Quantum Gravity Conjectures and Hodge Theory

Thomas W. Grimm

Utrecht University

Based on:

First part: works with Irene Valenzuela, Eran Palti, Damian van de Heisteeg, Chongchuo Li, Brice Bastian, Jeroen Monnee, Fabian Ruehle

Second part: 2112.06995 with Ben Bakker, Christian Schnell, Jacob Tsimerman

Simons Collaboration on Special Holonomy in Geometry, Analysis, and Physics 2023

Introduction

Identify the general principles that have to be satisfied in any four-dimensional theory compatible with quantum gravity.

Identify the general principles that have to be satisfied in any four-dimensional theory compatible with quantum gravity.

→ study the properties of 'simple' examples arising from string theory

Identify the general principles that have to be satisfied in any four-dimensional theory compatible with quantum gravity.

- → study the properties of 'simple' examples arising from string theory
- → findings formulated as 'quantum gravity conjectures', or 'swampland conjectures'

Identify the general principles that have to be satisfied in any four-dimensional theory compatible with quantum gravity.

- → study the properties of 'simple' examples arising from string theory
- → findings formulated as 'quantum gravity conjectures', or 'swampland conjectures'

→ test or 'prove' them in as many as possible instances

Quantum consistency: formulation in 10, 11, 12 space-time dimensions:

- Quantum consistency: formulation in 10, 11, 12 space-time dimensions: consider manifolds: $\mathbb{R}^{3,1} \times X \sim 6, 7, 8$ dimensional and compact

- Quantum consistency: formulation in 10, 11, 12 space-time dimensions: consider manifolds: $\mathbb{R}^{3,1} \times X \sim 6$, 7, 8 dimensional and compact
- String theory also contains higher-dimensional extended objects: D-branes

- Quantum consistency: formulation in 10, 11, 12 space-time dimensions: consider manifolds: $\mathbb{R}^{3,1} \times X 6$, 7, 8 dimensional and compact
- String theory also contains higher-dimensional extended objects: D-branes
 , can wrap cycles Σ ⊂ X, mass of the objects is related to size of cycle

- Quantum consistency: formulation in 10, 11, 12 space-time dimensions: consider manifolds: $\mathbb{R}^{3,1} \times X 6$, 7, 8 dimensional and compact
- String theory also contains higher-dimensional extended objects: D-branes
 , can wrap cycles ∑ ⊂ X, mass of the objects is related to size of cycle
- Four-dimensional 'physical' theories depend on the chosen manifold:
 - X is Calabi-Yau manifold preserves extra symmetry (supersymmetry)

- Quantum consistency: formulation in 10, 11, 12 space-time dimensions: consider manifolds: $\mathbb{R}^{3,1} \times X 6$, 7, 8 dimensional and compact
- String theory also contains higher-dimensional extended objects: D-branes
 , can wrap cycles ∑ ⊂ X, mass of the objects is related to size of cycle
- Four-dimensional 'physical' theories depend on the chosen manifold:
 - X is Calabi-Yau manifold preserves extra symmetry (supersymmetry)
 - choice of complex structure on X changes e.g. masses of particles, their interaction strengths etc.

- Quantum consistency: formulation in 10, 11, 12 space-time dimensions: consider manifolds: $\mathbb{R}^{3,1} \times X \sim 6$, 7, 8 dimensional and compact
- String theory also contains higher-dimensional extended objects: D-branes
 , can wrap cycles ∑ ⊂ X, mass of the objects is related to size of cycle
- Four-dimensional 'physical' theories depend on the chosen manifold:
 - X is Calabi-Yau manifold preserves extra symmetry (supersymmetry)
 - choice of complex structure on X changes e.g. masses of particles, their interaction strengths etc.
 - → more D-branes might become relevant when changing complex structure → new light particles

[Ooguri,Vafa '06]

- Consider field space \mathcal{M} in a four-dimensional theory (e.g. moduli space)

[Ooguri,Vafa '06]

- Consider field space \mathcal{M} in a four-dimensional theory (e.g. moduli space)

start in theory valid around *O*

[Ooguri,Vafa '06]

- Consider field space \mathcal{M} in a four-dimensional theory (e.g. moduli space)

start in theory valid around O

⇒ move along a path of infinite
geodesic length to P

[Ooguri,Vafa '06]

- Consider field space \mathcal{M} in a four-dimensional theory (e.g. moduli space)

start in theory valid around O ⇒ move along a path of infinite
geodesic length to P

Conjecture:

Infinite number of particles (states) become massless approaching *P*: $m(P) \propto M_P e^{-\gamma d(P,O)}$ as $d(P,O) \gg 1$

[Ooguri,Vafa '06]

- Consider field space \mathcal{M} in a four-dimensional theory (e.g. moduli space)

⇒ Universal behavior near infinite distance points

[Ooguri,Vafa '06]

- Consider field space \mathcal{M} in a four-dimensional theory (e.g. moduli space)

⇒ Universal behavior near infinite distance points

> In 2018 we started to use asymptotic Hodge theory to study asymptotic regions \mathcal{M}_{cs} to test the distance conjecture for Calabi-Yau threefolds. [TG,Palti,Valenzuela], [TG,Li,Palti]

[Ooguri,Vafa '06]

- Consider field space \mathcal{M} in a four-dimensional theory (e.g. moduli space)

⇒ Universal behavior near infinite distance points

> In 2018 we started to use asymptotic Hodge theory to study asymptotic regions \mathcal{M}_{cs} to test the distance conjecture for Calabi-Yau threefolds. [TG,Palti,Valenzuela], [TG,Li,Palti]

Hard mathematical problem: study growth of cycles in X and argue for the existence of increasing number of stable D-brane states in each infinite distance limit

[Ooguri,Vafa '06]

- Consider field space \mathcal{M} in a four-dimensional theory (e.g. moduli space)

⇒ Universal behavior near infinite distance points

> In 2018 we started to use asymptotic Hodge theory to study asymptotic regions \mathcal{M}_{cs} to test the distance conjecture for Calabi-Yau threefolds. [TG,Palti,Valenzuela], [TG,Li,Palti]

Hard mathematical problem: study growth of cycles in X and argue for the existence of increasing number of stable D-brane states in each infinite distance limit \rightarrow no proof yet, but significant evidence

Distance in complex structure moduli space

- Distances are determined by: $d_{\gamma}(P,O) = \int_{\gamma} \sqrt{g_{IJ} \dot{x}^I \dot{x}^J} ds$

• Weil-Petersson metric on complex structure moduli space of CY manifolds: Kähler metric: $g_{I\bar{J}} = \partial_{z^I} \partial_{\bar{z}^J} K$ $K = -\log[iQ(\Omega, \bar{\Omega})] \qquad Q(\alpha, \beta) \equiv \int_X \alpha \wedge \beta$ • Weil-Petersson metric on complex structure moduli space of CY manifolds: Kähler metric: $g_{I\bar{J}} = \partial_{z^I} \partial_{\bar{z}^J} K$ $K = -\log[iQ(\Omega, \bar{\Omega})] \qquad Q(\alpha, \beta) \equiv \int_X \alpha \wedge \beta$ • Weil-Petersson metric on complex structure moduli space of CY manifolds: Kähler metric: $g_{I\bar{J}} = \partial_{z^I} \partial_{\bar{z}^J} K$ $K = -\log[iQ(\Omega, \bar{\Omega})] \qquad Q(\alpha, \beta) \equiv \int_X \alpha \wedge \beta$

- Candidate states to consider: BPS - D3 branes wrapping three-cycles \Rightarrow label the states by $H \in H^3(X, \mathbb{Z})$ integral class

- Candidate states to consider: BPS D3 branes wrapping three-cycles \Rightarrow label the states by $H \in H^3(X, \mathbb{Z})$ integral class
- Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|given by central charge: $Z = e^{K/2}Q(H, \Omega)$

- Candidate states to consider: BPS D3 branes wrapping three-cycles \Rightarrow label the states by $H \in H^3(X, \mathbb{Z})$ integral class
- Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|given by central charge: $Z = e^{K/2}Q(H, \Omega)$ volume of cycles period integral

- → Candidate states to consider: BPS D3 branes wrapping three-cycles ⇒ label the states by $H \in H^3(X, \mathbb{Z})$ integral class
- Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|given by central charge: $Z = e^{K/2}Q(H, \Omega)$ volume of cycles period integral

Question 2: Is there an infinite set of lattice sites in $H^3(X, \mathbb{Z})$ such that $m(z) \propto e^{-d(z_0, z)}$ $d(z_0, z) \to \infty$?

