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Introduction

A driving force in high energy theoretical physics has been the
quest for a microscopic explanation of the entropy of black holes.
Providing a derivation of the Bekenstein-Hawking formula is a
benchmark test of any theory of quantum gravity.

SBH = 1
4GN

A SBH
?
= log Ω

Sgr A*, Event Horizon Telescope 2022
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Black hole microstates as wrapped D-branes

Back in 1996, Strominger and Vafa argued that String Theory
passes this test with flying colors �, at least in the context of BPS
black holes in vacua with extended SUSY: micro-states can be
understood as bound states of D-branes wrapped on calibrated
cycles of the internal manifold, and counted efficiently.

Calabi-Yau black hole, courtesy F. Le Guen
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BPS indices and Donaldson-Thomas invariants

More precisely, in the context of type IIA strings compactified on a
Calabi-Yau three-fold Y, BPS states are described by stable
objects in the derived category of coherent sheaves C = DbCohY.
The Chern character γ = (ch0, ch1, ch2, ch3) is identified as the
electromagnetic charge, or D6-D4-D2-D0-brane charge.
The problem becomes a question in enumerative geometry: for
fixed γ ∈ K (Y), compute the Donaldson-Thomas invariant Ωz(γ)
counting (semi)stable objects of class γ in C with respect to
z ∈ Stab C, and determine its growth as |γ| → ∞.
Physical arguments predict that suitable generating series of rank
0 DT invariants (counting D4-D2-D0 bound states) should have
definite modular properties. This gives very good control on their
asymptotic growth, and confirms that Ωz(γ) ' eSBH (γ) as |γ| → ∞.
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Simplest example: Abelian three-fold

For Y = T 6, Ωz(γ) depends only on a certain quartic polynomial
m = I4(γ) in the charges, and is moduli independent. It is given by
the Fourier coefficient c(m) of a weak modular form,

θ3(2τ)

η6(4τ)
=
∑

m≥−1

c(m) qm =
1
q

+ 2 + 8q3 + 12q4 + 39q7 + 56q8 + . . .

Moore Maldacena Strominger 1999, BP 2005, Shih Strominger Yin 2005

Bryan Oberdieck Pandharipande Yin’15

Recall that f (τ) :=
∑

n≥0 c(n)qn−∆ (with q = e2πiτ , Imτ > 0) is a

modular form of weight k if ∀
(

a b
c d

)
∈ SL(2,Z),

f
(

aτ+b
cτ+d

)
= (cτ + d)k f (τ) ⇒ c(n) ∼ exp

(
4π
√

∆n
)

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds Oxford, 11/1/2023 6 / 51



Wall-crossing and mock modularity

For a general CY3, the story is more involved and interesting.
First, Ωz(γ) depends on the Kähler parameters z (more generally,
on the stability condition), with a complicated chamber structure.
Second, the generating series of rank 0 invariants Ω?(γ) in the
large volume attractor chamber are generally not modular but
rather mock modular of higher depth.
A (depth one) mock modular form of weight w transforms
inhomogeneously under SL(2,Z),

f
(

aτ+b
cτ+d

)
= (cτ + d)k

[
f (τ)−

∫ i∞

−d/c
g(−ρ̄)(τ + ρ)−w dρ

]

where g(τ) is an ordinary modular form of weight 2−w , known as
the shadow.

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds Oxford, 11/1/2023 7 / 51



Wall-crossing and mock modularity

Equivalently, the non-holomorphic completion

f̂ (τ, τ̄) := f (τ) +

∫ i∞

−τ̄
g(−ρ̄)(τ + ρ)−w dρ

transforms like a modular form of weight w ,
and satisfies τw

2 ∂τ̄ f̂ (τ, τ̄) ∝ g(τ)

Ramanujan’1920, Hirzebruch-Zagier’1973, Zwegers’02

The Fourier coefficients still grow as c(n) ∼ exp
(

4π
√

∆n
)

but
subleading corrections are markedly different.
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Outline

Explain the formalism of (weak) stability conditions on
C = DbCohY

Spell out the modularity properties of rank 0 DT invariants for
general CY threefold
Check modularity for non-compact Y = KS with S a Fano surface,
where rank 0 DT invariants reduce to Vafa-Witten invariants.
Test modularity for compact CY threefolds with b2(Y) = 1, using
recent results of S. Feyzbakhsh and R. Thomas
Obtain new constraints on higher genus GW invariants from
modularity
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Mathematical preliminaries

Let Y a compact CY threefold, and C = DbCohY the bounded
derived category of coherent sheaves. Objects E ∈ C are
bounded complexes

