EQUIVARIANT BIRATIONAL GEOMETRY
Equivariant geometry

Solved problem

What are the finite subgroups

\[G \subset \text{PGL}_3 = \text{Aut}(\mathbb{P}^2), \]

up to conjugation?

Blichfeldt 1905.
Equivariant geometry

Open problem

What are the embeddings of finite groups

\[G \hookrightarrow \text{PGL}_3, \]

up to conjugation in

\[\text{Cr}_2 := \text{BirAut}(\mathbb{P}^2)? \]
We start with a detour:

- $H_p(x) := \max(1, |x|_p)$, $x \in \mathbb{Q}_p$
We start with a detour:

- \(H_p(x) := \max(1, |x|_p), \ x \in \mathbb{Q}_p \)

- \(U(0) := \{x \mid |x|_p \leq 1\}, \ \text{vol}(U(0)) = 1 \)

- \(U(j) := \{x \mid |x|_p = p^j\}, \ \text{vol}(U(j)) = p^j \left(1 - \frac{1}{p}\right) \)
We start with a detour:

- $H_p(x) := \max(1, |x|_p), \ x \in \mathbb{Q}_p$

- $U(0) := \{x \mid |x|_p \leq 1\}, \ \text{vol}(U(0)) = 1$

- $U(j) := \{x \mid |x|_p = p^j\}, \ \text{vol}(U(j)) = p^j \left(1 - \frac{1}{p}\right)$

\[
\int_{\mathbb{Q}_p} H_p(x_p)^{-s} \, dx_p = \int_{U(0)} H_p(x_p)^{-s} \, dx_p + \sum_{j \geq 1} \int_{U(j)} H_p(x_p)^{-s} \, dx_p
\]
Calc II

We start with a detour:

- $H_p(x) := \max(1, |x|_p), \ x \in \mathbb{Q}_p$

 - $U(0) := \{x \mid |x|_p \leq 1\}, \ \text{vol}(U(0)) = 1$
 - $U(j) := \{x \mid |x|_p = p^j\}, \ \text{vol}(U(j)) = p^j(1 - \frac{1}{p})$

\[
\int_{\mathbb{Q}_p} H_p(x_p)^{-s} dx_p = \int_{U(0)} H_p(x_p)^{-s} dx_p + \sum_{j \geq 1} \int_{U(j)} H_p(x_p)^{-s} dx_p
\]

\[
= 1 + \sum_{j \geq 1} p^{-js} \text{vol}(U(j))
\]
Leading constant

\[\int_{Q_p} H_p(x_p)^{-s} \, dx_p = \frac{1 - p^{-s}}{1 - p^{-(s-1)}} \]
Leading constant

\[\int_{Q_p} H_p(x_p)^{-s} \, dx_p = \frac{1 - p^{-s}}{1 - p^{-(s-1)}} \]

Put \(s = 2 \):

\[\int \ldots = (1 + \frac{1}{p}) = \frac{\# \mathbb{P}^1(\mathbb{F}_p)}{p} \]
Leading constant

\[\int_{Q_p} H_p(x_p)^{-s} \, dx_p = \frac{1 - p^{-s}}{1 - p^{-(s-1)}} \]

Put \(s = 2 \):

\[\int \ldots = (1 + \frac{1}{p}) = \frac{\# \mathbb{P}^1(\mathbb{F}_p)}{p} \]

We interpret this as a volume with respect to a natural measure.
Toric varieties

\[X = X_\Sigma \text{ - projective equivariant compactification of } T = \mathbb{G}_m^d. \]

- \(N \cong \mathbb{Z}^d, \ M = \text{Hom}(N, \mathbb{Z}), \ \Sigma = \{\sigma\} \text{ - fan} \)
- \(e_1, \ldots, e_n \text{ - 1-dimensional cones in } \Sigma \)

\[0 \rightarrow M \rightarrow \text{PL}(\Sigma) \rightarrow \text{Pic}(X_\Sigma) \rightarrow 0, \]
Toric varieties

\[X = X_\Sigma \text{ - projective equivariant compactification of } T = \mathbb{G}_m^d. \]