- Candidate states to consider: BPS D3 branes wrapping three-cycles \Rightarrow label the states by $H \in H^3(X, \mathbb{Z})$ integral class
- Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|given by central charge: $Z = e^{K/2}Q(H, \Omega)$ volume of cycles period integral

<u>Question 3:</u> Are there BPS states at these sites, are they stable? \Rightarrow counting problem, study walls of stability...

- → Candidate states to consider: BPS D3 branes wrapping three-cycles ⇒ label the states by $H \in H^3(X, \mathbb{Z})$ integral class
- Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|given by central charge: $Z = e^{K/2}Q(H, \Omega)$ volume of cycles period integral

We used general results from asymptotic Hodge theory for Question 1 & 2.

- → Candidate states to consider: BPS D3 branes wrapping three-cycles ⇒ label the states by $H \in H^3(X, \mathbb{Z})$ integral class
- Evaluate the mass of BPS states: m(z, H) = |Z(z, H)|given by central charge: $Z = e^{K/2}Q(H, \Omega)$ volume of cycles period integral

We used general results from asymptotic Hodge theory for Question 1 & 2.

What is the physics of the limits? emergence proposal [TG,Palti,Valenzuela][Heidenreich,Reece,Rudelius][Palti]... emergent strings [Lee,Lerche,Weigand]...

Asymptotic Hodge Theory

Structure of complex structure moduli space

- Consider one-dimensional moduli spaces \mathcal{M} of a Calabi-Yau D-fold

Structure of complex structure moduli space

Consider one-dimensional moduli spaces *M* of a Calabi-Yau *D*-fold
 Example: Calabi-Yau threefold (such as mirror quintic)

2-sphere with three excluded points

Structure of complex structure moduli space

Consider one-dimensional moduli spaces *M* of a Calabi-Yau *D*-fold
 Example: Calabi-Yau threefold (such as mirror quintic)

Boundaries in complex structure moduli space

- Boundaries are the points where Calabi-Yau manifold degenerates \Rightarrow associate a monodromy T around singular loci

Boundaries in complex structure moduli space

- Boundaries are the points where Calabi-Yau manifold degenerates \Rightarrow associate a monodromy T around singular loci

Boundaries in complex structure moduli space

- Boundaries are the points where Calabi-Yau manifold degenerates \Rightarrow associate a monodromy T around singular loci

Asymptotic behavior of (p,q)-decomposition

naturally combine:

$$F^p = \bigoplus_{r \ge p} H^{r, D-r}$$

holomorphic over \mathcal{M} [Griffiths] $F^D = \operatorname{span} \Omega$

Asymptotic behavior of (p,q)-decomposition

naturally combine:

$$F^p = \bigoplus_{r \ge p} H^{r, D-r}$$

holomorphic over
$$\mathcal{M}$$
 [Griffiths]
 $F^D = \operatorname{span} \Omega$

- Nilpotent orbit theorem: [Schmid] limiting behavior of F^p near boundary $t^i \equiv x^i + iy^i \rightarrow x_0^i + i\infty$

$$F^p = e^{\sum_i t^i N_i} F^p_0 + \mathcal{O}(e^{2\pi i t})$$

Asymptotic behavior of (p,q)-decomposition

naturally combine:

$$F^p = \bigoplus_{r \ge p} H^{r, D-r}$$

holomorphic over
$$\mathcal{M}$$
 [Griffiths]
 $F^D = \operatorname{span} \Omega$

- Nilpotent orbit theorem: [Schmid] limiting behavior of F^p near boundary $t^i \equiv x^i + iy^i \rightarrow x_0^i + i\infty$

$$F^p = e^{\sum_i t^i N_i} F_0^p + \mathcal{O}(e^{2\pi i t})$$

Polynomial in t^i nilpotent orbit

small near boundary \Rightarrow neglect

Comments on examples

Large complex structure Calabi-Yau threefold (near MUM point): [TG,Li,Palti]

$$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \qquad F_{0}^{3} = \begin{pmatrix} 1 \\ 0 \\ -\frac{c_{2I}}{4} \\ \frac{i\zeta(3)\chi}{8\pi^{3}} \end{pmatrix}$$

 $\mathcal{K}_{ABC}, \ (c_2)_I, \ \chi$: intersection numbers, Chern classes of mirror Calabi-Yau threefold

Comments on examples

Large complex structure Calabi-Yau threefold (near MUM point): [TG,Li,Palti]

$$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \qquad F_{0}^{3} = \begin{pmatrix} 1 \\ 0 \\ -\frac{c_{2}I}{\frac{i\zeta(3)\chi}{8\pi^{3}}} \end{pmatrix}$$

 $\mathcal{K}_{ABC}, \ (c_2)_I, \ \chi$: intersection numbers, Chern classes of mirror Calabi-Yau threefold

Remarks:

⇒ General classification of data in nilpotent orbits [Kerr,Pearlstein,Robles '17]

Comments on examples

Large complex structure Calabi-Yau threefold (near MUM point): [TG,Li,Palti]

$$N_{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ -\delta_{AI} & 0 & 0 & 0 \\ -\frac{1}{2}\mathcal{K}_{AAI} & -\mathcal{K}_{AIJ} & 0 & 0 \\ \frac{1}{6}\mathcal{K}_{AAA} & \frac{1}{2}\mathcal{K}_{AJJ} & -\delta_{AJ} & 0 \end{pmatrix} \qquad \qquad F_{0}^{3} = \begin{pmatrix} 1 \\ 0 \\ -\frac{c_{2I}}{\frac{i\zeta(3)\chi}{2\pi^{3}}} \end{pmatrix}$$

 $\mathcal{K}_{ABC}, \ (c_2)_I, \ \chi$: intersection numbers, Chern classes of mirror Calabi-Yau threefold

Remarks:

⇒ General classification of data in nilpotent orbits [Kerr,Pearlstein,Robles '17]

⇒ Mirror side: Classification of Calabi-Yau threefolds into equivalence classes using infinite distance limits in Kähler cone [TG,Heisteeg,Ruehle '19]

Type classification and distances

- Calabi-Yau threefolds: $4 h^{2,1}$ types of data [Kerr,Pearlstein,Robles] Types: I_a , II_b , III_c , IV_d

> rank of eigenvalues of ηN Type N^2 N^3 Nwedge product I_a 0 0 a negative a II_b 2 + b = 00 2 positive, b negative 4 + c = 2 III_c 0 not needed 2+d2 IV_d 1 not needed

Type classification and distances

- Calabi-Yau threefolds: $4 h^{2,1}$ types of data [Kerr,Pearlstein,Robles] Types: I_a , II_b , III_c , IV_d

> rank of Type eigenvalues of ηN N^2 N^3 Nwedge product I_a *a* 0 0 a negative II_b 2+b 0 0 2 positive, b negative 4 + c = 2 III_c 0 not needed 2 + d = 2 IV_d 1 not needed

- Calabi-Yau fourfolds: $8 h^{3,1}$ types of data [TG,Li,Valenzuela] Types: $I_{a,a'}$, $II_{b,b'}$, $III_{c,c'}$, $IV_{d,d'}$, $V_{e,e'}$

Type classification and distances

- Calabi-Yau threefolds: $4 h^{2,1}$ types of data [Kerr,Pearlstein,Robles] Types: I_a , II_b , III_c , IV_d

> rank of Type eigenvalues of ηN N^2 N^3 Nwedge product I_a 0 0 a negative a2+b 0 II_b 0 2 positive, b negative 4 + c = 2 III_c 0 not needed 2 + d = 2 IV_d 1 not needed