E = (· · ·
d−2→ E−1 d−1→ E0 d0→ E1 d1→ . . . ) ,

of coherent sheaves Ek on Y, with morphisms dk : Ek → Ek+1

such that dk+1dk = 0. Physically, Ek describe D6-branes for k
even, or anti D6-branes for k odd, and dk are open strings .
C is graded by the (numerical) Grothendieck group K (C). Let
Γ ⊂ Heven(Y,Q) be the image of K (C) under the Chern character
E 7→ ch E =

∑
k (−1)k ch Ek . Γ is the lattice of electromagnetic

charges, equipped with the Dirac-Schwinger symplectic pairing

〈E ,E ′〉 = χ(E ′,E) =

∫
Y

(ch E ′)∨ ch(E) Td(TY) ∈ Z
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Bridgeland stability conditions

Let S = Stab(C) be the space of Bridgeland stability conditions
σ = (Z ,A), where

1 Z : Γ→ C is a linear map, known as the central charge. Let
Z (E) := Z (ch(E)).

2 A ⊂ C is the heart of a bounded t-structure on C;
3 For any non-zero E ∈ A, (i) ImZ (E) ≥ 0 and (ii) ImZ (E) = 0⇒

ReZ (E) < 0. Relax (ii) for weak stability conditions.
4 Harder-Narasimhan filtration + support property

If S is not empty, then it is a complex manifold of dimension
rk Γ = beven(Y), locally parametrized by Z (γi) with γi a basis of Γ.
Stability conditions are known to exist only for a handful of CY
threefolds, including the quintic in P4. Their construction depends
on the conjectural Bayer-Macrì-Toda (BMT) inequality. Weak
stability conditions are much easier to construct.
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Physical stability conditions

Physics/Mirror symmetry conjecturally selects a subspace Π ⊂ C,
known as ‘physical slice’ or slice of Π-stability conditions,
parametrized by complexified Kähler structure of Y, or complex
structure of Ŷ. Hence dim Π = b2(Y) + 1 = b3(Ŷ).
Along this slice, the central charge is given by the period

Z (γ) =

∫
γ̂

Ω3,0

where Ω3,0 is the holomorphic 3-form on Ŷ and γ̂ ∈ H3(Ŷ,Z) is
the 3-cycle dual to γ ∈ Γ.
Near the large volume point inMK (Y), or MUM point inMcx (Ŷ),

Z (E) = −
∫
Y

e−zaHa
√

Td(TY) ch(E)

where Hi is a basis of H2(Y,Z), and za = ba + ita are the
complexified Kähler moduli.
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Generalized Donaldson-Thomas invariants

Given a (weak) stability condition σ = (Z ,A), an object F ∈ A is
called σ-semi-stable if arg Z (F ′) ≤ arg Z (F ) for every non-zero
subobject F ′ ⊂ F (where 0 < arg Z ≤ 1).
LetMσ(γ) be the moduli stack of σ-semi-stable objects of class γ
in A. Following [Joyce-Song’08] one can associate the DT invariant
Ω̄σ(γ) ∈ Q. When γ is primitive andMσ(γ) is smooth and
projective, then Ω̄σ(γ) = (−1)dimMσ(γ)χ(Mσ(γ)).
Conjecturally, the generalized DT invariant defined by

Ωσ(γ) =
∑
m|γ

µ(m)

m2 Ω̄σ(γ/m)

is integer for any γ, and reduces to the BPS index along Π.
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Wall-crossing

The invariants Ω̄σ(γ) are locally constant on S, but jump across
walls of instability (or marginal stability), where the central charge
Z (γ) aligns with Z (γ′) where γ′ = ch E ′ for a subobject E ′ ⊂ E .
The jump is governed by a universal wall-crossing formula.

Joyce Song’08; Kontsevich Soibelman’08

Physically, the jump corresponds to the (dis)appearance of
multi-centered black hole bound states. In the simplest case,

∆Ω(γ1 + γ2) = (−1)〈γ1,γ2〉+1|〈γ1, γ2〉|Ω(γ1) Ω(γ2)
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S-duality constraints on DT invariants

Constraints on DT invariants can be derived by studying instanton
corrections to the moduli space in IIA/Y× S1(R)=M/Y× T 2(τ).
[Alexandrov, Banerjee, Manschot, BP, Robles-Llana, Rocek, Saueressig, Theis, Vandoren

’06-19]

The moduli spaceM3 factorizes intoMH × M̃V where
1 MH parametrizes the complex structure of Y+ dilaton φ + Ramond

gauge fields in Hodd(Y)
2 M̃V parametrizes the Kähler structure of Y + radius R + Ramond

gauge fields in Hodd(Y)

Both factors carry a quaternion-Käler metric. MH is largely
irrelevant for this talk, but note that it is exchanged with M̃V under
mirror symmetry.