- \(N \cong \mathbb{Z}^d, \ M = \text{Hom}(N, \mathbb{Z}), \ \Sigma = \{\sigma\} \text{ - fan} \)
- \(e_1, \ldots, e_n \text{ - 1-dimensional cones in } \Sigma \)

\[
0 \to M \to \text{PL}(\Sigma) \to \text{Pic}(X_\Sigma) \to 0, \]

\(\varphi = \varphi_s \in \text{PL}(\Sigma) \) is defined by its values on \(e_j \): \(\varphi_s(e_j) = s_j \in \mathbb{C} \)

- \(T(\mathbb{Q}_p)/T(\mathbb{Z}_p) = N \)
Height integrals
Height integrals

- Local heights:
 \[H_p(\varphi_s, t_p) := p^{\varphi_s(t_p)} \]

\[
\int_{T(Q_p)} H_p(\varphi_s, t_p)^{-1} \, dt_p = \left(\sum_{r=1}^{d} \sum_{\sigma \in \Sigma(r)} (-1)^r \left(\sum_{n \in \sigma \cap N} p^{-\varphi_s(n)} \right) \right)
\]

\[
= \sum_{r=1}^{d} \sum_{\sigma \in \Sigma(r)} (-1)^r \prod_{e_j \in \sigma} \frac{1}{1 - p^{-s_j}}
\]
- X is a smooth projective Fano variety, $\dim(X) = d$, over a number field F.
- $-K_X$ is equipped with an adelic metrization.

For $x \in X(F_v)$ choose local analytic coordinates x_1, \ldots, x_d, in a neighborhood U_x. In U_x, a section of the canonical line bundle has the form $s := dx_1 \wedge \ldots \wedge dx_d$. Put

$$\tau_v = \tau_{X,v} := \|s\|_v dx_1 \cdots dx_d,$$

where $dx_1 \cdots dx_d$ is the standard normalized Haar measure on F_v^d. It globalizes to $X(F_v)$.

Introduction
Tamagawa numbers / Peyre (1995)

- X – smooth projective Fano variety, $\dim(X) = d$, over a number field F
- $-K_X$ is equipped with an adelic metrization.

For $x \in X(F_v)$ choose local analytic coordinates x_1, \ldots, x_d, in a neighborhood U_x. In U_x, a section of the canonical line bundle has the form $s := dx_1 \wedge \ldots \wedge dx_d$. Put

$$\tau_v = \tau_{X,v} := \|s\|_v dx_1 \cdots dx_d,$$

where $dx_1 \cdots dx_d$ is the standard normalized Haar measure on F_v^d. It globalizes to $X(F_v)$. For almost all v, and Zariski open $U \subset X$,

$$\int_U \tau_v = \int_{X(F_v)} \tau_v = \int_{X(\mathcal{O}_v)} \tau_v = \sum_{\tilde{x} \in X(\mathbb{F}_q)} \int_{\pi^{-1}(\tilde{x})} \tau_v = \frac{\#X(\mathbb{F}_q)}{q^d}.$$
Birational Calabi-Yau (Batyrev 1997)

- X, Y birational Calabi-Yau of dimension n
Birational Calabi-Yau (Batyrev 1997)

- X, Y birational Calabi-Yau of dimension n
- A canonical bundle of a Calabi-Yau variety has a canonical metrization

$$\int_{X(F_v)} \tau_v = \frac{\# X(\mathbb{F}_q)}{q^n}, \quad \forall' v$$
Birational Calabi-Yau (Batyrev 1997)

- X, Y birational Calabi-Yau of dimension n
- A canonical bundle of a Calabi-Yau variety has a canonical metrization

\[\int_{X(F_v)} \tau_v = \frac{\# X(\mathbb{F}_q)}{q^n}, \quad \forall' v \]

- If $X \supset U \subset Y$, then

\[\frac{\# X(\mathbb{F}_q)}{q^n} = \int_{X(F_v)} \tau_v = \int_{U(F_v)} \tau_v = \int_{Y(F_v)} \tau_v = \frac{\# Y(\mathbb{F}_q)}{q^n}, \quad \forall' v \]
Let $U := X \setminus D$, with

$$D = \bigcup_{\alpha \in A} D_\alpha, \quad -K_X = \sum \rho_\alpha D_\alpha,$$

where D_α are geometrically irreducible, smooth, and intersecting transversally.
Let $U := X \setminus D$, with