Use nilpotent orbit theorem to compute asymptotic K

<u>Question 1:</u> Infinite distance boundaries II_b , III_c , IV_d

An example moduli space

- An explicit example: $\mathbb{P}^{1,1,1,6,9}[18]$

[Candelas,Font,Katz,Morrison] [Candelas,De La Ossa,Font,Katz,Morrison]

An example moduli space

- An explicit example: $\mathbb{P}^{1,1,1,6,9}[18]$

[Candelas,Font,Katz,Morrison] [Candelas,De La Ossa,Font,Katz,Morrison]

upper bound on asymptotic masses:

$$m(z,H) \le \int_X H \wedge *H \equiv ||H||^2$$

⇒ growth theorems for the Hodge norm by [Schmid][Kashiwara]

upper bound on asymptotic masses:

$$m(z,H) \le \int_X H \wedge *H \equiv ||H||^2$$

⇒ growth theorems for the Hodge norm by [Schmid][Kashiwara]

- nilpotent *N* defines weight filtration: $W_n(N) = \sum_{j \ge \max(-1, n-3)} \ker N^{j+1} \cap \operatorname{img} N^{j-n+3}$

upper bound on asymptotic masses:

$$m(z, H) \leq \int_X H \wedge *H \equiv ||H||^2 \Rightarrow \text{growth theorems for the Hodge norm}$$

by [Schmid][Kashiwara]

- nilpotent N defines weight filtration: $W_n(N) = \sum_{j \ge \max(-1, n-3)} \ker N^{j+1} \cap \operatorname{img} N^{j-n+3}$
 - $\rightarrow W_n, F_m^0$ can be used to define mixed Hodge structures

upper bound on asymptotic masses:

$$m(z, H) \leq \int_X H \wedge *H \equiv ||H||^2 \Rightarrow \text{growth theorems for the Hodge norm}$$

by [Schmid][Kashiwara]

- nilpotent *N* defines weight filtration: $W_n(N) = \sum_{j \ge \max(-1, n-3)} \ker N^{j+1} \cap \operatorname{img} N^{j-n+3}$
- growth on sectors: $\{y_1 \ge y_2 \ge ... \ge y_n > 1, \ 1 > x_i \ge 0\}$

$$||H||^2 \sim (y^1)^{l_1 - 3} (y^2)^{l_2 - l_1} \dots (y^n)^{l_{n-1} - l_n}$$

 $H \in W_{l_1}(N_1) \cap W_{l_2}(N_{(2)}) \cap ... \cap W_{l_n}(N_{(n)})$ $N_{(i)} = N_1 + ... + N_i$ (smallest $\{l_i\}$ for which this is true)

upper bound on asymptotic masses:

$$m(z,H) \le \int_X H \wedge *H \equiv ||H||^2 \quad \Rightarrow \operatorname{grow}_{\operatorname{by}}$$

> growth theorems for the Hodge norm by [Schmid][Kashiwara]

- nilpotent N defines weight filtration: $W_n(N) = \sum_{j \ge \max(-1, n-3)} \ker N^{j+1} \cap \operatorname{img} N^{j-n+3}$

• growth on sectors: $\{y_1 \ge y_2 \ge ... \ge y_n > 1, \ 1 > x_i \ge 0\}$

$$H^{3}(X, \mathbb{Q}) = \underbrace{V_{\text{light}}}_{\text{light}} \oplus \underbrace{V_{\text{heavy}}}_{\text{heavy}} \oplus V_{\text{rest}}$$
$$\|H\|^{2} \to 0 \qquad \|H\|^{2} \to \infty$$

upper bound on asymptotic masses:

$$m(z, H) \leq \int_X H \wedge *H \equiv ||H||^2 \Rightarrow \text{growth theorems for the Hodge norm}$$

by [Schmid][Kashiwara]

- nilpotent N defines weight filtration: $W_n(N) = \sum_{j \ge \max(-1, n-3)} \ker N^{j+1} \cap \operatorname{img} N^{j-n+3}$

• growth on sectors: $\{y_1 \ge y_2 \ge ... \ge y_n > 1, \ 1 > x_i \ge 0\}$

$$H^{3}(X, \mathbb{Q}) = \underbrace{V_{\text{light}}}_{\text{light}} \oplus \underbrace{V_{\text{heavy}}}_{\text{heavy}} \oplus V_{\text{rest}}$$
$$\|H\|^{2} \to 0 \qquad \|H\|^{2} \to \infty$$

Question 2: All infinite distance boundaries have $H \in V_{\text{light}}$ $m(z, H) \sim \text{poly}(y^i) \rightarrow 0$

 Sl(2)-orbit theorem of [Schmid] and [Cattani, Kaplan, Schmid] shows the existence of special set of sl(2)-data for every nilpotent orbit

- Sl(2)-orbit theorem of [Schmid] and [Cattani, Kaplan, Schmid] shows the existence of special set of sl(2)-data for every nilpotent orbit
 - → we turn this into powerful computational tool to determine the asymptotic periods associated to each boundary in the classification

- Sl(2)-orbit theorem of [Schmid] and [Cattani, Kaplan, Schmid] shows the existence of special set of sl(2)-data for every nilpotent orbit
 - → we turn this into powerful computational tool to determine the asymptotic periods associated to each boundary in the classification
- Sl(2)-orbit theorem: for each ordered *n*-parameter limit
 - Hodge structure at boundary $H^D(X, \mathbb{C}) = H^{D,0}_{\infty} \oplus H^{D-1,1}_{\infty} \oplus ... \oplus H^{0,D}_{\infty}$
 - *n* commuting sl(2)-triples N_i^- , N_i^+ , Y_i
 - *n* special operators δ_i

- Sl(2)-orbit theorem of [Schmid] and [Cattani, Kaplan, Schmid] shows the existence of special set of sl(2)-data for every nilpotent orbit
 - → we turn this into powerful computational tool to determine the asymptotic periods associated to each boundary in the classification
- Sl(2)-orbit theorem: for each ordered *n*-parameter limit
 - Hodge structure at boundary $H^D(X, \mathbb{C}) = H^{D,0}_{\infty} \oplus H^{D-1,1}_{\infty} \oplus ... \oplus H^{0,D}_{\infty}$
 - *n* commuting sl(2)-triples N_i^- , N_i^+ , Y_i
 - *n* special operators δ_i

obtain normal forms for each boundary type in classification

- Sl(2)-orbit theorem of [Schmid] and [Cattani, Kaplan, Schmid] shows the existence of special set of sl(2)-data for every nilpotent orbit
 - → we turn this into powerful computational tool to determine the asymptotic periods associated to each boundary in the classification
- Sl(2)-orbit theorem: for each ordered *n*-parameter limit
 - Hodge structure at boundary $H^D(X, \mathbb{C}) = H^{D,0}_{\infty} \oplus H^{D-1,1}_{\infty} \oplus ... \oplus H^{0,D}_{\infty}$
 - *n* commuting sl(2)-triples N_i^- , N_i^+ , Y_i
 - *n* special operators δ_i

obtain normal forms for each boundary type in classification

- Construct near-boundary periods $\Pi(z)$ starting from this boundary data

Two ways to perform construction:

Two ways to perform construction:

(1) use proof of sl(2) orbit theorem to construct $h(t, \bar{t}) \in G_{\mathbb{R}}$ satisfying certain differential and algebraic constraints \Rightarrow familiar physics approach $\Rightarrow F_{nil}^p = h(t, \bar{t})F_{\infty}^p$ detailed account & examples: [TG '20],[TG,vd Heisteeg,Monnee '21]

Two ways to perform construction:

(1) use proof of sl(2) orbit theorem to construct $h(t, \bar{t}) \in G_{\mathbb{R}}$ satisfying certain differential and algebraic constraints \Rightarrow familiar physics approach $\Rightarrow F_{nil}^p = h(t, \bar{t})F_{\infty}^p$ detailed account & examples: [TG '20],[TG,vd Heisteeg,Monnee '21]

(2) use the results of the sl(2) orbit theorem to construct F_{nil}^p : can be done e.g. for all boundaries with *n*=2 for Calabi-Yau threefolds [Bastian,TG,vd Heisteeg, '21]