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds Oxford, 11/1/2023 15 / 51



S-duality constraints on DT invariants

At large R, M̃V is a flat torus bundle over R+ ×MK , but the QK
metric receives O(e−R|Z (γ)|) corrections from Euclidean black
holes winding around S1.
These corrections are determined from the DT invariants Ωz(γ) by
a twistorial construction à la Gaiotto-Moore-Neitzke [Alexandrov BP

Saueressig Vandoren’08]

Since type IIA/S1 is the same as M-theory on T 2, M̃V must have
an isometric action of SL(2,Z). This strongly constrains the DT
invariants in the large volume limit.
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S-duality constraints on BPS indices

Requiring that M̃V admits an isometric action of SL(2,Z) near large
volume, one can show that DT invariants Ωz(ch0, ch1, ch2, ch3) satisfy

For n D0-branes, Ωz(0,0,0,n) = −χY (independent of n)
For D2-branes supported on a curve of class
qaγ

a ∈ Λ∗ = H2(Y,Z), Ωz(0,0,qa,n) = N(0)
qa is given by the

genus-zero GV invariant (independent of n)
For D4-branes supported on an irreducible divisor D of class
paγa ∈ Λ = H4(Y,Z), the generating series

hpa,qa(τ) :=
∑

n

Ω?(0,pa,qa,n) qn+ 1
2 qaκabqb+ 1

2 qaκabqb− 1
2 paqa−χ(D)

24

should be a vector-valued weakly holomorphic modular form of
weight w = −1

2b2(Y)− 1 and prescribed multiplier system.
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S-duality constraints on D4-D2-D0 indices

hpa,qa(τ) =
∑

n

Ω?(0,pa,qa,n) qn+ 1
2 qaκabqb+ 1

2 paqa−χ(D)
24

Here, Ω̄?(0,pa,qa,n) is the index in the large volume attractor
chamber (aka MSW index)

Ω̄?(γ) = lim
λ→+∞

Ω̄(za=−κabqb+iλpa)(γ)

where κab is the inverse of the quadratic form κab = κabcpc with
Lorentzian signature (1,b2(Y)− 1).
For CY threefolds with PicY = ZH, Ω̄?(γ) coincides with the DT
invariant Ω̄H(γ) counting H-Gieseker stable sheaves.
The Bogolomov-Gieseker inequality guarantees that n is bounded
from below, n ≥ −1

2qaκ
abqb − 1

2paqa.
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S-duality constraints on D4-D2-D0 indices

By construction, Ω?(0,pa,qa,n) is invariant under tensoring with a
line bundle O(εaHa) (aka spectral flow)

qa → qa − κabε
b , n 7→ n − εaqa +

1
2
κabε

aεb

Thus, the D2-brane charge qa can be restricted to the finite set
Λ∗/Λ, of cardinal |det(κab)|.
hpa,qa transforms under the Weil representation for Λ, e.g.

hpa,qa(−1/τ) =
∑

q′a∈Λ∗/Λ

e−2πiκabqaq′b+ iπ
4 (b2(Y)+2χ(O(D))−2)√
|det(κab)|

hpa,q′a(τ)
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D4-D2-D0 indices from elliptic genus

Summing over all D2-brane charges and using spectral flow
invariance, one gets

Zp(τ, v) :=
∑

q∈Λ,n

Ω?(0,pa,qa,n) qn+ 1
2 qaκabqbe2πiqava

=
∑

q∈Λ∗/Λ

hp,q(τ)Θq(τ, v)

where Θq(τ, v) is the (non-holomorphic) Siegel theta series for the
indefinite lattice (Λ, κab). S-duality then requires that Zp should
transform as a (non-holomorphic) Jacobi form.
The Jacobi form Zp can be interpreted as the elliptic genus of the
(0,4) superconformal field theory obtained by wrapping an
M5-brane on the divisor D [Maldacena Strominger Witten ’98].
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Mock modularity constraints on D4-D2-D0 indices

For γ supported on a reducible divisor D =
∑n≥2

i=1 Di , the
generating series hp (omitting q index for simplicity) is no longer
expected to be modular. Rather, it should be a vector-valued mock
modular form of depth n − 1 and same weight/multiplier system.

Alexandrov Banerjee Manschot BP ’16-19

There exists explicit non-holomorphic theta series such that

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

transforms as a modular form of weight −1
2b2(Y)− 1. Moreover

the completion satisfies an explicit holomorphic anomaly equation,

∂τ̄ ĥp(τ, τ̄) =
∑

p=
∑n≥2

i=1 pi

Θ̂n({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)
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Crash course on Indefinite theta series

Θn and Θ̂n belongs to the class of indefinite theta series

ϑΦ,q(τ, τ̄) = τ−λ2

∑
k∈Λ+q

Φ
(√

2τ2k
)

e−iπτQ(k)

where (Λ,Q) is an even lattice of signature (r ,d − r), q ∈ Λ∗/Λ,
λ ∈ R. The series converges if f (x) ≡ Φ(x)e

π
2 Q(x) ∈ L1(Λ⊗ R).

