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Swampland program

Identify the general principles that have to be satisfied
in any four-dimensional theory compatible with quantum
gravity.

— study the properties of ‘simple’ examples arising
from string theory

— findings formulated as ‘quantum gravity conjectures’, or
‘swampland conjectures’

— test or ‘prove’ them in as many as possible instances
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=~ Quantum consistency: formulation in 10, 11, 12 space-time dimensions:

; ; , gl
consider manifolds: [R*"" X X 6, 7, 8 dimensional and compact

-~ String theory also contains higher-dimensional extended objects: D-branes

+ can wrap cycles > C_X , mass of the objects is related to size of cycle

~ Four-dimensional ‘physical’ theories depend on the chosen manifold:

- X is Calabi-Yau manifold preserves extra symmetry (supersymmetry)

»choice of complex structure on X changes e.g. masses of particles,
their interaction strengths etc.

— more D-branes might become relevant when changing
complex structure — new light particles



Distance Conjecture

[Ooguri,Vafa "06]

-~ Consider field space M in a four-dimensional theory (e.g. moduli space)




Distance Conjecture [Ooguri,Vata '06]

- Consider field space M in a four-dimensional theory (e.g. moduli space)

start in theory valid around O

-----------



Distance Conjecture [Ooguri,Vata '06]

- Consider field space M in a four-dimensional theory (e.g. moduli space)

!
start in theory valid around O
P
i = move along a path of infinite
\_J _____ geodesic length to P
O ¢



Distance Conjecture [Ooguri,Vafa '06]

- Consider field space M in a four-dimensional theory (e.g. moduli space)

start in theory valid around O

B
? = move along a path of infinite
geodesic length to P
Conjecture:
O o

Infinite number of particles (states)
M become massless approaching P:

m(P) < Mpe 740 as d(P,0) > 1
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Distance Conjecture [Ooguri,Vafa '06]

- Consider field space M in a four-dimensional theory (e.g. moduli space)

= Universal behavior near infinite

4 A distance points
________ In 2018 we started to use asymptotic
_ Hodge theory to study asymptotic
regions M to test the distance
O* conjecture for Calabi-Yau threefolds.
M |TG,Palti,Valenzuela], [TG,Li,Palti]

Hard mathematical problem: study growth of cycles in X and argue for
the existence of increasing number of stable D-brane states in each infinite

distance limit no proof yet, but significant evidence
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Distance in complex structure moduli space

= Distances are determined by: 4. (P, O) /  gryiliTds
o

= Weil-Petersson metric on complex structure moduli space of CY manifolds:

Kadhler metric: gr7 = 0,100 K
K= -lgliQqeu)]  Qp)=[ ang

= Periods of (3,0)-from {2  (variation of Hodge structure [Griffiths]...)
Q=TIF(2)y =M~ HI:/ )
lir

Question 1: What are the points P for which d. (P, O)
is infinite for every path?




States and their masses

~ Candidate states to consider: BPS - D3 branes wrapping three-cycles

— label the statesby H € H*(X,Z) integral class



States and their masses

~ Candidate states to consider: BPS - D3 branes wrapping three-cycles

— label the statesby H € H?(X,Z) integral class

-~ Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|

given by central charge: 7 = ¢/ “@O(H 9)



States and their masses

~ Candidate states to consider: BPS - D3 branes wrapping three-cycles

— label the statesby H € H*(X,Z) integral class

-~ Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|

volume of cycles
period integral

given by central charge: 7 — eK/ZQ(H, O o



States and their masses

~ Candidate states to consider: BPS - D3 branes wrapping three-cycles

— label the statesby H € H*(X,Z) integral class

-~ Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|

volume of cycles
period integral

given by central charge: 7 = @K/ZQ([—]7 (he e’

Question 2: Is there an infinite set of lattice sites in H> (X, Z)
_d(anz)

such that m(z) x e d(zp,2) = 00 ?




States and their masses

~ Candidate states to consider: BPS - D3 branes wrapping three-cycles

— label the statesby H € H*(X,Z) integral class

-~ Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|

volume of cycles
period integral

given by central charge: 7 — eK/ZQ(H, O o

Question 3: Are there BPS states at these sites, are they stable?

