Oscar García-Prada ICMAT-CSIC, Madrid

University of Oxford, 10 January 2023 On the occasion of Alastair King's 60th birthday

Oscar García-Prada ICMAT-CSIC, Madrid Vinberg θ -pairs and Higgs bundles

Guanajuato, 2006 (photo by Leticia Brambila)

Symposium on Vector Bundles in Algebraic Geometry Durham, 1993 (photo by Steve Bradlow)

- G semisimple complex Lie group with Lie algebra \mathfrak{g}
- $\theta: G \to G$ order m > 0 holomorphic automorphism
- θ defines an automorphism of g (denoted also by θ), determining a Z/m-grading of g (we write Z/m instead of Z/mZ):

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i$$
 with $\mathfrak{g}_i = \{x \in \mathfrak{g} \text{ such that } \theta(x) = \zeta^i x\},$

where ζ is a primitive *m*-th root of unity. One has

$$[\mathfrak{g}_i,\mathfrak{g}_j]\subset\mathfrak{g}_{i+j}.$$

• Let $\mu_m = \{z \in \mathbb{C}^* \text{ such that } z^m = 1\}$. Having \mathbb{Z}/m -grading on \mathfrak{g} is equivalent to having a homomorphism

$$\tilde{\theta}: \mu_m \to \operatorname{Aut}(\mathfrak{g}).$$

Then $\mathfrak{g}_i = \{x \in \mathfrak{g} \text{ such that } \tilde{\theta}(z)x = z^i x\}$ for every $z \in \mu_m$.

- Let G^θ < G be the fixed point subgroup.
 G^θ is a reductive group with Lie algebra g₀.
- Since $[\mathfrak{g}_0, \mathfrak{g}_i] \subset \mathfrak{g}_i$, all the subspaces \mathfrak{g}_i are stable under the adjoint action of G^{θ} .
- The pairs $(G^{\theta}, \mathfrak{g}_i)$ are called **Vinberg** θ -pairs (also θ -groups or **Vinberg** θ -representations).
- Sometimes this term is used for the pairs (G_0, \mathfrak{g}_i) , where $G_0 = G_0^{\theta}$ is the connected component of the identity.

- Example 1: Adjoint representation. If m = 1, then θ is the identity automorphism and (G, \mathfrak{g}) is the only Vinberg θ -pair.
- Example 2: Symmetric pairs. Let m = 2: $\mathbb{Z}/2$ -grading

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$$

theory of symmetric spaces and real forms of \mathfrak{g} and G.

A real form of $G^{\sigma} < G$ is the fixed point subgroup of a conjugation (antiholomorphic involution) σ of G. Cartan: Given a holomorphic involution θ of G there is a compact conjugation τ of G, so that $\sigma := \tau \theta = \theta \tau$ is a conjugation of G. This gives a bijection

$$\operatorname{Aut}_2(G)/\sim \longleftrightarrow \operatorname{Conj}(G)/\sim,$$

where equivalence is conjugation by an inner automorphism of G.

• Example 3: Cyclic quivers. Let $m \ge 2$. Let V be a complex vector space equipped with a \mathbb{Z}/m -grading

$$V = \bigoplus_{i \in \mathbb{Z}/m} V_i.$$

Let G = SL(V). Define on $\mathfrak{g} = \mathfrak{sl}(V)$ the \mathbb{Z}/m -grading given by

 $\mathfrak{g}_i = \{A \in \mathfrak{sl}(V) \text{ such that } A(V_j) \subset V_{j+i} \text{ for every } j \in \mathbb{Z}/m\}$ In this situation

$$G^{\theta} = \mathcal{S}(\prod_{i \in \mathbb{Z}/m} \operatorname{GL}(V_i)),$$

and

$$\mathfrak{g}_1 = \bigoplus_{i \in \mathbb{Z}/m} \operatorname{Hom}(V_i, V_{i+1}).$$

Oscar García-Prada ICMAT-CSIC, Madrid Vinberg θ -pairs and Higgs bundles

Define the quiver Q with m vertices indexed by Z/m and arrows i → i + 1 for each i ∈ Z/m.
Then g₁ is the space of representations of Q where we put V_i at the vertex i: This can be represented by the diagramme

• For other classical groups the action of G^{θ} on \mathfrak{g}_1 can be interpreted in terms of a cyclic quiver with some extra structure.

