

The low-energy limit of M-theory is expected to be given by the action:

$$S[g, C] = \frac{1}{2} \int R_g \, d\text{Vol}_g - \frac{1}{4} \int dC \wedge \star dC - \frac{1}{12} \int C \wedge dC \wedge dC$$
Compactifications on G_2-manifolds

The low-energy limit of M-theory is expected to be given by the action:

$$S[g, C] = \frac{1}{2} \int R_g \, d\text{Vol}_g - \frac{1}{4} \int dC \wedge \ast dC - \frac{1}{12} \int C \wedge dC \wedge dC$$

Two bosonic fields:

- g is the space-time metric.
- C is a 3-form. As the action is invariant under $C \to C + dB$ one may impose $d\ast C = 0$. Possible vacuum expectation values $(\langle g \rangle, \langle C \rangle)$ on $M_{11} = \mathbb{R}^4 \times Y^7$ are:
 - $\langle g \rangle = \eta(4) \times g_\phi$, with ϕ torsion-free G_2-structure on Y.
 - $\langle C \rangle$ harmonic 3-form on Y.
Compactifications on G_2-manifolds

The low-energy limit of M-theory is expected to be given by the action:

$$S[g, C] = \frac{1}{2} \int R_g \, d \text{Vol}_g - \frac{1}{4} \int dC \wedge *dC - \frac{1}{12} \int C \wedge dC \wedge dC$$

Two bosonic fields:

- g is the space-time metric.
- C is a 3-form. As the action is invariant under $C \to C + dB$ one may impose $d^* C = 0$.

Possible vacuum expectation values $(\langle g \rangle, \langle C \rangle)$ on $M_{11} = \mathbb{R}^4 \times Y^7$ are:

- $\langle g \rangle = \eta^{(4)} \times g_{\phi}$, with ϕ torsion-free G_2-structure on Y.
- $\langle C \rangle$ harmonic 3-form on Y.
Compactifications on G_2-manifolds

The low-energy limit of M-theory is expected to be given by the action:

$$S[g, C] = \frac{1}{2} \int R_g \, d \text{Vol}_g - \frac{1}{4} \int dC \wedge *dC - \frac{1}{12} \int C \wedge dC \wedge dC$$

Two bosonic fields:

- g is the space-time metric.
- C is a 3-form. As the action is invariant under $C \rightarrow C + dB$ one may impose $d^* C = 0$.

Possible vacuum expectation values $(\langle g \rangle, \langle C \rangle)$ on $M^{11} = \mathbb{R}^4 \times Y^7$ are:
Compactifications on G_2-manifolds

The low-energy limit of M-theory is expected to be given by the action:

$$S[g, C] = \frac{1}{2} \int R_g \, d\text{Vol}_g - \frac{1}{4} \int dC \wedge \star dC - \frac{1}{12} \int C \wedge dC \wedge dC$$

Two bosonic fields:

- g is the space-time metric.
- C is a 3-form. As the action is invariant under $C \rightarrow C + dB$ one may impose $d^* C = 0$.

Possible vacuum expectation values $(\langle g \rangle, \langle C \rangle)$ on $M^{11} = \mathbb{R}^4 \times Y^7$ are:

- $\langle g \rangle = \eta^{(4)} \times g_\varphi$, with φ torsion-free G_2-structure on Y.
Compactifications on G_2-manifolds

The low-energy limit of M-theory is expected to be given by the action:

$$S[g, C] = \frac{1}{2} \int R_g \, d\text{Vol}_g - \frac{1}{4} \int dC \wedge *dC - \frac{1}{12} \int C \wedge dC \wedge dC$$

Two bosonic fields:

- g is the space-time metric.
- C is a 3-form. As the action is invariant under $C \rightarrow C + dB$ one may impose $d^* C = 0$.

Possible vacuum expectation values $(\langle g \rangle, \langle C \rangle)$ on $M^{11} = \mathbb{R}^4 \times Y^7$ are:

- $\langle g \rangle = \eta^{(4)} \times g_\varphi$, with φ torsion-free G_2-structure on Y.
- $\langle C \rangle$ harmonic 3-form on Y.
Complexified moduli spaces of G_2-manifolds

The moduli space of torsion-free G_2-structures on Y has dimension $b^3(Y)$, and is locally parametrised by $\varphi \mapsto [\varphi] \in H^3(Y)$. Thus the moduli space \mathcal{M} of the vevs $(\langle \varphi \rangle, \langle C \rangle)$ is locally modelled on $H^3(Y) \oplus H^3(Y)$.