= counting problem, study walls of stability...
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States and their masses

~ Candidate states to consider: BPS - D3 branes wrapping three-cycles

— label the statesby H € H*(X,Z) integral class

-~ Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|

volume of cycles
period integral

given by central charge: 7 — eK/ZQ(H, O o

We used general results from asymptotic Hodge theory for Question 1 & 2.

What is the physics of the limits?
emergence proposal [TG,Palti, Valenzuela][Heidenreich,Reece, Rudelius][Palti]...
emergent strings [Lee,Lerche, Weigand]...



Asymptotic Hodge Theory




Structure of complex structure modul space

~ Consider one-dimensional moduli spaces /M of a Calabi-Yau D-fold

10



Structure of complex structure moduli space

~ Consider one-dimensional moduli spaces /M of a Calabi-Yau D-fold

Example: Calabi-Yau threefold (such as mirror quintic)

conifold point 2.sphere with

three excluded
points
large complex
structure point

10



Structure of complex structure moduli space

~ Consider one-dimensional moduli spaces /M of a Calabi-Yau D-fold

Example: Calabi-Yau threefold (such as mirror quintic)

conifold point 2.sphere with

three excluded
points
large complex
structure point

T

Local geometry: _ omit

g - T+ Y

punctured disc upper half-plane

10
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~ Boundaries are the points where Calabi-Yau manifold degenerates

= associate a monodromy [’ around singular loci

TCOH

each boundary: nilpotent

N =logT"

Jk: N* =0

|[Landman]|[Borel]: T — T5em . T" — coordinate change: remove 177

11



Boundaries in complex structure moduli space

~ Boundaries are the points where Calabi-Yau manifold degenerates

= associate a monodromy [’ around singular loci

TCOH

each boundary: nilpotent N =logT" T VE

|[Landman]|[Borel]: T — T5em . T" — coordinate change: remove 177

higher-dimensional situation: N;  boundaries at normal intersection -
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Asymptotic behavior of (p,q)-decomposition

= naturally combine: FP — C) gL holomorphic over M [Griffiths]

r>p FP =gspan)

~ Nilpotent orbit theorem: [Schmid] | . | .
limiting behavior of F? near boundary t' = x®+ iy* — zf + ico

Fp — 627’ tzNng _|_ 0(627T’Lt)

/ 1

. |

Polynomial in ¢*

nilpotent orbit small near boundary = neglect
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Comments on examples

» Large complex structure Calabi-Yau threefold (near MUM point): [TG,Li,Palti]

( 0 0 0 0 \ / 1 \
L a0 6 0 a0
L K Ky D0 07 | —cog
Lein 90 o1 \ 75%(%“

Kapc, (c2)1, X :intersection numbers, Chern classes of mirror
Calabi-Yau threefold

Remarks:

= (General classification of data in nilpotent orbits [Kerr,Pearlstein,Robles “17]

= Mirror side: Classification of Calabi-Yau threefolds into equivalence

classes using infinite distance limits in Kdhler cone [TG,Heisteeg,Ruehle "19]
8



lype classification and distances

~ Calabi-Yau threefolds: 4 #*! types of data

Types: 1, 1T, 11,1V,

Type

rank of

eigenvalues of n/V
N N¢ N3 = !

ICL
L1,
11,
IVy4

a 0 0 a negative
2+b 0 0 2 positive, b negative
4 te. D 0 not needed
24+d 2 1 not needed

| Kerr,Pearlstein,Robles]

wedge product
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lype classification and distances

~ Calabi-Yau threefolds: 4 #*! types of data [Kerr,Pearlstein,Robles]
0, LIy

k of
Type e eigenvalues of n/N
N Ne N Ve e
wedge product
L a 0 0 a negative
11, 2+b6 O 0 2 positive, b negative
I1I.. dte ) 0 not needed
IV, 2td @2 1 not needed
~ Calabi-Yau fourfolds: 8 #*' types of data [TG,Li, Valenzuela]