Theorem (Vignéras, 1978): {ϑΦ,q,q ∈ Λ∗/Λ} transforms as a
vector-valued modular form of weight (λ+ d

2 ,0) provided
R(x)f ,R(∂x )f ∈ L2(Λ⊗ R) for any polynomial R(x) of degree ≤ 2[
∂2

x + 2π(x∂x − λ)
]

Φ = 0 [*]

The relevant lattice Λ = H2(Y,Z)⊕n−1 has signature
(r ,d − r) = (n − 1)(1,b2(Y)− 1).
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Indefinite theta series

Example 1 (Siegel): Φ = eπQ(x+), where x+ is the projection of x
on a fixed plane of dimension r , satisfies [*] with λ = −n. ϑΦ is
then the usual (non-holomorphic) Siegel-Narain theta series.
Example 2 (Zwegers): In signature (1,d − 1), choose C,C′ two
vectors such that Q(C),Q(C′), (C,C′) > 0, then

Φ̂(x) = Erf
(

(C,x)
√
π√

Q(C)

)
− Erf

(
(C′,x)

√
π√

Q(C′)

)
satisfies [*] with λ = 0. As |x | → ∞, or if Q(C) = Q(C′) = 0,

Φ̂(x)→ Φ(x) := sgn(C, x)− sgn(C′, x)

The theta series Θ2({p1,p2}), Θ̂2({p1,p2}) fall in this class. The
generalization to n > 2 involves generalized error functions.

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016
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Indefinite theta series

For r > 1, one can construct solutions of [∗] which asymptote to∏
i sgn(Ci , x) as |x | → ∞: the generalized error functions

Er (C1, . . .Cr ; x) =

∫
〈C1,...,Cr 〉

dx ′ e−πQ(x+−x ′)
∏

i

sgn(Ci , x ′)

where x+ is the projection of x on the positive plane 〈C1, . . . ,Cr 〉.
Taking suitable linear combinations of Er (C1, . . .Cr ; x), one can
construct a kernel Φ which leads to a convergent, modular (but
non-holomorphic) theta series ϑΦ.

Alexandrov Banerjee Manschot BP 2016; Nazaroglu 2016

More geometrically, ϑΦ arises by integrating the r -form valued
Kudla-Millson theta series on a suitable polyhedron in Gr(r ,d − r)

Kudla Funke 2016-17
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Explicity modular completions

The series Θ̂n appearing in the holomorphic anomaly equation

∂τ̄ ĥp(τ, τ̄) =
∑

p=
∑n≥2

i=1 pi

Θ̂n({pi}, τ, τ̄)
n∏

i=1

ĥpi (τ, τ̄)

are exactly of that type, with kernel given by a sum over rooted
trees,

Φ̂n = Sym
∑

T∈TS
n

(−1)nT−1Ev0

∏
v∈VT \{v0}

Ev
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Explicity modular completions

The series Θn appearing in the modular completion

ĥp(τ, τ̄) = hp(τ) +
∑

p=
∑n≥2

i=1 pi

Θn({pi}, τ, τ̄)
n∏

i=1

hpi (τ)

are not modular, but their anomaly cancels against that of hp:

Φn = Sym
∑

T∈TS
n

(−1)nT−1E(+)
v0

∏
v∈VT \{v0}

E(0)
v

where Ev = E(0)
v + E(+)

v with E(0)
v (x) = limλ→∞ Ev (λx).

NB: these formulae hold for generating series of refined invariants,
otherwise derivatives of error functions appear.

Alexandrov Manschot BP 18-19
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Simplifications in one-divisor case

On a threefold with b4(Y) = 1, the D4-brane charge pa = Npa
0 is a

multiple of the class p0 of the primitive divisor D, which we
assume to be ample, with self-intersection κ := [D]3 = |Λ∗/Λ|. The
sum over p =

∑
i pi reduces to a sum over partitions N =

∑n
i=1 Ni .