Two ways to perform construction:

(1) use proof of sl(2) orbit theorem to construct $h(t, \bar{t}) \in G_{\mathbb{R}}$ satisfying certain differential and algebraic constraints \Rightarrow familiar physics approach $\Rightarrow F_{nil}^p = h(t, \bar{t})F_{\infty}^p$ detailed account & examples: [TG '20],[TG,vd Heisteeg,Monnee '21]

(2) use the results of the sl(2) orbit theorem to construct F^p_{nil}:
can be done e.g. for all boundaries with n=2 for Calabi-Yau threefolds
[Bastian,TG,vd Heisteeg, '21]

Final step: constructing the periods from F_{nil}^p

Two ways to perform construction:

(1) use proof of sl(2) orbit theorem to construct $h(t, \bar{t}) \in G_{\mathbb{R}}$ satisfying certain differential and algebraic constraints → familiar physics approach $\Rightarrow F_{\text{nil}}^p = h(t, \overline{t}) F_{\infty}^p$ detailed account & examples: [TG '20], [TG, vd Heisteeg, Monnee '21]

(2) use the results of the sl(2) orbit theorem to construct F_{nil}^p : can be done e.g. for all boundaries with n=2 for Calabi-Yau threefolds [Bastian, TG, vd Heisteeg, '21]

Final step: constructing the periods from F_{nil}^p

 \rightarrow Many applications in swampland program and model building: general tests to asymptotic conjectures, new models away from large complex structure (MUM point)

A Finiteness Conjecture and Theorem

Recall: higher-dimensional space-time manifold: $\mathbb{R}^{1,3} \times Y$

our 4-dimensional space-time

compact many choices

 \rightarrow Four-dimensional physics depends on choice of Y

Recall: higher-dimensional space-time manifold: $\mathbb{R}^{1,3} \times Y$

our 4-dimensional space-time

compact many choices

 \rightarrow Four-dimensional physics depends on choice of Y

Problem: deformations of *Y* can correspond to massless fields \rightarrow fifths force \rightarrow immediate contradiction with experiment

Solution: Flux Compactifications

review: [Graña] [Kachru,Douglas]

...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

Solution: Flux Compactifications review: [Graña] [Kachru,Douglas] ...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

rough idea: - Y is Calabi-Yau fourfold

- introduce generalization of electromagnetic field G_4

Solution: Flux Compactifications review: [Graña] [Kachru,Douglas] ...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

rough idea: -Y is Calabi-Yau fourfold

- introduce generalization of electromagnetic field G_4

differential 4-form 'flux'

Solution: Flux Compactifications review: [Graña] [Kachru,Douglas] ...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

rough idea: - Y is Calabi-Yau fourfold - introduce generalization of electromagnetic field G_4

differential 4-form 'flux'

equations of motion (Maxwell eq): $G_4 \in H^4(Y, \mathbb{R})$

Solution: Flux Compactifications review: [Graña] [Kachru,Douglas] ...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

rough idea: - Y is Calabi-Yau fourfold - introduce generalization of electromagnetic field G_4

differential 4-form 'flux'

equations of motion (Maxwell eq): $G_4 \in H^4(Y, \mathbb{R})$

quantization: $G_4 \in H^4(Y, \mathbb{Z})$

Solution: Flux Compactifications review: [Graña] [Kachru,Douglas] ...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

rough idea: - Y is Calabi-Yau fourfold - introduce generalization of electromagnetic field G_4

$$n_+ + n_- = 0$$

Solution: Flux Compactifications review: [Graña] [Kachru,Douglas] ...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

rough idea: - *Y* is Calabi-Yau fourfold - introduce generalization of electromagnetic field G_4

Assume Y is compact:

$$\int_Y \mathbf{G_4} \wedge \mathbf{G_4} + n_+ + n_- = 0$$

Solution: Flux Compactifications review: [Graña] [Kachru,Douglas] ...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

rough idea: - Y is Calabi-Yau fourfold - introduce generalization of electromagnetic field G_4

Assume Y is compact:

$$\int_Y G_4 \wedge G_4 = \ell$$

Solution: Flux Compactifications review: [Graña] [Kachru,Douglas] ...[Becker,Becker '96],[Gukov,Vafa,Witten '99],[Giddings,Kachru, Polchiski '03],[TG,Louis '04]...

rough idea: - *Y* is Calabi-Yau fourfold - introduce generalization of electromagnetic field G_4

Assume Y is compact:

$$\int_Y G_4 \wedge G_4 = \ell$$

$$Q(G_4, G_4) \equiv \int_Y G_4 \wedge G_4$$

 Solution to 12-dimensional theory (F-theory) of the form: solving Einstein's equations and other equations of motion

- Solution to 12-dimensional theory (F-theory) of the form: solving Einstein's equations and other equations of motion
 - · 12d manifold: $\mathbb{R}^{1,3} \times Y$

- Solution to 12-dimensional theory (F-theory) of the form: solving Einstein's equations and other equations of motion
 - · 12d manifold: $\mathbb{R}^{1,3} \times Y$
 - 4-form flux: $G_4 \in H^4(Y, \mathbb{Z})$ $Q(G_4, G_4) = \ell$

- Solution to 12-dimensional theory (F-theory) of the form: solving Einstein's equations and other equations of motion
 - · 12d manifold: $\mathbb{R}^{1,3} \times Y$
 - 4-form flux: $G_4 \in H^4(Y, \mathbb{Z})$ $Q(G_4, G_4) = \ell$

*
$$G_4 = G_4$$
 $G_4 \wedge J = 0$ (in cohom.) 'self-dual flux'
Hodge star operator on *Y* Kähler form on *Y*

- Solution to 12-dimensional theory (F-theory) of the form: solving Einstein's equations and other equations of motion
 - · 12d manifold: $\mathbb{R}^{1,3} \times Y$
 - 4-form flux: $G_4 \in H^4(Y, \mathbb{Z})$ $Q(G_4, G_4) = \ell$

$$*G_4 = G_4 \qquad G_4 \land J = 0$$
 (in cohom.) 'self-dual flux'
Hodge star operator on *Y* Kähler form on *Y*

 \Rightarrow should be read as a condition on the choice of complex structure and Kähler structure \Rightarrow fix deformations

• Concrete conjecture: The number of solutions in the described setting finite. Finitely many choices for G_4 .

[Douglas '03] [Acharya,Douglas '06]

• Concrete conjecture: The number of solutions in the described setting finite. Finitely many choices for G_4 .

[Douglas '03] [Acharya,Douglas '06]

Answer: Yes, if one assumes finiteness of Calabi-Yau manifolds.

[Bakker,TG,Schnell,Tsimerman '21]

• Concrete conjecture: The number of solutions in the described setting finite. Finitely many choices for G_4 .

[Douglas '03] [Acharya,Douglas '06]

- Answer: Yes, if one assumes finiteness of Calabi-Yau manifolds.
 [Bakker,TG,Schnell,Tsimerman '21]
- More general: Is the number of four-dimensional effective theories arising from string theory finite (with fixed energy cut-off)? much activity: [Vafa][Adams,DeWolfe,Taylor] [Kim,Shiu,Vafa] [Kim,Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang]
 [Dierigl,Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada,Vafa] [Taylor etal]
 [Kim,Shiu,Vafa],[Lee,Weigand],[Tarazi,Vafa] [Hamada,Montero,Vafa,Valenzuela]

• Concrete conjecture: The number of solutions in the described setting finite. Finitely many choices for G_4 .

[Douglas '03] [Acharya,Douglas '06]

- Answer: Yes, if one assumes finiteness of Calabi-Yau manifolds.
 [Bakker,TG,Schnell,Tsimerman '21]
- More general: Is the number of four-dimensional effective theories arising from string theory finite (with fixed energy cut-off)? much activity: [Vafa][Adams,DeWolfe,Taylor] [Kim,Shiu,Vafa] [Kim,Tarazi,Vafa] [Cvetic,Dierigl,Lin,Zang]
 [Dierigl,Heckman] [Font,Fraiman,Grana,Nunez,DeFreitas] [Hamada,Vafa] [Taylor etal]
 [Kim,Shiu,Vafa],[Lee,Weigand],[Tarazi,Vafa] [Hamada,Montero,Vafa,Valenzuela]

Recently: Finiteness is part of a stronger property 'Tameness' Tameness conjectures of set of UV completable quantum field theories and all their physical observables.