- For a moment we will consider Vinberg θ-pairs (G₀, g₁) where G₀ = G₀^θ.
 The study for other g_i can be reduced to the case of g₁.
- Recall that if t ⊂ g is a Cartan subalgebra, and W(t) is the Weyl group, the Chevalley restriction theorem establishes an isomorphism

$$\mathfrak{g} /\!\!/ G \cong \mathfrak{t} / W(\mathfrak{t}).$$

Similarly, if θ is an involution of G and g = g₀ ⊕ g₁ is the Cartan decomposition defined by θ, and W(a) is the little Weyl group defined by a maximal abelian subalgebra a ⊂ g₁, there is also a Chevalley restriction theorem studied by Kostant-Rallis (1971):

$$\mathfrak{g}_1 /\!\!/ G_0 \cong \mathfrak{a} / W(\mathfrak{a}).$$

伺 と く ヨ と く ヨ と

- A main result of Vinberg's theory (1976) is a version of the Chevalley restriction theorem for Vinberg θ-pairs.
- Key concept is that of Cartan subspace: linear subspace
 a ⊂ g₁ which is abelian as a Lie algebra, consisting of semisimple elements, and maximal with these two properties.
- The little Weyl group

$$W(\mathfrak{a}) = N_{G_0}(\mathfrak{a})/C_{G_0}(\mathfrak{a})$$

is a finite linear group generated by semisimple transformations of \mathfrak{a} fixing a hyperplane. Hence $\mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})}$ is a **polynomial ring**, and the restriction of polynomial functions $\mathbb{C}[\mathfrak{g}_1] \to \mathbb{C}[\mathfrak{a}]$ induces an **isomorphism of invariant polynomial rings** $\mathbb{C}[\mathfrak{g}_1]^{G_0} \to \mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})}$, or equivalently,

$$\mathfrak{g}_1 /\!\!/ G_0 \cong \mathfrak{a}/W(\mathfrak{a}).$$

- The fact that $W(\mathfrak{a})$ is a finite linear group generated by complex reflections implies that $\mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})} = \mathbb{C}[f_1, \cdots, f_r]$ is a polynomial algebra generated by r algebraically independent polynomials f_1, \cdots, f_r whose degrees d_1, \cdots, d_r are determined by the grading. Here r is the dimension of \mathfrak{a} , an invariant called the rank of (G_0, \mathfrak{g}_1) .
- Kostant (1963) showed that the quotient map $\mathfrak{g} \to \mathfrak{g} /\!\!/ G$ has a section, known as the **Kostant section**.
- This was extended by Kostant-Rallis (1971) to obtain the **Kostant-Rallis section** in the symmetric pair case for the quotient map $\mathfrak{g}_1 \to \mathfrak{g}_1 /\!\!/ G_0$.
- The existence of a similar section for Vinberg's θ-pairs for θ of higher order was conjectured by Popov (1976), but only proved more recently in full generality by Reeder-Levy-Yu-Gross (2012). In this context, such a section is referred as a Kostant-Weirstrass section.

The theory of Vinberg θ -pairs has been extended to general fields of 0 characteristic and good positive characteristic not dividing the order of θ (Levy).

Applications of Vinberg's theory include the following:

- Classification of trivectors of 9-dimensional space C⁹ by Elashvili–Vinberg (1978) using a Z/3-grading of ε₈:
 ε₈ = sl(9, C) ⊕ Λ³(C⁹) ⊕ Λ⁶(C⁹).
- Certain Vinberg θ-pairs have interesting connections to the arithmetic theory of elliptic curves and Jacobians: Bhargava–Shankar (2010), Bhargava–Gross (2012), ...
- There is also a connection between the Vinberg θ-pair (SL(9, C)/μ₃, Λ³(C⁹)) coming from the Z/3-grading of ε₈ and the moduli space of genus 2 curves with some additional data: Rains–Sam (2016, 2018).
- Vinberg pairs are also used in the description of the moduli space of vector bundles on curves of small genus (g = 2, 3).