Remarkably, only partitions of length two contribute to the
holomorphic anomaly. In terms of the ‘elliptic genus’
ZN =

√
κ
N
∑

q ĥN,q(τ, τ̄)Θq(τ̄ , v), this reduces to

Dτ̄ZN =

√
2τ2

32πi

∑
N=N1+N2

N1N2 ZN1ZN2

Minahan Nemeschansky Vafa Warner’98; Alexandrov Manschot BP’19

In contrast, the modular completion involves a sum over partitions
of arbitrary length.
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Mock modularity for local CY

A class of (non-compact) CY threefolds with b4(Y) = 1 is obtained
by taking the total space Y = KS of the canonical bundle over a
complex Fano surface S.
The BPS index Ωz(γ) for γ = (0,N, µ,n) coincides with the
Vafa-Witten invariant, given (up to sign) by the Euler number of the
moduli spaceMN,µ,n, of J-Gieseker semi-stable sheaves of rank
N on S.
Since b+

2 (S) = 1, Vafa-Witten invariants depend on the Kähler
form J on S. The large volume attractor point corresponds to the
canonical polarization J ∝ c1(S). Denote by Ω̄?(0,N, µ,n) the
corresponding DT invariants.
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Mock modularity for local CY

The generating series

hN,µ =
∑

n

Ω̄?(0,N, µ,n) qn−N−1
2N µ2−N χ(S)

24

is invariant under µ 7→ µ+ N, and should transform as a vv mock
modular form of weight w = −1− b2(S)

2 and depth N − 1.
For N = 1, the moduli space reduces to the Hilbert scheme of n
points on S, and the generating series is manifestly modular
[Goettsche’90],

h1,µ(τ) =
1

ηb2(S)+2

For N > 1, one expects non-holomorphic contributions from the
boundary of the space of flat connections where the holonomy
becomes reducible [Vafa Witten 94; Dabholkar Putrov Witten ’20].
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Mock modularity for local CY

For S = P2, rank 2 Vafa-Witten invariants are related to Hurwitz
class numbers [Klyachko’91, Yoshioka’94]

h2,µ(τ) =
3Hµ(τ)

η6

{
H0(τ) = − 1

12 + 1
2q + q2 + 4

3q3 + 3
2q4 + . . .

H1(τ) = q
3
4
(1

3 + q + q2 + 2q3 + q4 + . . .
)

This is the simplest example of depth 1 mock modular form, with
completion [Hirzebruch Zagier’75-76]

ĥ2,µ(τ) = h2,µ(τ) +
3(1 + i)

8πη6

∫ i∞

−τ̄

∑
m∈Z+µ

2
e2iπm2udu

(τ + u)3/2

consistent with our general prescription.
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Mock modularity for local CY

For S = P2, F0 or any other del Pezzo surface, the VW invariants
can be obtained in principle for any rank N by a sequence of blow
ups and wall-crossings [Yoshioka’95-96, Manschot’10-14]. Alternatively,
one can relate them to DT invariants for a suitable quiver
associated to an exceptional collection on S. [Beaujard Manschot BP’20]

Using our general prescription, one easily obtains the modular
completion of the generating series. Moreover, with some
ingenuity one can produce explicit solutions for all N, which
(conjecturally) provide VW invariants for any del Pezzo surface
and any N [Alexandrov’20].
Having the modular completion, one can apply Rademacher’s
circle method to extract the asymptotics of VW invariants as the
instanton number n goes to infinity [Bringmann Manschot’13, Bringmann

Nazaroglu’18]
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Modularity for one-modulus compact CY

We now specialize to compact CY threefolds with b2(Y) = 1 and
p = N[D] where D is an ample divisor with [D]3 := κ.
We focus on smooth complete intersections in weighted projective
space (CICY), Y = Xdi (wj) with

∑
di =

∑
wj . There are 13 such

models, with Kähler moduli spaceMK = P1\{0,1,∞}, with a
large volume point at z = 0 and a conifold singularity at z = 1.
The central charge Zz(γ) is expressed in terms of hypergeometric
functions. GV invariants N(g)

q are known up to high genus by direct
integration method [Huang Klemm Quackenbush’06]

I will concentrate on N = 1, and discuss N = 2 if time permits.
Gaiotto Strominger Yin ’06-07; Alexandrov Gaddam Manschot BP’22
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Modularity for one-modulus compact CY

CICY χ(Y) κ c2(TY) χ(OD) n1 C1
X5(15) −200 5 50 5 7 0
X6(14,2) −204 3 42 4 4 0
X8(14,4) −296 2 44 4 4 0
X10(13,2,5) −288 1 34 3 2 0
X4,3(15,2) −156 6 48 5 9 0
X4,4(14,22) −144 4 40 4 6 1
X6,2(15,3) −256 4 52 5 7 0
X6,4(13,22,3) −156 2 32 3 3 0
X6,6(12,22,32) −120 1 22 2 1 0
X3,3(16) −144 9 54 6 14 1
X4,2(16) −176 8 56 6 15 1
X3,2,2(17) −144 12 60 7 21 1
X2,2,2,2(18) −128 16 64 8 33 3
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Computing the polar terms

For N = 1, the generating series

h1,q =
∑
n∈Z

Ω(0,1,q,n) qn+ q2

2κ+ q
2−

χ(D)
24

should transform as a vector-valued modular form of weight −3
2 in

the Weil representation of Z[κ]. In particular q ∈ Z/κZ.
An overcomplete basis is given for κ even by