TypeS: Ia,a’7 IIb,b’a IIIC,C’) IVd,d’a Ve,e’

17



lype classification and distances

~ Calabi-Yau threefolds: 4 #*! types of data [Kerr,Pearlstein,Robles]
0, LIy

k of
Type e eigenvalues of n/N
N Ne N Ve
wedge product
L a 0 0 a negative
11, 24+b6 O 0 2 positive, b negative
I1I.. dte ) 0 not needed
IV, 2td @2 1 not needed

~ Use nilpotent orbit theorem to compute asymptotic K

Question 1: Infinite distance boundaries 11,, III.,1V 4

18



An example moduli space

= An explicit example: Pl it [18] |Candelas,Font,Katz,Morrison]
[Candelas,De La Ossa,Font,Katz,Morrison]
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An example moduli space

= An explicit example: P Ll [18] |Candelas,Font,Katz,Morrison]
[Candelas,De La Ossa,Font,Katz,Morrison]
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Asymptotic masses ol states

-~ upper bound on asymptotic masses:

m(z, H) < / Ho ol Ele growth theorems for the Hodge norm
. by [Schmid][Kashiwara]

~ nilpotent N defines weight filtration: W, (N) = Z ker N9 +1 A img N7 —n+3
j>max(—1,n—3)

—> W, F) canbe used to define mixed Hodge structures
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Asymptotic masses ol states

-~ upper bound on asymptotic masses:

m(z, H) < / Ho ol Ele growth theorems for the Hodge norm
. by [Schmid][Kashiwara]

~ nilpotent N defines weight filtration: W, (N) = Z ker Nt N img N7~ "3
j>max(—1,n—3)

f owihonsectors: {1y 2 > .2y, > > >0}

| H|? ~ (y) Py ()

He W, (Nl) N Wi, (N(Q)) @y (N(n)) N(z’) = N;+ ...+ N,
(smallest {l;} for which this is true)

21
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Asymptotic masses ol states

-~ upper bound on asymptotic masses:

m(z, H) < / Ho ol Ele growth theorems for the Hodge norm
. by [Schmid][Kashiwara]

~ nilpotent N defines weight filtration: W, (N) = Z ker Nt N img N7~ "3
j>max(—1,n—3)

f owihonsectors: {1y 2 > .2y, > > >0}

H3 (X, Q) = Viight D Vheavy D V;“est
- b
| EiE st |H[* — oo

Question 2: All infinite distance boundaries have H €Vjjght
m(z, H) ~ poly(y') — 0

22
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More mvolved: Use SI(2) orbit theorem

~ Sl(2)-orbit theorem of [Schmid] and [Cattani, Kaplan, Schmid] shows the
existence of special set of sl(2)-data for every nilpotent orbit

— we turn this into powerful computational tool to determine
the asymptotic periods associated to each boundary in the classification

~ SlI(2)-orbit theorem: for each ordered n-parameter limit
- Hodge structure at boundary H”(X,C) = H2 o H Vg ... ¢ HYP
- n commuting sl(2)-triples N, , N;', Y; \]

- n special operators (), obtain normal forms

for each boundary type
in classification

~ Construct near-boundary periods Il(z) starting from this boundary data
12
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Recovering asymplotic periods

Two ways to perform construction:

(1) use proof of sl(2) orbit theorem to construct hA(t,t) € Gg satisfying

certain differential and algebraic constraints = familiar physics approach

= F 1219 g = h(t7 f) F CZ:O detailed account & examples:
TG "20],[TG,vd Heisteeg,Monnee "21]

(2) use the results of the sl(2) orbit theorem to construct F' fﬂ:
can be done e.g. for all boundaries with n=2 for Calabi-Yau threefolds
|[Bastian, TG,vd Heisteeg, "21]

Final step: constructing the periods from F?.