• Vinberg's theory has also connections to physics related to del Pezzo surfaces: **mysterious duality** (Iqbal–Neitzke–Vafa, 2001)

Madrid, 2022

Oscar García-Prada ICMAT-CSIC, Madrid Vinberg θ -pairs and Higgs bundles

- The goal of this talk is to discuss the role of Vinberg θ -pairs in **Higgs bundle theory**.
- Part of it will be a review of some well-known results put in the larger context of Vinberg's theory.
- Then I will introduce some new problems and work in progress joint with my student **Miguel González** in the study of the geometry of moduli space of **cyclic Higgs bundles**.

Higgs pairs

- X compact Riemann surface of genus $g \ge 2$ with canonical line bundle K
- G reductive complex Lie group with Lie algebra \mathfrak{g}
- $\rho:G\to \operatorname{GL}(V)~$ a representation of G in a complex vector space V
- A (G, V)-Higgs pair on X is a pair (E, φ) consisting of a holomorphic principal G-bundle $E \to X$ and $\varphi \in H^0(X, E(V) \otimes K)$, where $E(V) = E \times_G V$ is the vector bundle associated to the representation ρ .
- There are suitable notions of (semi,poly) stability. Consider the moduli space of polystable (G, V)-Higgs pairs:

$$\mathcal{M}(G,V)$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- When ρ is the adjoint representation G → GL(g)
 (G, g)-Higgs pairs are the G-Higgs bundles introduced by Hitchin (1987).
 - $\mathcal{M}(G)\,:\,\mathbf{moduli\ space\ of\ polystable\ } G\text{-Higgs\ bundles}$

伺 と く ヨ と く ヨ と …

- From now on we assume that G is semisimple
- Let θ ∈ Aut(G) be of order m. Consider the Z/m-grading defined by θ:

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i$$

and the Vinberg θ -pairs $(G^{\theta}, \mathfrak{g}_i)$.

- Let *M*(*G^θ*, g_i) be the moduli space of (*G^θ*, g_i)-Higgs pairs over *X*.
- The moduli spaces associated to Vinberg pairs do appear naturally inside the moduli space $\mathcal{M}(G)$ of *G*-Higgs bundles as fixed point subvarieties for a certain action of a cyclic group.

This is studied in joint paper with **S. Ramanan** (2019).

• Aut(G) acts on $\mathcal{M}(G)$: For $\alpha \in Aut(G)$ and a G-Higgs bundle (E, φ) we defined

 $\alpha \cdot (E,\varphi) := (\alpha(E), \alpha(\varphi)) \text{ where } \alpha(E) = E \times_{\alpha} G.$

This descends to an action of $\operatorname{Out}(G) = \operatorname{Aut}(G) / \operatorname{Int}(G)$

- \mathbb{C}^* acts on $\mathcal{M}(G)$ by rescaling the Higgs field.
- Let μ_m = {z ∈ C* such that z^m = 1} and let ζ ∈ μ_m be a primitive m-th root of unity. Consider the homomorphism μ_m → Aut(G) × C* defined by ζ ↦ (θ, ζ). Let Γ be the image.
- Γ is isomorphic to μ_m and acts on $\mathcal{M}(G)$ by the rule

$$(E,\varphi)\mapsto (\theta(E),\zeta\theta(\varphi)).$$

伺下 イヨト イヨト

• Extension of structure group defines a finite map

$$\mathcal{M}(G^{\theta},\mathfrak{g}_1)\to\mathcal{M}(G).$$

Denote the image by $\widetilde{\mathcal{M}}(G^{\theta}, \mathfrak{g}_1)$, then

$$\widetilde{\mathcal{M}}(G^{\theta},\mathfrak{g}_1)\subset \mathcal{M}(G)^{\Gamma}.$$

- Since the action of θ depends only on the class of θ in Out(G), there are other subvarieties in $\mathcal{M}(G)^{\Gamma}$.
- Let Aut_m(G) ⊂ Aut(G) the be set of elements of order m. There is a map

$$cl: \operatorname{Aut}_m(G)/ \sim \to \operatorname{Out}_m(G)$$

called the clique map. For an element $a \in \text{Out}_m(G)$ we refer to the set $\mathcal{A}_m^{-1}(a)$ as the **clique** defined by a.