[TG '21][Douglas,TG,Schlechter] I & II

Hodge star * changes over complex structure moduli space M
 → complicated

- Hodge star * changes over complex structure moduli space M
 → complicated
- How to find solution? \rightarrow (p,q)-forms in $H^{p,q}$ Hodge decomposition $H^4(Y, \mathbb{C}) = H^{4,0} \oplus H^{3,1} \oplus H^{2,2} \oplus H^{1,3} \oplus H^{0,4}$

- Hodge star * changes over complex structure moduli space M
 → complicated
- How to find solution? \rightarrow (p,q)-forms in $H^{p,q}$ Hodge decomposition $H^4(Y,\mathbb{C}) = H^{4,0} \oplus H^{3,1} \oplus H^{2,2} \oplus H^{1,3} \oplus H^{0,4}$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ Hodge *= Weil Operator C: +1 -1 +1 -1 +1

- Hodge star * changes over complex structure moduli space \mathcal{M} \rightarrow complicated
- How to find solution? \rightarrow (p,q)-forms in $H^{p,q}$ Hodge decomposition $H^4(Y,\mathbb{C}) = H^{4,0} \oplus H^{3,1} \oplus H^{2,2} \oplus H^{1,3} \oplus H^{0,4}$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ Hodge * = Weil Operator C: +1 -1 +1 -1 +1

Self-dual solutions satisfy: $G_4 \in H^4(Y,\mathbb{Z}) \cap (H^{4,0} \oplus H^{2,2} \oplus H^{0,4})$

- Hodge star * changes over complex structure moduli space M
 → complicated
- How to find solution? \rightarrow (p,q)-forms in $H^{p,q}$ Hodge decomposition $H^4(Y,\mathbb{C}) = H^{4,0} \oplus H^{3,1} \oplus H^{2,2} \oplus H^{1,3} \oplus H^{0,4}$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ Hodge *= Weil Operator C: +1 -1 +1 -1 +1

Self-dual solutions satisfy: $G_4 \in H^4(Y,\mathbb{Z}) \cap (H^{4,0} \oplus H^{2,2} \oplus H^{0,4})$

- Study how $H_x^{p,q}$ changes over the moduli space \mathcal{M} \Rightarrow variations of Hodge structures

Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization $Q(v, w) := \int_{Y} v \wedge w$ $Q(G_4, G_4) = \ell \Rightarrow Q(G_4, *G_4) = ||G_4||^2 = \ell$

Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization $Q(v,w) := \int_Y v \wedge w$ $Q(G_4, G_4) = \ell \Rightarrow Q(G_4, *G_4) = ||G_4||^2 = \ell$

- Allow variation of Hodge structure $H^{p,q}_x, x \in \mathcal{M}$: very hard problem

Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization $Q(v,w) := \int_Y v \wedge w$ $Q(G_4, G_4) = \ell \Rightarrow Q(G_4, *G_4) = ||G_4||^2 = \ell$

- Allow variation of Hodge structure $H_x^{p,q}$, $x \in \mathcal{M}$: very hard problem \rightarrow Weil operator (Hodge star) can degenerate on boundaries of \mathcal{M}

Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization $Q(v,w) := \int_Y v \wedge w$ $Q(G_4, G_4) = \ell \Rightarrow Q(G_4, *G_4) = ||G_4||^2 = \ell$

- Allow variation of Hodge structure $H^{p,q}_x, x \in \mathcal{M}$: very hard problem
 - \rightarrow Weil operator (Hodge star) can degenerate on boundaries of \mathcal{M} \rightarrow key challenge to show: no infinite tails in the asymptotic regimes of \mathcal{M}

Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization $Q(v,w) := \int_Y v \wedge w$ $Q(G_4, G_4) = \ell \Rightarrow Q(G_4, *G_4) = ||G_4||^2 = \ell$

- Allow variation of Hodge structure $H^{p,q}_x, x \in \mathcal{M}$: very hard problem
 - \rightarrow Weil operator (Hodge star) can degenerate on boundaries of \mathcal{M} \rightarrow key challenge to show: no infinite tails in the asymptotic regimes of \mathcal{M}
- Idea: use asymptotic Hodge theory: nilpotent orbit theorem [Schmid], sl(2)-orbit theorem [Schmid][Cattani,Kaplan,Schmid]

Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization $Q(v, w) := \int_Y v \wedge w$ $Q(G_4, G_4) = \ell \Rightarrow Q(G_4, *G_4) = ||G_4||^2 = \ell$

- Allow variation of Hodge structure $H^{p,q}_x, x \in \mathcal{M}$: very hard problem
 - \rightarrow Weil operator (Hodge star) can degenerate on boundaries of \mathcal{M} \rightarrow key challenge to show: no infinite tails in the asymptotic regimes of \mathcal{M}
- Idea: use asymptotic Hodge theory: nilpotent orbit theorem [Schmid], sl(2)-orbit theorem [Schmid][Cattani,Kaplan,Schmid]

⇒ works well for one-parameter limits [Schnell] [TG] '20

Simple case: consider a fixed (p,q)-decomposition (Hodge structure)

Define: polarization $Q(v,w) := \int_Y v \wedge w$ $Q(G_4, G_4) = \ell \Rightarrow Q(G_4, *G_4) = ||G_4||^2 = \ell$

- Allow variation of Hodge structure $H^{p,q}_x, x \in \mathcal{M}$: very hard problem
 - \rightarrow Weil operator (Hodge star) can degenerate on boundaries of \mathcal{M} \rightarrow key challenge to show: no infinite tails in the asymptotic regimes of \mathcal{M}
- Idea: use asymptotic Hodge theory: nilpotent orbit theorem [Schmid], sl(2)-orbit theorem [Schmid][Cattani,Kaplan,Schmid]

 \Rightarrow using multi-variable Sl(2)-orbit theorem too involved

Theorems in Abstract Variations of Hodge Structures

- X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)

- X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)
- Hodge bundle: $p: E \to X$ with fibers $H_{\mathbb{C},x} = \bigoplus_{p+q=2d} H_x^{p,q}, x \in X$

- X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)
- Hodge bundle: $p: E \to X$ with fibers $H_{\mathbb{C},x} = \bigoplus_{p+q=2d} H_x^{p,q}, x \in X$

Theorem [Cattani,Deligne,Kaplan '95]: For integer $\ell > 0$, locus of integral Hodge classes

$$\left\{ (x,v) \in \mathbf{E} : v \in (H^{d,d} \cap H_{\mathbb{Z}})_x \text{ and } Q(v,v) = \ell \right\}$$

is algebraic, and the restriction of *p* to this set is proper with finite fibers.

- X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)
- Hodge bundle: $p: E \to X$ with fibers $H_{\mathbb{C},x} = \bigoplus_{p+q=2d} H_x^{p,q}, x \in X$

Theorem [Cattani,Deligne,Kaplan '95]: For integer $\ell > 0$, locus of integral Hodge classes

$$\left\{ (x,v) \in \mathbf{E} : v \in (H^{d,d} \cap H_{\mathbb{Z}})_x \text{ and } Q(v,v) = \ell \right\}$$

is algebraic, and the restriction of p to this set is proper with finite fibers.

 remarkable theorem which follows partly from the Hodge conjecture for Hodge structures associated to families of projective Kähler manifolds Y

- X smooth complex algebraic variety (e.g. moduli space $X = \mathcal{M}$)
- Hodge bundle: $p: E \to X$ with fibers $H_{\mathbb{C},x} = \bigoplus_{p+q=2d} H_x^{p,q}, x \in X$

Theorem [Cattani,Deligne,Kaplan '95]: For integer $\ell > 0$, locus of integral Hodge classes

$$\left\{ (x,v) \in \mathbf{E} : v \in (H^{d,d} \cap H_{\mathbb{Z}})_x \text{ and } Q(v,v) = \ell \right\}$$

is algebraic, and the restriction of p to this set is proper with finite fibers.