— Many applications in swampland program and model building;:
general tests to asymptotic conjectures, new models away from large
complex structure (MUM point)

24



A Finiteness Conjecture
and Theorem
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Solutions with background fields

Recall: higher-dimensional space-time manifold: RS xY

our 4-dimensional compact
Space-time many choices

— Four-dimensional physics depends on choice of Y’

Problem: deformations of Y can correspond to massless fields
— fifths force — immediate contradiction with experiment
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Solutions with background fields

Solution: Flux Compactifications review: [Grafia] [Kachru,Douglas]
...[Becker,Becker "96],[ Gukov, Vafa,Witten "99],[Giddings,Kachru, Polchiski "03],[TG,Louis "04]...

rough idea: - Y is Calabi-Yau fourfold

- introduce generalization of electromagnetic field G4

>

differential 4-form “flux’

equations of motion (Maxwell eq):

G- He

quantization:

Gl (e 7
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Solutions with background fields

Solution: Flux Compactifications review: [Grafia] [Kachru,Douglas]
...[Becker,Becker "96],[ Gukov, Vafa,Witten "99],[Giddings,Kachru, Polchiski "03],[TG,Louis "04]...

rough idea: - Y is Calabi-Yau fourfold

- introduce generalization of electromagnetic field G4

Assume Y is compact:

/G4/\G4:€
Y

Q(G4,G4)E/YG4/\G4
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Best understood solutions

~ Solution to 12-dimensional theory (F-theory) of the form:

solving Einstein’s equations and other equations of motion

12d manitfold: Rl 9 XY

- 4-form flux:  (G4€ H4(Y, ) 06 G

*Gy = G4 GaAJ =0 | tincohom] gl gual Hins

/ i

Hodge star operatoron Y Kahler form on Y

= should be read as a condition on the choice of complex structure
and Ké&hler structure = fix deformations
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Finiteness Conjectures

= Concrete conjecture: The number of solutions in the described setting
finite. Finitely many choices for Ga.
[Douglas ‘03] [Acharya,Douglas "06]
= Answer: Yes, if one assumes finiteness of Calabi-Yau manifolds.
[Bakker, TG,Schnell, Tsimerman "21]

= More general: Is the number of four-dimensional effective theories
arising from string theory finite (with fixed energy cut-off)?

much activity: [Vafa][Adams,DeWolfe, Taylor] [Kim,Shiu,Vafa] [Kim,Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang]
|Dierigl, Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada,Vafa] [Taylor etal]

[Kim,Shiu, Vafa],[Lee, Weigand],[Tarazi, Vafa] [Hamada,Montero, Vafa, Valenzuela]

Recently: Finiteness is part of a stronger property “Tameness’

Tameness conjectures of set of UV completable quantum field
theories and all their physical observables.

[TG '21][Douglas, TG,Schlechter] I & II
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Connection with Hodge theory

~ Hodge star * changes over complex structure moduli space M
— complicated

~ How to find solution? — (p,q)-forms in H"'? - Hodge decomposition
H4(Y7 C) . H4,0 D H3,1 an H2,2 D H1,3 D HO,4

Fao e o e
Hodge * = Weil Operator C':  +1 L L e +1

Self-dual solutions satisfy: G4 € H*(Y,Z)N(H* @ H** ¢ H"*)

~ Study how HZ’? changes over the moduli space M
= variations of Hodge structures
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Why 1s finiteness non-trivial?

- Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization Oy, w) = / v AW
Y

Q(G4,Gs) =4 = Q(G4,*Gy) = ||Gyl]* = ¢

-~ Allow variation of Hodge structure H_.’?, & € M: very hard problem

— Weil operator (Hodge star) can degenerate on boundaries of M
— key challenge to show: no infinite tails in the asymptotic regimes of M

~ Idea: use asymptotic Hodge theory: nilpotent orbit theorem [Schmid],
sl(2)-orbit theorem [Schmid][Cattani,Kaplan,Schmid]

= using multi-variable SI(2)-orbit theorem too involved



Theorems i Abstract
Variations of Hodge Structures
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~ remarkable theorem which follows partly from the Hodge conjecture for
Hodge structures associated to families of projective Kdhler manifolds Y




Reminder of a famous theorem

~ X smooth complex algebraic variety (e.g. moduli space X = M)

- Hodgebundle: p : I/ — X with fibers Hc , = 69 Ho' rc i
p+q=2d

Theorem [Cattani,Deligne,Kaplan '95]: For integer ¢ > 0, locus of integral
Hodge classes

((.CE,U) c e ge JFY 0 L), end Qlu,v) = Z}

/\

\.

is algebraic, and the restriction of P to this set is proper with finite fibers.