Ea
4 Eb

6
η4κ+c2

D`(ϑ
(κ)
q ) with ϑ

(κ)
q =

∑
k∈Z+ q

κ
+ 1

2

q
1
2κk2

where D = q∂q − w
12E2, is the Serre derivative (Alternatively, one

may use Rankin-Cohen brackets).
For κ odd, the same works with an extra insertion of (−1)κk k2.
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A naive Ansatz for the polar terms

h1,q is uniquely determined by the polar terms n < χ(D)
24 −

q2

2κ −
q
2 ,

but the dimension d1 = n1 − C1 of the space of modular forms
may be smaller than the number n1 of polar terms !
Physically, we expect that polar coefficients arise as bound states
of D6-brane and anti D6-branes [Denef Moore’07]

Earlier studies [Gaiotto Strominger Yin’06] suggest that only bound states
of the form (D6 + qD2 + nD0,D6(−1)) contribute to polar coeffs:

Ω(0,1,q,n) = (−1)χ(OD)−q−n+1 (χ(OD)− q − n) DT (q,n)

where DT (q,n) counts ideal sheaves with ch2 = q and ch3 = n
[Alexandrov Gaddam Manschot BP’22]

B. Pioline (LPTHE, Paris) BPS Modularity on CY threefolds Oxford, 11/1/2023 35 / 51



GV/DT/PT relation

For a single D6-brane, the DT-invariant DT (q,n) = Ω(1,0,q,n) at
large volume can be computed via the GV/DT relation

∑
Q,n

DT (Q,n) qnvQ = M(−q)χY
∏

Q,g,`

(
1− (−q)g−`−1vQ

)(−1)g+`

(
2g − 2
`

)
N(g)

Q

where M(−q) =
∏

n≥1(1− (−q)n)−n is the Mac-Mahon function.
Maulik Nekrasov Okounkov Pandharipande’06

Pandharipande-Thomas invariants PT (Q,n) counting stable pairs
E = (OY

s→ F ) with [F ] = Q and χ(F ) = n satisfy a similar relation
without the Mac-Mahon factor M(−q)χY .
The topological string partition function is given by

Ψtop(z, λ) = M(−q)−χY/2ZDT , q = eiλ, v = e2πiz/λ

can be computed by the direct integration method.
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Modular predictions for D4-D2-D0 indices (naive)

Remarkably, there exists a vv modular form with integer Fourier
coefficients matching these polar terms for almost all CICY
(except X4,2,X3,2,2,X2,2,2,2 ), reproducing earlier results [Gaiotto

Strominger Yin] by for X5,X6,X8,X10 and X3,3

X5 (Quintic in P4):

h1,0 = q−
55
24

(
5− 800q + 58500q2 + 5817125q3 + . . .

)
h1,±1 = q−

55
24 + 3

5

(
0 + 8625q− 1138500q2 + 3777474000q3 + . . .

)
h1,±2 = q−

55
24 + 2

5

(
0 + 0q− 1218500q2 + 441969250q3 + . . .

)
X10 (Decantic in WP5,2,1,1,1):

h1,0
?
=

541E4
4 +1187E4E2

6
576 η35

=q−
35
24

(
3− 576q + 271704q2 + 206401533q3 + · · ·

)
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Rank 0 DT invariants from GV invariants

Our Ansatz for polar terms was just an educated guess.
Fortunately, recent progress in Donaldson-Thomas theory allows
to compute D4-D2-D0 indices in a rigorous fashion, and compare
with modular predictions.

Bayer Macri Toda’11; Toda’11; Feyzbakhsh Thomas’20-22

The key idea is to consider a family of weak stability conditions on
the boundary of Stab C, called tilt stability, with degenerate central
charge

Zb,t (E) =
i
6

t3 ch0(E)− 1
2

t2 chb
1(E)− it chb

2(E) + 0 chb
3(E)

with chb
k =

∫
Y H3−ke−bH ch. The heart Ab is generated by

length-two complexes E d→ F with chb
1(E) > 0, chb

1(F) ≤ 0.
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Rank 0 DT invariants from GV invariants

Tilt stability agrees with physical stability at large volume, but the
chamber structure is much simpler: walls are straight lines in the
plane spanned by (b,w = 1

2b2 + 1
6 t2), with w > 1

2b2.