• To identify $\mathcal{L}_m^{-1}(a)$, let Z = Z(G) be the centre of G and

$$S_{\theta} := \{ s \in G : s\theta(s) \cdots \theta^{m-1}(s) = z \in Z \}.$$

There is an action of Z on S_{θ} by multiplication and of G given by $s \cdot g := g^{-1} s \theta(g) = g \in G, s \in S_{\theta}$, and

$$S_{\theta}/(Z \times G) = H^1(\mathbb{Z}/m, \mathrm{Ad}(G)),$$

where $H^1(\mathbb{Z}/m, \operatorname{Ad}(G))$ is the first **Galois cohomology** set.

• The map $S_{\theta} \to \operatorname{Aut}_m(G)$ given by $s \mapsto \operatorname{Int}_s \theta$ defines a bijection

$$S_{\theta}/(Z \times G) \longleftrightarrow c\ell^{-1}(a).$$

- $\mathcal{M}(G)^{\Gamma}$ contains also $\widetilde{\mathcal{M}}(G_{\theta'}, \mathfrak{g}'_1)$ for $\theta' \in S_{\theta}$, and the subvariety $\widetilde{\mathcal{M}}(G_{\theta'}, \mathfrak{g}'_1) \subset \mathcal{M}(G)$ depends only on the class $[\theta'] \in S_{\theta}/(Z \times G).$
- There is a converse to this result if we consider the smooth locus M_{*}(G) ⊂ M(G):

$$\mathcal{M}_*(G)^{\Gamma} \subset \bigcup_{[\theta'] \in S_{\theta}/(Z \times G)} \widetilde{\mathcal{M}}(G^{\theta'}, \mathfrak{g}_1').$$

- The elements in *M*(G^θ, g₁) are called cyclic G-Higgs bundles and have been studied by many authors.
- The moduli spaces *M*(*G*^θ, g_i) for general g_i in the Z/m-grading of g do also show up as fixed point in *M*(*G*). But now the homomorphism μ_m → Aut(*G*) × C* is defined by ζ ↦ (θ, ζⁱ) and consider the action of the image Γ.

$\mathbb{Z}/2$ -gradings and non-abelian Hodge correspondence

• Recall that is $\mathcal{R}(G)$ is the *G*-character variety of the fundamental group of *X* defined as

 $\mathcal{R}(G) = \operatorname{Hom}(\pi_1(X), G) /\!\!/ G,$

the **non-abelian Hodge correspondence** establishes a homeomorphism

 $\mathcal{M}(G) \cong \mathcal{R}(G).$

• If m = 2, θ defines the $\mathbb{Z}/2$ -grading $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$, and there is also a homeomorphism

$$\mathcal{M}(G^{\theta},\mathfrak{g}_1)\cong \mathcal{R}(G^{\sigma}),$$

where G^σ is the real form of G defined the conjugation σ = θτ, with τ a compact conjugation commuting with θ.
The subvarieties *M*(G^θ, g₁) are in the fixed point locus for the action of Z/2 on *M*(G) sending (E, φ) → (θ(E), -θ(φ)) and define Lagrangian subvarieties of *M*(G).

Involutive case (m = 2) — Bradlow-G-Gothen (2003)

•
$$V = V_0 \oplus V_1$$
, $n = \dim V$, $n_0 = \dim V_0$, $n_1 = \dim V_1$
 $G = \operatorname{SL}(n, \mathbb{C})$ and $G^{\theta} = \operatorname{S}(\operatorname{GL}(V_0) \times \operatorname{GL}(V_1))$
 $\mathfrak{g}_1 = \operatorname{Hom}(V_0, V_1) \oplus \operatorname{Hom}(V_1, V_0).$
The pair $(G^{\theta}, \mathfrak{g}_1)$ is described by the representations of the

quiver

A (G^θ, g₁)-Higgs pair over X is equivalent to a 4-tuple (E₀, E₁, φ₀, φ₁), consisting of holomorphic vector bundles E₀ and E₁ over X of ranks n₀ and n₁, respectively with det E₁ = (det E₀)⁻¹, and homomorphisms