- covers the finiteness of the special case: G4 € H* (Y, Z)N 22

(supersymmetric fluxes)
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Generalization to self-dual classes

~ recall Weil operator C' (e.g. Hodge star): Cv =~ %v v € HP:1

Theorem [Bakker, TG,Schnell Tsimerman]: For integer ¢ >0, the locus of
integral self-dual classes

{(CE,U) c BE: ve Hz, and C,v — v and O(u,v) — f}

is IR,y exp- definable, closed real-analytic subspace of E and the
restriction of p to this set is proper with finite fibers.

locus is definable in the o-minimal structure R, exp

o finitely many connected components
general fac

of tame geometry
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A mathematical structure with finiteness

uses recent results connecting Hodge theory with tame geometry (theory
of o-minimal structures)

theory of o-minimal structures comes from model theory (logic)

— gives a generalization of real algebraic geometry

= provides a tame topology intro book [van den Dries]
lectures: Fields program 2022

Basic idea: specify space of allowed (definable) sets §,, ¢ R"
and allowed (definable) functions f : R" — R™

— definable manifolds, definable bundles,... a whole tame geometry
— strong finiteness properties

Crucial criterium: definable sets in R are finitely many points

and intervals + every higher-dimensional set linearly
projects to such sets on R
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Tameness in Hodge theory

~ there is no unique choice of o-minimal structure on [R"™ :

+examples are obtained by stating which functions are allowed
to generate some of the sets — non-trivial

+ Ran.exp is such an o-minimal structure [Wilkie "96]
|van den Dries, Miller '94]

= Seminal paper of [Bakker,Klingler, Tsimerman "18]:

- maps between arithmetic quotients are definable: I'\G/K — I'\G/K

»use orbit theorems of Hodge theory to show that period map
is definable in Ryp exp

+ new proof of the theorem of [Cattani,Deligne, Kaplan] for Hodge classes
but: uses holomorphicity - self-dual world is real!
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Steps 1n the proof

-~ Step 1: note that Weil operator period map is definable in [BKT]

-~ Step 2: extend definability result to the Hodge bundle

Op: L — P\ (G/K X H@) Proof: uses partly
|[Bakker,Mullane "22].

~ Step 3: Reduction of lattice H7z into finitely many orbits

use group |’ acts on set {v € Hz : Q(v,v) = €} with finitely
many orbits [e.g. Kneser]

= Step 4: Prove finiteness in a single orbit: I'a, a € Hy,
Proof: some computations and definablity of I';\G,/K, — I'\G/K [BKT]

groups fixing



Conclusions

= Hodge theory machinery is important for many quantum gravity
conjectures - general results not requiring to first construct a manifold

27



Conclusions

= Hodge theory machinery is important for many quantum gravity
conjectures - general results not requiring to first construct a manifold

- Results: - tests of distance conjecture
- general models for periods in Calabi-Yau threefolds/fourfolds
- finiteness theorem for the number of self-dual integral classes

27



Conclusions

= Hodge theory machinery is important for many quantum gravity
conjectures - general results not requiring to first construct a manifold

- Results: - tests of distance conjecture
- general models for periods in Calabi-Yau threefolds/fourfolds
- finiteness theorem for the number of self-dual integral classes

Open math questions:

= Can one prove the distance conjecture in the Calabi-Yau threefold setting?

27



Conclusions

= Hodge theory machinery is important for many quantum gravity
conjectures - general results not requiring to first construct a manifold

- Results: - tests of distance conjecture
- general models for periods in Calabi-Yau threefolds/fourfolds
- finiteness theorem for the number of self-dual integral classes

Open math questions:

= Can one prove the distance conjecture in the Calabi-Yau threefold setting?