νb,w (E) = ch2 .H−w ch0 .H3

ch1 .H2−b ch0 .H3

$(E) =
(

ch1 .H2

ch0 .H3 ,
ch2 .H
ch0 .H3

)
$̃(E) =

(
2 ch2 .H
ch1 .H2 ,

3 ch3
ch1 .H2

)
Importantly, for any νb,w -semistable object E there is a conjectural
inequality on Chern classes Ci :=

∫
Y chi(E).H3−i [Bayer Macri Toda’11;

Bayer Macri Stellari’16]

(C2
1 − 2C0C2)w + (3C0C3 − C1C2)b + (2C2

2 − 3C1C3) ≥ 0
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Rank 0 DT invariants from GV invariants

By studying wall-crossing between the empty chamber provided
by BMT bound and large volume, [Feyzbakhsh Thomas] show that
D4-D2-D0 indices can be computed from rank 1 DT or PT
invariants, which are in turn related to GV invariants.
In particular for (q,n) large enough, the PT invariant counting
tilt-stable objects of class (−1,0,q,n) is given by [Feyzbakhsh’22]

PT (q,n) = (−1)〈D6(1),γ〉+1〈D6(1), γ〉Ω(γ)

with D6(1) := OY(H)[1] and γ = (0,1,q,n). Using spectral flow
invariance, one finds for all m ≥ m0(q,n)

Ω(γ) = (−1)〈D6(1−m),γ〉+1
〈D6(1−m),γ〉

PT (q′,n′)

{
q′ = q + κm
n′ = n −mq − κ

2 m(m + 1)
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Modular predictions for D4-D2-D0 (rigorous)

Using this idea, we have computed most of the polar terms (and
many non-polar ones) for all models except X3,2,2,X2,2,2,2 – for
those the required GV invariants are currently out of reach.

Alexandrov, Feyzbakhsh, Klemm, BP, Schimannek’23

We find that our educated guess is correct for X5,X6,X8,X3,3,X4,4,
X6,6 , , but (as anticipated by [van Herck Wyder’09]) misses some O(1)
contributions for X10,X6,2,X6,4,X4,3 / E.g. for X10,

h1,0 =
203E4

4 + 445E4E2
6

216 η35 = q−
35
24

(
3− 575q + 271955q2 + · · ·

)
In all cases, modularity holds with flying colors ! ☼ � ,
Note that [Toda’13, Feyzbakhsh’22] also prove a version of our D6− D6
ansatz, but under very restrictive conditions which are only
satisfied by the most polar terms.
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Mock modularity for non-Abelian D4-D2-D0 indices

Let us consider D4-D2-D0 indices with N = 2 units of D4-brane
charge. In that case, {h2,q,q ∈ Z/(2κZ)} should transform as a vv
mock modular form with modular completion

ĥ2,q(τ, τ̄) = h2,q(τ) +
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−q Θ

(κ)
q2−q1+κ h1,q1 h1,q2

where
Θ

(κ)
q = (−1)q

8π

∑
k∈2κZ+q

|k |β
(
τ2k2

κ

)
e−

πiτ
2κ k2

,

and β(x2) = 2|x |−1e−πx2 − 2πErfc(
√
π|x |).

For κ = 1, the series Θ
(1)
q is the one appearing in the modular

completion of rank 2 Vafa-Witten invariants on P2 !
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Mock modularity for non-Abelian D4-D2-D0 indices

The series Θ
(κ)
q is convergent but not modular invariant. Suppose

there exists a holomorphic function g(κ)
q such that Θ

(κ)
q + g(κ)

q
transforms as a vv modular form. Then

h̃2,q(τ, τ̄) = h2,q(τ)−
κ−1∑

q1,q2=0

δ
(κ)
q1+q2−q g(κ)

q2−q1+κ h1,q1 h1,q2

will be an ordinary weakly holomorphic vv modular form, hence
uniquely determined by its polar part.

To construct g(κ)
q , notice that for κ prime, Θ

(κ)
q is obtained from

Θ
(1)
q by acting with the Hecke-type operator [Bouchard Creutzig

Diaconescu Doran Quigley Sheshmani’16]

(Tκ[φ])q(τ) =
1
κ

∑
a,d>0
ad=κ

(
κ
d

)w+ 1
2 δκ(q,d)

d−1∑
b=0

e−πi b
a q2

φdq
(aτ+b

d

)
,

with q ∈ Λ∗/Λ(κ) and δκ(q,d) = 1 if q ∈ Λ∗/Λ(d) and 0 otherwise.
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Mock modularity for non-Abelian D4-D2-D0 indices

For κ = 1, a candidate for g(1)
q is well-known: the generating

series of Hurwitz class numbers [Hirzebruch Zagier 1973]

H0(τ) =− 1
12

+
1
2

q + q2 +
4
3

q3 +
3
2

q4 + . . .

H1(τ) = q
3
4

(
1
3

+ q + q2 + 2q3 + q4 + . . .

)
For any κ, we can thus choose g(κ)

q = Tκ(H)q.