 $\varphi_0: E_0 \to E_1 \otimes K \text{ and } \varphi_1: E_1 \to E_0 \otimes K.$

• This is represented by the *K*-twisted quiver bundle

To (E₀, E₁, φ₀, φ₁) be we can associate the SL(n, C)-Higgs bundle (E, φ) with

$$E = E_0 \oplus E_1$$
 and $\varphi = \begin{pmatrix} 0 & \varphi_1 \\ \varphi_0 & 0 \end{pmatrix}$.

- This defines a 2 : 1 morphism M(G^θ, g₁) → M(G), whose image is in the fixed point locus of the involution of M(G) defined by (E, φ) to (E, -φ)
- *M*(G^θ, g₁) is homeomorphic to the SU(n₀, n₁)-character variety of π₁(X).

• Toledo invariant associated to $(E_0, E_1, \varphi_0, \varphi_1)$:

$$d = \deg E_0 = -\deg E_1.$$

• A main result ([BGG], 2003) is that if $(E_0, E_1, \varphi_0, \varphi_1)$ is semistable then

$$-\operatorname{rank}(\varphi_1)(g-1) \le d \le \operatorname{rank}(\varphi_0)(g-1)$$

which implies the Milnor–Wood inequality

$$|d| \le \min\{n_0, n_1\}(g-1).$$

• This is proved by Hitchin (1987) for $G = SL(2, \mathbb{C})$.

Higher order case (m > 2)

 A (G^θ, g₁)-Higgs pair over X is equivalent to a K-twisted quiver bundle over X

• To this we can associate a G-Higgs bundle (E, φ) with

$$E = E_0 \oplus \dots \oplus E_{m-1} \text{ and } \varphi = \begin{pmatrix} 0 & 0 & \dots & \varphi_{m-1} \\ \varphi_0 & 0 & \dots & 0 \\ \vdots & \ddots & \dots & \vdots \\ 0 & \dots & \varphi_{m-2} & 0 \end{pmatrix}$$

• This defines a finite morphism $\mathcal{M}(G^{\theta}, \mathfrak{g}_1) \to \mathcal{M}(G)$.

- The image is in the fixed point locus of the action of the group μ_m of *m*-th roots of unity on $\mathcal{M}(G)$ defined by $(E, \varphi) \mapsto (E, \zeta \varphi)$, where ζ is a primitive *m*-th root of unity.
- Question: Are there in this situation analogues of the Toledo invariant and the Milnor–Wood inequality like in the m = 2 case?
- To approach this question we first observe that when $\varphi_{m-1} = 0$ we obtain what is known as a **chain**. These are fixed points of $\mathcal{M}(G)$ for the action of \mathbb{C}^* . Their moduli have been extensively studied

(Álvarez-Cónsul–G–Schmitt, 2006; G–Heinloth, 2013, G–Heinloth–Schmitt, 2014).

• For chains there is indeed a Toledo invariant and a Milnor-Wood type inequality. To explain this we will take a general point of view, considering **Hodge bundles** for any semisimple G. This has been studied recently by **Biquard-Collier-G-Toledo** (2021).

$\mathbbmss{Z}\text{-}\mathrm{gradings}$ and prehomogeneous vector spaces

- G semisimple complex Lie group with Lie algebra $\mathfrak g$ and Killing form B.
- \bullet A $\mathbb{Z}\text{-}\mathbf{grading}$ of $\mathfrak g$ is a decomposition

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$$
 such that $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}.$

There is an element $\zeta \in \mathfrak{g}_0$ (grading element) such that $\mathfrak{g}_i = \{X \in \mathfrak{g} \mid [\zeta, x] = ix\}$

• Having a \mathbb{Z} -grading on \mathfrak{g} is equivalent to having a homomorphism $\psi : \mathbb{C}^* \to \operatorname{Aut}(\mathfrak{g})$, defined by

$$\psi(z)|_{\mathfrak{g}_i} = z^i I.$$

• Let $G_0 < G$ be the centralizer of ζ ; G_0 acts on each \mathfrak{g}_i . **Important result** due to **Vinberg** (1975): For $i \neq 0$, \mathfrak{g}_i is a **prehomogeneous vector space** for G_0 . This means that \mathfrak{g}_i (for $i \neq 0$) has a unique open dense G_0 -orbit.