= What are the properties of cycles dual to self-dual integral classes?
— analog to Hodge conjecture for Hodge classes

27



Conclusions

= Hodge theory machinery is important for many quantum gravity
conjectures - general results not requiring to first construct a manifold

- Results: - tests of distance conjecture
- general models for periods in Calabi-Yau threefolds/fourfolds
- finiteness theorem for the number of self-dual integral classes

Open math questions:

= Can one prove the distance conjecture in the Calabi-Yau threefold setting?

= What are the properties of cycles dual to self-dual integral classes?
— analog to Hodge conjecture for Hodge classes

= Application to manifolds with G; or Spin(7)? Tameness results for
deformation maps?

27



Conclusions

= Hodge theory machinery is important for many quantum gravity
conjectures - general results not requiring to first construct a manifold

- Results: - tests of distance conjecture
- general models for periods in Calabi-Yau threefolds/fourfolds
- finiteness theorem for the number of self-dual integral classes

Open math questions:

= Can one prove the distance conjecture in the Calabi-Yau threefold setting?

= What are the properties of cycles dual to self-dual integral classes?
— analog to Hodge conjecture for Hodge classes

= Application to manifolds with G; or Spin(7)? Tameness results for
deformation maps?

- Tame differential geometry?
27
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Approach 1: constructing h(zx,y)

= Constraints on h(a?, y) in real 2-dimensional M : coords I, Y

(1) Variational principle: S(h) = %/ Tr|(h~1dh)t + h1dh|?
M

|Cecotti]
[TG]
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Approach 1: constructing h(zx,y)

= Constraints on h(ai‘, y) in real 2-dimensional M : coords I, Y

1

. . . - .
(1) Variational principle: S(h) = §/M Trl(hitdh)l © htdh)? [ ec[%tg}

(1) Continuous symmetry: h(x + c¢,y) = eV h(z,y) (near boundary)

(2) O - condition:  — 2[Quo, A 8,h] = i(h Oh)' + ik Gk
(@ b0l —ih O

Solutions have near boundary expansion: y > 1

h(x,y):exN(l L ...)y_%NO
Y Y

22
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Approach 1: constructing h(zx,y)

= Solve equations iteratively: [Cattani, Kaplan,Schmid]

-~ complicated recursion relations on components of h > Ogah

. 1
- single matching condition: e? = (1 1 Z A (adN )kgk)
k>0

= fixes the (Jk uniquely in terms of the boundary data

~ Reconstruct the near boundary solution near boundaries
I1, Iy, IV; from simple sl(2)-data and compatible 0

23



An GXMPle [TG,vd Heisteeg, Monnee]

= Simple boundary data for Iy boundary

L
product (a, b) 8 8 _01 (1) charge operator: . 8 8 _O% 2
b0 0 - e 0
—10 00 =000
0. 0.0 0 0.0 0 0 0. 0 0 )
00 -0 0L 0.0 g0 0 0
. . 0 - _
B Y s saelt loooanll
g .0 0 009 00 0: 0 00



An QXMPle [TG,vd Heisteeg, Monnee]

= Simple boundary data for Iy boundary

_3
product <a, b> 8 8_01(1) charge operator: . 8 8 _O% 0
b0 0 - e 0
—10 00 =000
0O 0 0 O 0 001 0 0 0 O
0 0 10 00 0 0.0 0 0
: . 0 L
B Y s saelt loooanll
0 0 00 G0 00 0 0 00

phase operator:  § = = most general form

cryin DY o il e
.