The vv modular form h̃2,q is uniquely specified by its polar terms
but those must satisfy constraints for such a form to exist, and
integrality is not guaranteed !
Mathematical results by Feyzbakhsh in principle allow to compute
polar terms from DT/PT invariants, hence GV invariants, but the
required degree and genus is prohibitive so far.
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Mock modularity for non-Abelian D4-D2-D0 indices

CICY χ κ c2 χ(O2D) n2 C2
X5(15) −200 5 50 15 36 1
X6(14,2) −204 3 42 11 19 1
X8(14,4) −296 2 44 10 14 1
X10(13,2,5) −288 1 34 7 7 0
X4,3(15,2) −156 6 48 16 42 0
X4,4(14,22) −144 4 40 12 25 1
X6,2(15,3) −256 4 52 14 30 1
X6,4(13,22,3) −156 2 32 8 11 1
X6,6(12,22,32) −120 1 5 2 5 0
X3,3(16) −144 9 54 21 78 3
X4,2(16) −176 8 56 20 69 3
X3,2,2(17) −144 12 60 26 117 0
X2,2,2,2(18) −128 16 64 32 185 4
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Quantum geometry from stability and modularity

Conversely, we can use our knowledge of Abelian D4-D2-D0 invariants
to compute GV invariants and push the direct integration method to
higher genus !

Gopakumar-Vafa
invariants N(g)

Q

Pandharipande-Thomas
invariants PT(Q,n)

Rank 0 DT-invariants
hr ,q(τ)

Wall crossing

MNOP relation
new constraints on

holomorphic ambiguities

Modular
bootstrap

Direct integration

Alexandrov Feyzbakhsh Klemm BP Schimannek’23
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Quantum geometry from stability and modularity

CICY χ κ type ginteg gmod gavail

X5(15) −200 5 F 53 69 55
X6(14,2) −204 3 F 48 57 31
X8(14,4) −296 2 F 60 80 48
X10(13,2,5) −288 1 F 50 70 47
X4,3(15,2) −156 6 F 20 24 24
X6,4(13,22,3) −156 2 F 14 17 17
X6,6(12,22,32) −120 1 K 18 22 22
X4,4(14,22) −144 4 K 26 34 34
X3,3(16) −144 9 K 29 33 33
X4,2(16) −176 8 C 50 66 43
X6,2(15,3) −256 4 C 63 78 42
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Conclusion

The existence of an isometric action of S-duality on the
vector-multiplet moduli space in D = 3, leads to strong modularity
constraints on rank 0 DT invariants in the large volume limit.
For p =

∑n
i=1 pi the sum of n irreducible divisors, the generating

function hp is a mock modular form of depth n − 1 with an explicit
shadow, thus it is uniquely determined by its polar coefficients.
While modularity is clear physically, its mathematical origin is
mysterious. Perhaps Noether-Lefschetz theory or VOAs can help
[Bouchard Creutzig Diaconescu Doran Quigley Sheshmani’16]

Using modularity and GV/DT/PT relations, we can not only
compute D4D2-D0 indices, but also push Ψtop to higher genus !
Mock modularity affects the growth of Fourier coefficients, hence
the microscopic entropy of supersymmetric black holes. It should
have an imprint on the macroscopic side as well...
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Thanks for your attention !
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A new explicit formula (S. Feyzbakhsh’23)

Let (Y,H) be a smooth polarised CY threefold with Pic(Y) = Z.H
satisfying the BMT conjecture.
Fix m ∈ Z, β ∈ H2(Y,Z) and define x = β.H

H3 , α = − 3m
2β.H

f (x) :=



x + 1
2 if 0 < x < 1√

2x + 1
4 if 1 < x < 15

8
2
3x + 3

4 if 15
8 ≤ x < 9

4
1
3x + 3

2 if 9
4 ≤ x < 3

1
2x + 1 if 3 ≤ x

1

2
1

15

8

9

4
3 4

x

2

3

4

α
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A new explicit formula (S. Feyzbakhsh’23)

Theorem (wall-crossing for class (−1,0, β,−m):
If f (x) < α then the stable pair invariant PTm,β equals∑

(m′, β′)

(−1)χm′,β′χm′,β′ PTm′,β′ Ω
(

0, H, H2

2 − β
′ + β , H3

6 + m′ −m − β′.H
)
,

where χm′,β′ = β.H + β′.H + m −m′ − H3

6 −
1

12c2(Y).H.
The sum runs over (m′, β′) ∈ H0(Y,Z)⊕ H2(Y,Z) such that

0 ≤ β′.H ≤H3

2 + 3mH3

2β.H + β.H

− (β′.H)2

2H3 − β′.H
2 ≤ m′ ≤ (β.H−β′.H)2

2H3 + β.H+β′.H
2 + m

In particular, β′.H < β.H.

Corollary (Castelnuovo bound): PTm,β = 0 unless m ≥ − (β.H)2

2H3 − β.H
2
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