Z-gradings and the Toledo character

- Without loss of generality, we can consider the prehomogeneous vector space (G₀, g₁). Let Ω ⊂ g₁ be the open G₀-orbit.
- Since \mathfrak{g}_0 is the centralizer of ζ , $B(\zeta, -) : \mathfrak{g}_0 \to \mathbb{C}$ defines a character. The **Toledo character** $\chi_T : \mathfrak{g}_0 \to \mathbb{C}$ is defined by

$$\chi_T(x) = B(\zeta, x)B(\gamma, \gamma) ,$$

where γ is the longest root such that $\mathfrak{g}_{\gamma} \subset \mathfrak{g}_1$.

• Let $e \in \mathfrak{g}_1$ and (h, e, f) be an \mathfrak{sl}_2 -triple with $h \in \mathfrak{g}_0$. We define the **Toledo rank** of e by

$$\operatorname{rk}_T(e) = \frac{1}{2}\chi_T(h),$$

and the **Toledo rank** of (G_0, \mathfrak{g}_1) by

$$\operatorname{rk}_T(G_0,\mathfrak{g}_1) = \operatorname{rk}_T(e) \text{ for } e \in \Omega.$$

Z-gradings and Hodge bundles

- For a \mathbb{Z} -grading we consider (G_0, \mathfrak{g}_i) -Higgs pairs over X. Let (E, φ) be a (G_0, \mathfrak{g}_i) -Higgs pair. Extending the structure group defines a G-Higgs bundle (E_G, φ) , where $E_G = E \times_{G_0} G$, and we use $E(\mathfrak{g}_i) \subset E_G(\mathfrak{g})$.
- A G-Higgs bundle (E, φ) is called a Hodge bundle of type (G₀, g_i) if it reduces to a (G₀, g_i)-Higgs pair.
- A result of **Simpson** (1992) states that the C*-fixed **points** in the moduli space of *G*-Higgs bundles (under the action of rescaling the Higgs field) are Hodge bundles for some Z-grading.
- Via de non-abelian Hodge correspondence, Hodge bundles correspond to holonomies of **complex variations of Hodge structure**.

(人間) シスヨン スヨン

Hodge bundles and the Toledo invariant

- Let (E, φ) be a (G_0, \mathfrak{g}_1) -Higgs pair and $\chi_T : \mathfrak{g}_0 \to \mathbb{C}$ be the **Toledo character** associated to (G_0, \mathfrak{g}_1) . For a **rational number** q sufficiently large $q\chi_T$ lifts to a character $\tilde{\chi}_T : G_0 \to \mathbb{C}^*$.
- The **Toledo invariant** $\tau(E, \varphi)$ is defined by

$$\tau(E,\varphi) = \frac{1}{q} \deg_{\widetilde{\chi}_T}(E).$$

• Arakelov-Milnor inequality ([BCGT], 2021): If (E, φ) is semistable, then $-\operatorname{rk}_T(\varphi)(2g-2) \leq \tau(E, \varphi) \leq 0$, where $\operatorname{rk}_T(\varphi) = \operatorname{rk}_T(\varphi(x))$ for a generic $x \in X$. In particular,

$$-\operatorname{rk}_T(G_0,\mathfrak{g}_1)(2g-2) \le \tau(E,\varphi) \le 0.$$

.