(0 43 e s o e

L@y ey il )



An example

[TG,vd Heisteeg,Monnee]

- recall general solution:  h(z,y) = e (1
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An example [TG,vd Heisteeg, Monnee]

. 0
-~ recall general solution:  h(zx, y) :erN(1 Tkt o >y 3N
2
Y Y
o 0 0 0
T(k—1/2)
= apply CKS recursion: gkz—li YT r(ko+1/z) :
i U e

0. 0 0 0/

24



An example

TG, vd Heisteeg,Monnee]

-~ recall general solution:  h(z,y) = e*¥ (1 - ! . gg |
Yy Yy
o 0 0
i hg 0
= apply CKS recursion: g5 = = 2 C(kt1/2
PPy 2kl |0 0 i (F(3/2/))
0 0 0
1 0 0 0
L . 0 —— 0 0
associated solution:  h(z,y) = | S e
0 0 0 1

0
0
0

0/

24



An example [TG,vd Heisteeg, Monnee]

. 1 A70
- recall general solution:  h(z,y) = e (1 e gg | ...)y‘iN
Yoo Y
W 0 0
. T'(k—1/2)
= apply CKS recursion: gh= -2 @ iy r kO :
. o ]2
Ao Al Hee g
W o 0 0/
Il 0 0 0
: : 0 - 0. 0
= associated solution: A(z,y) = G = T
Yy—c
0 0 0 1
~ write in geometric terms (period vector):
. I 0
— p2mit H (- :(1,2—210 z—ic—|—27rzz'——z2)
< = € ( ) e g( ) ( ) ) A

= conifold period =



Approach 2: constructing two-cube periods

~ General form of the periods: H(t) — e’ 6_C t*N. F(Z) ag
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Approach 2: constructing two-cube periods

~

~ General form of the periods: H(t) = 62’56—C6t2]\7¢ 6F(2) ao

|

on the boundary
simple for each type
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Approach 2: constructing two-cube periods

~ General form of the periods: ]___[(t) = eiée_getzNi GF(Z) ao

= Step 1: construct most general N; from (Nii, N2) [Brosnan Pearlstein Robl

N’L — NZ_ _I_ Z Nz,l < Welght under NZO B N,LO_l
=

25



Approach 2: constructing two-cube periods

~ General form of the periods: ]___[(t) = ei(Se_CetZN”; GF(Z) ao

-~ Step 2: construct most general O compatible with ( Nz.i, NZQ)
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Approach 2: constructing two-cube periods

~ General form of the periods: ]___[(t) = eiée—getsz,; GF(Z) ao

: : : .
& ofep 3; get C from O : ci e g e _%5_1,_2, ha _225_1,-3,
37 1 1
oo —55—2,—3 e 0o . 0o (ogiig— — B

25



Approach 2: constructing two-cube periods

~ General form of the periods: ]___[(t) = eiée—qetsz,; eF(z) ao

- Step 4: derive most general I'(2) using horizontality

— solve differential conditions on B [Cattani,Fernandez]

25



Approach 2: constructing two-cube periods

- Results for two-cubes: Ir class:  (I1|I2|Iy), (Ia|l2|Iy), (Ia|Iz|Iz)
( L= e e \
az]flz;C
T b
; i oM gk b a2
= (n1 log[z1] + log(z2) — 1/k1) + zbdlz?“zg”

-
\ b2 252 (log(21) + nalog[za] — 1/myg) + iad 2 252

27

parameters (I |Io|1y) (Io|Io|1y) (Io|I2|1s)
log-monodromies ni, no T =1 —4 n1 € Qsg,n2 =0 | n1,n9 € Qsg, n1ng # 1
instanton orders kq, ko kii=0.5> =1 k1 = niks k1 = niks
instanton orders mi,mo | mi=1,mo=0| mi=1,mo =0 Mo = NoMmq
instanton coefficients a, b a,b e R — {0}

phase operator ¢ )1 €R




Approach 2: constructing two-cube periods

- Results for two-cubes:

Coni-LCS class :

/ 1 \
azi
log|[z2]
= 1 3 lo [22] Z
et ?égfg] 4 ia? nzl gl1%2 _|_ - Zl - 252 -+ 251a21

—azq
clesdla o o

l%g[zﬂ—l—n log[zQ] 0 5

Tl

SR §CL nzq

(I1 | TV IV 1),

parameters

(I1|TV3|IV 1)

(I1|TV3|IV3)

log-monodromies ni, no n—10 n € Qs
instanton coefficient a a €R—{0}
phase operator ¢ 01,09 € R

(I1|TV2|IV2)

27