- covers the finiteness of the special case: $G_4 \in H^4(Y_4, \mathbb{Z}) \cap H^{2,2}$ (supersymmetric fluxes)

Generalization to self-dual classes

- recall Weil operator C (e.g. Hodge star): $Cv = i^{p-q}v$ $v \in H^{p,q}$

Theorem [Bakker,TG,Schnell,Tsimerman]: For integer $\ell > 0$, the locus of integral self-dual classes

$$\left\{ (x,v) \in \mathbf{E} : v \in H_{\mathbb{Z},x} \text{ and } C_x v = v \text{ and } Q(v,v) = \ell \right\}$$

is $\mathbb{R}_{an,exp}$ - definable, closed real-analytic subspace of *E* and the restriction of *p* to this set is proper with finite fibers.

Generalization to self-dual classes

- recall Weil operator C (e.g. Hodge star): $Cv = i^{p-q}v$ $v \in H^{p,q}$

Theorem [Bakker,TG,Schnell,Tsimerman]: For integer $\ell > 0$, the locus of integral self-dual classes

$$\left\{ (x,v) \in \mathbf{E} : v \in H_{\mathbb{Z},x} \text{ and } C_x v = v \text{ and } Q(v,v) = \ell \right\}$$

is $\mathbb{R}_{an,exp}$ -definable, closed real-analytic subspace of *E* and the restriction of *p* to this set is proper with finite fibers.

quantized flux $G_4 \in H^4(Y, \mathbb{Z})$

Generalization to self-dual classes

- recall Weil operator C (e.g. Hodge star): $Cv = i^{p-q}v$ $v \in H^{p,q}$

Theorem [Bakker,TG,Schnell,Tsimerman]: For integer $\ell > 0$, the locus of integral self-dual classes

$$\left\{ (x,v) \in \mathbf{E} : v \in H_{\mathbb{Z},x} \text{ and } C_x v = v \text{ and } Q(v,v) = \ell \right\}$$

is $\mathbb{R}_{an,exp}$ -definable, closed real-analytic subspace of *E* and the restriction of *p* to this set is proper with finite fibers.

quantized flux $G_4 \in H^4(Y, \mathbb{Z})$ $*G_4 = G_4$
Generalization to self-dual classes

- recall Weil operator C (e.g. Hodge star): $Cv = i^{p-q}v$ $v \in H^{p,q}$

Theorem [Bakker,TG,Schnell,Tsimerman]: For integer $\ell > 0$, the locus of integral self-dual classes

$$\left\{ (x,v) \in \mathbf{E} : v \in H_{\mathbb{Z},x} \text{ and } C_x v = v \text{ and } Q(v,v) = \ell \right\}$$

is $\mathbb{R}_{an,exp}$ -definable, closed real-analytic subspace of *E* and the restriction of *p* to this set is proper with finite fibers.

quantized flux $G_4 \in H^4(Y, \mathbb{Z})$ $*G_4 = G_4$ $\int_Y G_4 \wedge G_4 = \ell$

Generalization to self-dual classes

- recall Weil operator C (e.g. Hodge star): $Cv = i^{p-q}v$ $v \in H^{p,q}$

Theorem [Bakker,TG,Schnell,Tsimerman]: For integer $\ell > 0$, the locus of integral self-dual classes

$$\left\{ (x,v) \in \mathbf{E} : v \in H_{\mathbb{Z},x} \text{ and } C_x v = v \text{ and } Q(v,v) = \ell \right\}$$

is $\mathbb{R}_{an,exp}$ -definable, closed real-analytic subspace of *E* and the restriction of *p* to this set is proper with finite fibers.

locus is definable in the o-minimal structure $\mathbb{R}_{an,exp}$ $\xrightarrow{general fact}$ finitely many connected components of tame geometry

Some remarks on the proof

 uses recent results connecting Hodge theory with tame geometry (theory of o-minimal structures)

- uses recent results connecting Hodge theory with tame geometry (theory of o-minimal structures)
- theory of o-minimal structures comes from model theory (logic)
 → gives a generalization of real algebraic geometry
 → provides a tame topology intro book [van den Dries]
 lectures: Fields program 2022

- uses recent results connecting Hodge theory with tame geometry (theory of o-minimal structures)
- theory of o-minimal structures comes from model theory (logic)
 → gives a generalization of real algebraic geometry
 → provides a tame topology intro book [van den Dries]

lectures: Fields program 2022

- Basic idea: specify space of allowed (definable) sets $S_n \subset \mathbb{R}^n$ and allowed (definable) functions $f : \mathbb{R}^n \to \mathbb{R}^m$
 - → definable manifolds, definable bundles,... a whole tame geometry
 - \rightarrow strong finiteness properties

- uses recent results connecting Hodge theory with tame geometry (theory of o-minimal structures)
- theory of o-minimal structures comes from model theory (logic)
 → gives a generalization of real algebraic geometry
 → provides a tame topology intro book [van den Dries]

lectures: Fields program 2022

- Basic idea: specify space of allowed (definable) sets S_n ⊂ ℝⁿ and allowed (definable) functions f : ℝⁿ → ℝ^m
 → definable manifolds, definable bundles,... a whole tame geometry
 - → strong finiteness properties
- Crucial criterium: definable sets in R are finitely many points and intervals + every higher-dimensional set linearly projects to such sets on R

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets \rightarrow non-trivial

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial
 - $\mathbb{R}_{an,exp}$ is such an o-minimal structure

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial
 - $\mathbb{R}_{an,exp}$ is such an o-minimal structure

[Wilkie '96] [van den Dries, Miller '94]

Seminal paper of [Bakker,Klingler,Tsimerman '18]:

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial
 - $\mathbb{R}_{an,exp}$ is such an o-minimal structure

- Seminal paper of [Bakker,Klingler,Tsimerman '18]:
 - maps between arithmetic quotients are definable: $\hat{\Gamma} \setminus \hat{G} / \hat{K} \to \Gamma \setminus G / K$

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial
 - $\mathbb{R}_{an,exp}$ is such an o-minimal structure

- Seminal paper of [Bakker,Klingler,Tsimerman '18]:
 - maps between arithmetic quotients are definable: $\hat{\Gamma} \setminus \hat{G} / \hat{K} \to \Gamma \setminus G / K$
 - use orbit theorems of Hodge theory to show that period map is definable in $\mathbb{R}_{an,exp}$

- there is no unique choice of o-minimal structure on \mathbb{R}^n :
 - examples are obtained by stating which functions are allowed to generate some of the sets → non-trivial
 - $\mathbb{R}_{an,exp}$ is such an o-minimal structure

- Seminal paper of [Bakker,Klingler,Tsimerman '18]:
 - maps between arithmetic quotients are definable: $\hat{\Gamma} \setminus \hat{G} / \hat{K} \to \Gamma \setminus G / K$
 - use orbit theorems of Hodge theory to show that period map is definable in $\mathbb{R}_{an,exp}$
 - new proof of the theorem of [Cattani,Deligne,Kaplan] for Hodge classes but: uses holomorphicity - self-dual world is real!

Step 1: note that Weil operator period map is definable in

[BKT]

- Step 1: note that Weil operator period map is definable in
- Step 2: extend definability result to the Hodge bundle $\Phi_E : E \to \Gamma \setminus (G/K \times H_{\mathbb{C}})$ Proof: uses partly [Bakker,Mullane '22].

[BKT]

- Step 1: note that Weil operator period map is definable in
- Step 2: extend definability result to the Hodge bundle $\Phi_E : E \to \Gamma \setminus (G/K \times H_{\mathbb{C}})$ Proof: uses partly [Bakker,Mullane '22].