Hodge bundles and cyclic Higgs bundles

- Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ be a \mathbb{Z} -grading with grading element $\zeta \in \mathfrak{g}_0$, and let $G_0 < G$ be the centralizer of ζ .
- let m > 1 be the greatest integer in the for which $\mathfrak{g}_{m-1} \neq 0$ and $\mathfrak{g}_i = 0$ for every $i \geq m$. One has the \mathbb{Z}/m -grading

$$\mathfrak{g} = \bigoplus_{\underline{i} \in \mathbb{Z}/m} \mathfrak{g}_{\underline{i}}, \text{ with } \mathfrak{g}_{\underline{i}} = \mathfrak{g}_i \oplus \mathfrak{g}_{i-m}.$$

Assume that the element of $\operatorname{Aut}(\mathfrak{g})$ giving this \mathbb{Z}/m -grading lifts to an automorphism θ of G, and that $G^{\theta} = G_0$.

 We want to consider the Vinberg θ-pair (G₀, g₁) and study (G₀, g₁)-Higgs pairs over X. These correspond to particular type of cyclic Higgs bundles related to Hodge bundles.

Hodge bundles and cyclic Higgs bundles

• Let (E, φ) be a $(G_0, \mathfrak{g}_{\underline{1}})$ -Higgs pair Over X. We have that $E(\mathfrak{g}_{\underline{1}}) = E(\mathfrak{g}_1) \oplus E(\mathfrak{g}_{1-m})$, and hence $\varphi = \varphi^+ + \varphi^-$ with

 $\varphi^+ \in H^0(X, E(\mathfrak{g}_1) \otimes K) \text{ and } \varphi^- \in H^0(X, E(\mathfrak{g}_{1-m}) \otimes K).$

• By means of the Toledo characters of (G_0, \mathfrak{g}_1) and $(G_0, \mathfrak{g}_{1-m})$ one has corresponding Toledo invariants τ^+ and τ^- for $(E, \varphi^+, \varphi^-)$, and we have

$$\tau^+ \ge -\operatorname{rk}_T(\varphi^+)(2g-2)$$
 if $\varphi^- = 0$

and

$$\tau^- \ge -\operatorname{rk}_T(\varphi^-)(2g-2)$$
 if $\varphi^+ = 0$.

伺 ト イ ヨ ト イ ヨ ト

• Question: Do we have these inequalities when both $\varphi^+ \neq 0$ and $\varphi^- \neq 0$?

Hodge bundles and cyclic Higgs bundles

• One has

$$\tau^{-} = (1-m) \frac{B(\gamma^{-}, \gamma^{-})}{B(\gamma^{+}, \gamma^{+})} \tau^{+}$$

where B is the Killing form of \mathfrak{g} and γ^+ and γ^- are the longest roots in \mathfrak{g}_1 and \mathfrak{g}_{1-m} respectively. Then if $\tau := \tau^+$ we are asking if the semistability of $(E, \varphi^+, \varphi^-)$ implies

$$-\operatorname{rk}_{T}(\varphi^{+})(2g-2) \leq \tau \leq \frac{1}{m-1} \frac{B(\gamma^{+},\gamma^{+})}{B(\gamma^{-},\gamma^{-})} \operatorname{rk}_{T}(\varphi^{-})(2g-2).$$

• This is indeed the case in the **Hermitian situation** where the Z-grading is

$$\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$$
 and $\mathfrak{g}_{\underline{1}} = \mathfrak{g}_1 \oplus \mathfrak{g}_{-1}$

where one has the Milnor–Wood inequality

$$-\operatorname{rk}_T(\varphi^+)(2g-2) \le \tau \le \operatorname{rk}_T(\varphi^-)(2g-2).$$

proved by **Biquard-G-Rubio** (2017)

Back to chains and cyclic quivers

• $G = \operatorname{SL}(n, \mathbb{C})$ and consider the cyclic K-twisted quiver bundle

Here \mathfrak{g}_1 of the \mathbb{Z} -grading is represented by the chain and $\mathfrak{g}_{\underline{1}}$ of the correspondin \mathbb{Z}/m -grading is represented by the cyclic quiver, and $\varphi^+ = (\varphi_0, \cdots, \varphi_{m-2})$ and $\varphi^- = \varphi_{m-1}$,