This moduli space has a natural complex structure $J(\eta, \xi) = (-\xi, \eta)$, $\eta, \xi \in H^3(Y)$.

The relevant metric to consider is:

$$\| (\eta, \xi) \|^2 = \| \eta \|^2_{L^2} + \| \xi \|^2_{L^2} \operatorname{Vol}(\varphi), \quad \eta, \xi \in H^3(Y)$$

This metric is Kähler, and admits a global potential given (up to constant) by $\log \operatorname{Vol}(\varphi)$.

Question: Global / asymptotic geometry of \mathcal{M}?
Complexified moduli spaces of G_2-manifolds

The moduli space of torsion-free G_2-structures on Y has dimension $b^3(Y)$, and is locally parametrised by $\varphi \mapsto [\varphi] \in H^3(Y)$. Thus the moduli space \mathcal{M} of the vevs $(\langle \varphi \rangle, \langle C \rangle)$ is locally modelled on $H^3(Y) \oplus H^3(Y)$.

This moduli space has a natural complex structure

$$J(\eta, \xi) = (-\xi, \eta), \quad \eta, \xi \in H^3(Y).$$
Complexified moduli spaces of G_2-manifolds

The moduli space of torsion-free G_2-structures on Y has dimension $b^3(Y)$, and is locally parametrised by $\varphi \mapsto [\varphi] \in H^3(Y)$. Thus the moduli space \mathcal{M} of the vevs $(\langle \varphi \rangle, \langle C \rangle)$ is locally modelled on $H^3(Y) \oplus H^3(Y)$.

- This moduli space has a natural complex structure

$$J(\eta, \xi) = (-\xi, \eta), \quad \eta, \xi \in H^3(Y).$$

- The relevant metric to consider is:

$$|(\eta, \xi)|^2 = \frac{\|\eta\|_{L^2}^2 + \|\xi\|_{L^2}^2}{\text{Vol}(\varphi)}, \quad \eta, \xi \in \mathcal{H}^3(Y).$$
Complexified moduli spaces of G_2-manifolds

The moduli space of torsion-free G_2-structures on Y has dimension $b_3(Y)$, and is locally parametrised by $\varphi \mapsto [\varphi] \in H^3(Y)$. Thus the moduli space M of the vevs $(\langle \varphi \rangle, \langle C \rangle)$ is locally modelled on $H^3(Y) \oplus H^3(Y)$.

This moduli space has a natural complex structure

$$J(\eta, \xi) = (-\xi, \eta), \quad \eta, \xi \in H^3(Y).$$

The relevant metric to consider is:

$$|\langle \eta, \xi \rangle|^2 = \frac{\|\eta\|_{L^2}^2 + \|\xi\|_{L^2}^2}{\text{Vol}(\varphi)}, \quad \eta, \xi \in H^3(Y).$$

This metric is Kähler, and admits a global potential given (up to constant) by $\log \text{Vol}(\varphi)$.
Complexified moduli spaces of G_2-manifolds

The moduli space of torsion-free G_2-structures on Y has dimension $b^3(Y)$, and is locally parametrised by $\varphi \mapsto [\varphi] \in H^3(Y)$. Thus the moduli space M of the vevs $(\langle \varphi \rangle, \langle C \rangle)$ is locally modelled on $H^3(Y) \oplus H^3(Y)$.

- This moduli space has a natural complex structure

$$J(\eta, \xi) = (-\xi, \eta), \quad \eta, \xi \in H^3(Y).$$

- The relevant metric to consider is:

$$|(\eta, \xi)|^2 = \frac{\|\eta\|_{L^2}^2 + \|\xi\|_{L^2}^2}{\text{Vol}(\varphi)}, \quad \eta, \xi \in H^3(Y).$$

This metric is Kähler, and admits a global potential given (up to constant) by $\log \text{Vol}(\varphi)$.

Question

Global / asymptotic geometry of M?