[BKT]

- Step 3: Reduction of lattice $H_{\mathbb{Z}}$ into finitely many orbits use group Γ acts on set $\{v \in H_{\mathbb{Z}} : Q(v, v) = \ell\}$ with finitely many orbits [e.g. Kneser]

- Step 1: note that Weil operator period map is definable in
- Step 2: extend definability result to the Hodge bundle $\Phi_E : E \to \Gamma \setminus (G/K \times H_{\mathbb{C}})$ Proof: uses partly [Bakker,Mullane '22].
- Step 3: Reduction of lattice $H_{\mathbb{Z}}$ into finitely many orbits use group Γ acts on set $\{v \in H_{\mathbb{Z}} : Q(v, v) = \ell\}$ with finitely many orbits [e.g. Kneser]
- Step 4: Prove finiteness in a single orbit: $\Gamma a, a \in H_{\mathbb{Z}}$ Proof: some computations and definablity of $\Gamma_a \setminus G_a / K_a \to \Gamma \setminus G / K$ [BKT]

groups fixing a

BKT

 Hodge theory machinery is important for many quantum gravity conjectures - general results not requiring to first construct a manifold

- Hodge theory machinery is important for many quantum gravity conjectures - general results not requiring to first construct a manifold
- Results: tests of distance conjecture
 - general models for periods in Calabi-Yau threefolds / fourfolds
 - finiteness theorem for the number of self-dual integral classes

- Hodge theory machinery is important for many quantum gravity conjectures - general results not requiring to first construct a manifold
- Results: tests of distance conjecture
 - general models for periods in Calabi-Yau threefolds/fourfolds
 - finiteness theorem for the number of self-dual integral classes

Open math questions:

Can one prove the distance conjecture in the Calabi-Yau threefold setting?

- Hodge theory machinery is important for many quantum gravity conjectures - general results not requiring to first construct a manifold
- Results: tests of distance conjecture
 - general models for periods in Calabi-Yau threefolds / fourfolds
 - finiteness theorem for the number of self-dual integral classes

Open math questions:

- Can one prove the distance conjecture in the Calabi-Yau threefold setting?
- What are the properties of cycles dual to self-dual integral classes?
 → analog to Hodge conjecture for Hodge classes

- Hodge theory machinery is important for many quantum gravity conjectures - general results not requiring to first construct a manifold
- Results: tests of distance conjecture
 - general models for periods in Calabi-Yau threefolds / fourfolds
 - finiteness theorem for the number of self-dual integral classes

Open math questions:

- Can one prove the distance conjecture in the Calabi-Yau threefold setting?
- What are the properties of cycles dual to self-dual integral classes?
 → analog to Hodge conjecture for Hodge classes
- Application to manifolds with G₂ or Spin(7)? Tameness results for deformation maps?

- Hodge theory machinery is important for many quantum gravity conjectures - general results not requiring to first construct a manifold
- Results: tests of distance conjecture
 - general models for periods in Calabi-Yau threefolds / fourfolds
 - finiteness theorem for the number of self-dual integral classes

Open math questions:

- Can one prove the distance conjecture in the Calabi-Yau threefold setting?
- What are the properties of cycles dual to self-dual integral classes?
 → analog to Hodge conjecture for Hodge classes
- Application to manifolds with G₂ or Spin(7)? Tameness results for deformation maps?
- Tame differential geometry?

- Constraints on h(x,y) in real 2-dimensional \mathcal{M} : coords x,y

- Constraints on h(x,y) in real 2-dimensional \mathcal{M} : coords x,y

(1) Variational principle:
$$S(h) = \frac{1}{2} \int_{\mathcal{M}} \text{Tr} |(h^{-1}dh)^{\dagger} + h^{-1}dh|^2$$
 [Cecotti] [TG]

- Constraints on h(x,y) in real 2-dimensional \mathcal{M} : coords x,y
 - (1) Variational principle: $S(h) = \frac{1}{2} \int_{\mathcal{M}} \text{Tr} |(h^{-1}dh)^{\dagger} + h^{-1}dh|^2$ [Cecotti] [TG]
 - (1) Continuous symmetry: $h(x + c, y) = e^{cN} h(x, y)$ (near boundary)

- Constraints on h(x,y) in real 2-dimensional \mathcal{M} : coords x,y
 - (1) Variational principle: $S(h) = \frac{1}{2} \int_{\mathcal{M}} \text{Tr} |(h^{-1}dh)^{\dagger} + h^{-1}dh|^2$ [Cecotti] [TG]

(1) Continuous symmetry: $h(x + c, y) = e^{cN} h(x, y)$ (near boundary)

(2) Q - condition: $-2[Q_{\infty}, h^{-1}\partial_{y}h] = i(h^{-1}\partial_{x}h)^{\dagger} + ih^{-1}\partial_{x}h$ $[Q_{\infty}, h^{-1}\partial_{x}h] = ih^{-1}\partial_{y}h$

- Constraints on h(x,y) in real 2-dimensional \mathcal{M} : coords x,y
 - (1) Variational principle: $S(h) = \frac{1}{2} \int_{\mathcal{M}} \text{Tr} |(h^{-1}dh)^{\dagger} + h^{-1}dh|^2$ [Cecotti] [TG]

(1) Continuous symmetry: $h(x + c, y) = e^{cN} h(x, y)$ (near boundary)

(2) Q - condition:
$$-2[Q_{\infty}, h^{-1}\partial_{y}h] = i(h^{-1}\partial_{x}h)^{\dagger} + ih^{-1}\partial_{x}h$$
$$[Q_{\infty}, h^{-1}\partial_{x}h] = ih^{-1}\partial_{y}h$$

Solutions have near boundary expansion: $y \gg 1$

$$h(x,y) = e^{xN} \left(1 + \frac{g_1}{y} + \frac{g_2}{y^2} + \dots \right) y^{-\frac{1}{2}N^0}$$

Solve equations iteratively:

[Cattani,Kaplan,Schmid]

- complicated recursion relations on components of $h^{-1}\partial_{\sigma^{\alpha}}h$

Solve equations iteratively:

[Cattani,Kaplan,Schmid]

- complicated recursion relations on components of $h^{-1}\partial_{\sigma^{\alpha}}h$
- single matching condition: $e^{i\phi}$

$$\delta = \left(1 + \sum_{k>0} \frac{1}{k!} (\mathrm{ad}N)^k g_k\right)$$

 \Rightarrow fixes the g_k uniquely in terms of the boundary data

Solve equations iteratively:

[Cattani,Kaplan,Schmid]

- complicated recursion relations on components of $h^{-1}\partial_{\sigma^{\alpha}}h$
- single matching condition: $e^{i\delta} = \left(1 + \sum_{k>0} \frac{1}{k!} (adN)^k g_k\right)$

 \Rightarrow fixes the g_k uniquely in terms of the boundary data

Reconstruct the near boundary solution near boundaries
 I₁, II₀, IV₁ from simple sl(2)-data and compatible δ

[TG,vd Heisteeg,Monnee]

Simple boundary data for I₁ boundary

product $\langle a, b \rangle$ $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$ charge operator: $Q_{\infty} = \begin{pmatrix} 0 & 0 & 0 & -\frac{3i}{2} \\ 0 & 0 & -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} & 0 & 0 \\ \frac{3i}{2} & 0 & 0 & 0 \end{pmatrix}$

$$\mathfrak{sl}(2,\mathbb{R}): \qquad N^{+} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad N^{0} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad N^{-} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

[TG,vd Heisteeg,Monnee]

Simple boundary data for I₁ boundary

product $\langle a, b \rangle$ $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$ charge operator: $Q_{\infty} = \begin{pmatrix} 0 & 0 & 0 & -\frac{3i}{2} \\ 0 & 0 & -\frac{i}{2} & 0 \\ 0 & \frac{i}{2} & 0 & 0 \\ \frac{3i}{2} & 0 & 0 & 0 \end{pmatrix}$

$$\mathfrak{sl}(2,\mathbb{R}): \qquad N^{+} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad N^{0} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad N^{-} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

phase operator:
$$\delta = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -c & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \text{most general form}$$

[TG,vd Heisteeg,Monnee]

recall general solution:

$$h(x,y) = e^{xN} \left(1 + \frac{g_1}{y} + \frac{g_2}{y^2} + \dots \right) y^{-\frac{1}{2}N^0}$$