• Joint with **Miguel González** we have shown a positive answer to our question when $\underline{\operatorname{rk} E_i = k}$ for every *i* and hence n = mk. In this situation we have proved that the semistability of the quiver bundle with both $\varphi^+ \neq 0$ and $\varphi^- \neq 0$ implies

$$\tau^{+} \ge -\operatorname{rk}_{T}(G_{0},\mathfrak{g}_{1})(2g-2) = (2g-2)\frac{km(m-1)(m+1)}{3}.$$

• Let $\theta \in \operatorname{Aut}(G)$ be of order m. Consider the \mathbb{Z}/m -grading defined by θ :

$$\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}/m} \mathfrak{g}_i,$$

and the Vinberg θ -pair $(G^{\theta}, \mathfrak{g}_1)$.

- Consider the moduli space $\mathcal{M}(G^{\theta}, \mathfrak{g}_1)$ of $(G^{\theta}, \mathfrak{g}_1)$ -Higgs pairs over X.
- Recall

$$\mathbb{C}[\mathfrak{g}_1]^{G^{\theta}} \to \mathbb{C}[\mathfrak{a}]^{W(\mathfrak{a})} = \mathbb{C}[f_1, \cdots, f_r],$$

where $r = \dim \mathfrak{a} = \operatorname{rk}(G^{\theta}, \mathfrak{g}_1)$. Let $d_i = \deg f_i$

• Evaluating the polynomials f_i on the Higgs field we have the **Hitchin map**:

$$h: \mathcal{M}(G^{\theta}, \mathfrak{g}_i) \to B(G^{\theta}, \mathfrak{g}_1) \cong \bigoplus_{i=1}^r H^0(X, K^{d_i}),$$

m = 1 (Adjoint representation).

• h is the usual Hitchin map (Hitchin, 1987):

$$\mathcal{M}(G) \to B(G) \cong \bigoplus_{i=1}^{r} H^{0}(X, K^{d_{i}})$$

Here $r = \operatorname{rk} G$ and $\{d_1, \dots, d_r\}$ are the **exponents** of G.

- Hitchin (1987): Spectral curve description of the generic fibres for the classical groups (Jacobian/Prym varieties): Hitchin integrable system.
- Donagi–Gaitsgory (2001): Cameral curve description for general G as a gerbe with generic abelian fibres.
- The Donagi–Gaistgory approach was reformulated by Ngô (2010) in his proof of the Fundamental Lemma.
- Hitchin (1992) constructed a section of the Hitchin map which can be identified with a connected component of the character variety for a split real form of G: Hitchin

component (instance of higher Teichmüller space).

m = 2 (symmetric pairs).

- We get the Hitchin map for the moduli space of Higgs bundles for the real form G^{σ} $(\sigma = \tau \theta)$
- Schaposnik (2013): Spectral curve approach for classical real forms.
- **Peón-Nieto** (2013): **Cameral curve approach** for arbitrary real forms.
- From both points of view one can see that the generic fibres are **abelian if and only if the real form is quasi-split**. **Non-abelianization phenomenon** very nicely illustrated for certain real forms by **Hitchin–Schaposnik** (2014).
- A construction of the **gerbe in the quasi-split** case following the Donagi–Gaitsgory approach given by **G–Peón-Nieto** (2021).
- A section of the Hitchin map in this case was constructed by G–Peón-Nieto–Ramanan (2018): Hitchin–Kostant–Rallis section.

m > 2 (general Vinberg θ -pairs). Joint work in progress with Miguel González. At the moment there are mostly questions:

When do we get abelianization? Generalization of the notion of quasi-split. We proposed that C_{g0}(a) be abelian. Two days after a discussion with Alastair in Madrid last September on the particular case of cyclic quiver bundles

Alastair suggested that if k is the minimal rank of the E_i , then the ranks should be at most k + 1. Indeed this satisfied our condition!

• In the case when all the ranks are equal we have a spectral description of the generic fibres generalizing the one given by Schaposnik (2015) in the involutive case for U(k, k).

HAPPY BIRTHDAY, ALASTAIR!

Guanajuato, 2006 (photo by Leticia Brambila) Oscar García-Prada ICMAT-CSIC, Madrid Vinberg θ-pairs and Higgs bundles