[TG,vd Heisteeg,Monnee]

recall general solution:

$$h(x,y) = e^{xN} \left(1 + \frac{g_1}{y} + \frac{g_2}{y^2} + \dots \right) y^{-\frac{1}{2}N^0}$$

apply CKS recursion:

$$g_k = -\frac{1}{2} \frac{c^k}{k!} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{\Gamma(k-1/2)}{\Gamma(1/2)} & 0 & 0 \\ 0 & 0 & -\frac{\Gamma(k+1/2)}{\Gamma(3/2)} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

[TG,vd Heisteeg,Monnee]

recall general solution:

$$h(x,y) = e^{xN} \left(1 + \frac{g_1}{y} + \frac{g_2}{y^2} + \dots \right) y^{-\frac{1}{2}N^0}$$

apply CKS recursion:

associated solution:

$$g_k = -\frac{1}{2} \frac{c^k}{k!} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{\Gamma(k-1/2)}{\Gamma(1/2)} & 0 & 0 \\ 0 & 0 & -\frac{\Gamma(k+1/2)}{\Gamma(3/2)} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$h(x, y) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{y-c}} & 0 & 0 \\ 0 & \frac{x}{\sqrt{y-c}} & \sqrt{y-c} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
An example

[TG,vd Heisteeg,Monnee]

recall general solution:

$$h(x,y) = e^{xN} \left(1 + \frac{g_1}{y} + \frac{g_2}{y^2} + \dots \right) y^{-\frac{1}{2}N^0}$$

0

0

0

0

apply CKS recursion:

associated solution:

$$g_k = -\frac{1}{2} \frac{c^k}{k!} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{\Gamma(k-1/2)}{\Gamma(1/2)} & 0 \\ 0 & 0 & -\frac{\Gamma(k+1/2)}{\Gamma(3/2)} \\ 0 & 0 & 0 \end{pmatrix}$$
$$h(x, y) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{y-c}} & 0 & 0 \\ 0 & \frac{\sqrt{y-c}}{\sqrt{y-c}} & \sqrt{y-c} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

write in geometric terms (period vector):

$$z = e^{2\pi i t} \qquad \Pi^T(z) = \left(1, z, \frac{1}{2\pi i} z \log(z) - i(c+2\pi)z, i - \frac{i}{4\pi} z^2\right)$$

$$\Rightarrow \text{ conifold period}$$

- General form of the periods: $\mathbf{\Pi}(t) = e^{i\delta}e^{-\zeta}e^{t^iN_i}e^{\Gamma(z)}\,\mathbf{\tilde{a}}_0$

- General form of the periods: $\mathbf{\Pi}(t) = e^{i\delta}e^{-\zeta}e^{t^iN_i}e^{\Gamma(z)}\,\mathbf{\tilde{a}}_0$

on the boundary simple for each type

- General form of the periods: $\Pi(t) = e^{i\delta}e^{-\zeta}e^{t^iN_i}e^{\Gamma(z)}\,\mathbf{\tilde{a}}_0$
- Step 1: construct most general N_i from (N_i^{\pm}, N_i^0) [Brosnan, Pearlstein, Robles]

$$N_i = N_i^- + \sum_{l \le -2} N_{i,l}$$
 weight under $N_i^0 - N_{i-1}^0$

- General form of the periods: $\mathbf{\Pi}(t) = e^{i\delta}e^{-\zeta}e^{t^iN_i}e^{\Gamma(z)}\,\mathbf{\tilde{a}}_0$

- Step 2: construct most general δ compatible with (N_i^{\pm}, N_i^0)

- General form of the periods: $\mathbf{\Pi}(t) = e^{i\delta}e^{-\zeta}e^{t^iN_i}e^{\Gamma(z)}\,\mathbf{\tilde{a}}_0$

• Step 3: get ζ from δ : $\zeta_{-1,-1} = \zeta_{-2,-2} = 0$, $\zeta_{-1,-2} = -\frac{i}{2}\delta_{-1,-2}$, $\zeta_{-1,-3} = -\frac{3i}{4}\delta_{-1,-3}$, $\zeta_{-2,-3} = -\frac{3i}{8}\delta_{-2,-3} - \frac{1}{8}[\delta_{-1,-1}, \delta_{-1,-2}]$, $\zeta_{-3,-3} = -\frac{1}{8}[\delta_{-1,-1}, \delta_{-2,-2}]$

- General form of the periods: $\mathbf{\Pi}(t) = e^{i\delta}e^{-\zeta}e^{t^iN_i}e^{\Gamma(z)}\,\mathbf{\tilde{a}}_0$

- Step 4: derive most general $\Gamma(z)$ using horizontality \Rightarrow solve differential conditions on Γ [Cattani,Fernandez]

- Results for two-cubes: $I_2 \text{ class}: \langle I_1 | I_2 | I_1 \rangle, \langle I_2 | I_2 | I_1 \rangle, \langle I_2 | I_2 | I_2 \rangle$

$$\Pi = \begin{pmatrix} 1 - \frac{a^2}{8\pi k_2} z_1^{2k_1} z_2^{2k_2} - \frac{b^2}{8\pi m_1} z_1^{2m_1} z_2^{2m_2} \\ a z_1^{k_1} z_2^{k_2} \\ b z_1^{m_1} z_2^{m_2} \\ i + \frac{ia^2}{8\pi k_2} z_1^{2k_1} z_2^{2k_2} + \frac{ib^2}{8\pi m_1} z_1^{2m_1} z_2^{2m_2} \\ -\frac{a}{2\pi i} z_1^{k_1} z_2^{k_2} \left(n_1 \log[z_1] + \log(z_2) - 1/k_1 \right) + ib\delta_1 z_1^{m_1} z_2^{m_2} \\ -\frac{b}{2\pi i} z_1^{m_1} z_2^{m_2} \left(\log(z_1) + n_2 \log[z_2] - 1/m_2 \right) + ia\delta_1 z_1^{k_1} z_2^{k_2} \end{pmatrix}$$

parameters	$\langle I_1 I_2 I_1 \rangle$	$\langle I_2 I_2 I_1 \rangle$	$\langle I_2 I_2 I_2 \rangle$
log-monodromies n_1, n_2	$n_1 = n_2 = 0$	$n_1 \in \mathbb{Q}_{>0}, n_2 = 0$	$n_1, n_2 \in \mathbb{Q}_{>0}, n_1 n_2 \neq 1$
instanton orders k_1, k_2	$k_1 = 0, k_2 = 1$	$k_1 = n_1 k_2$	$k_1 = n_1 k_2$
instanton orders m_1, m_2	$m_1 = 1, m_2 = 0$	$m_1 = 1, m_2 = 0$	$m_2 = n_2 m_1$
instanton coefficients a, b	$a, b \in \mathbb{R} - \{0\}$		
phase operator δ	$\delta_1 \in \mathbb{R}$		

Results for two-cubes:

Coni-LCS class : $\langle I_1 | IV_2 | IV_1 \rangle$, $\langle I_1 | IV_2 | IV_2 \rangle$

$$\Pi = \begin{pmatrix} 1 \\ az_1 \\ \frac{\log[z_2]}{2\pi i} \\ -\frac{i\log[z_2]^3}{48\pi^3} - \frac{ia^2nz_1^2\log[z_2]}{4\pi} + \frac{a^2}{4\pi i}z_1^2 + i\delta_2 + i\delta_1az_1 \\ -az_1\frac{\log[z_1] + n\log[z_2]}{2\pi i} + i\delta_1 \\ -\frac{\log[z_2]^2}{8\pi^2} - \frac{1}{2}a^2nz_1^2 \end{pmatrix}$$

parameters	$\langle I_1 IV_2 IV_1 \rangle$	$\langle I_1 IV_2 IV_2 \rangle$
log-monodromies n_1, n_2	n = 0	$n \in \mathbb{Q}_{>0}$
instanton coefficient a	$a \in \mathbb{R} - \{0\}$	
phase operator δ	$\delta_1, \delta_2 \in \mathbb{R}$	