$$D = \bigcup_{\alpha \in \mathcal{A}} D_\alpha, \quad -K_X = \sum \rho_\alpha D_\alpha,$$

where D_α are geometrically irreducible, smooth, and intersecting transversally. For $A \subset \mathcal{A}$ let

$$D_A := \bigcap_{\alpha \in A} D_\alpha, \quad D_A^\circ = D_A \setminus \bigcup_{A' \supset A} D_{A'}.$$
Let $U := X \setminus D$, with

$$D = \bigcup_{\alpha \in \mathcal{A}} D_\alpha, \quad -K_X = \sum \rho_\alpha D_\alpha,$$

where D_α are geometrically irreducible, smooth, and intersecting transversally. For $A \subset \mathcal{A}$ let

$$D_A := \bigcap_{\alpha \in A} D_\alpha, \quad D^o_A = D_A \setminus \bigcup_{A' \supset A} D_{A'}.$$

$D_A \subset X$ is smooth, of codimension $\#A$ (or empty).
Let

$$H_\alpha : U(F_v) \to \mathbb{R}_{\geq 0}$$

be the v-adic distance to the boundary component D_α.
Local heights and height integrals

Let

\[H_\alpha : U(F_v) \to \mathbb{R}_{\geq 0} \]

be the \(v \)-adic distance to the boundary component \(D_\alpha \).

\[Z_v(s) := \int_{U(F_v)} \prod_{\alpha \in \mathcal{A}} H_\alpha(x)^{-s_\alpha} d\tau_v \]
In charts, via partition of unity: in a neighborhood of $x \in D_A^o(F)$ it takes the form

$$\int \prod_{\alpha \in A} |x_{\alpha}|^{s_{\alpha} - \rho_{\alpha}} \ d\tau_v$$
Local computations

In charts, via partition of unity: in a neighborhood of \(x \in D_A^o(F) \) it takes the form

\[
\int \prod_{\alpha \in A} |x\alpha|_v^{s\alpha - \rho\alpha} \, d\tau_v
\]

Essentially, this is a product of integrals of the form

\[
\int_{|x|_v \leq 1} |x|_v^{s-1} \, dx_v.
\]
Denef’s formula

For almost all v one has:

$$Z_v(s) = \sum_A \frac{\# D_A^\circ(\mathbb{F}_q)}{q^{\dim(X)}} \prod_{\alpha \in A} \frac{q - 1}{q^{s_\alpha - \rho_\alpha + 1} - 1}.$$

Applications
Denef’s formula

For almost all v one has:

$$Z_v(s) = \sum_A \frac{\#D_A^\circ(\mathbb{F}_q)}{q^{\dim(X)}} \prod_{\alpha \in A} \frac{q - 1}{q^{s_\alpha - \rho_\alpha + 1} - 1}.$$

Specialize to $s_\alpha = \rho_\alpha$, for all $\alpha \in A$:

$$Z_v(\rho) = \sum_A \frac{\#D_A^\circ(\mathbb{F}_q)}{q^{\dim(X)}} = \frac{\#X(\mathbb{F}_q)}{q^{\dim(X)}}.$$

Applications
The integral

- is an invariant under blowups,
- encodes information about singularities of X,
- plays a central role in analytic/spectral approaches to Manin’s conjectures, volume asymptotics, etc.
Basic questions

- How much arithmetic is encoded in geometry?
Basic questions

- How much arithmetic is encoded in geometry?
- How much geometry can be read off from arithmetic?
(R) rational: if $X \sim \mathbb{P}^n$ for some n,

Stable rationality over nonclosed ground fields k is still an open problem.
Rationality

(R) rational: if $X \sim \mathbb{P}^n$ for some n,

(S) stably rational: if $X \times \mathbb{P}^n$ is rational, for some n
(R) rational: if $X \sim \mathbb{P}^n$ for some n,
(S) stably rational: if $X \times \mathbb{P}^n$ is rational, for some n

These properties are completely understood in dimensions ≤ 2, and coincide, over \mathbb{C}.
Rationality

(R) rational: if $X \sim \mathbb{P}^n$ for some n,

(S) stably rational: if $X \times \mathbb{P}^n$ is rational, for some n

These properties are completely understood in dimensions ≤ 2, and coincide, over \mathbb{C}. Stable rationality over nonclosed ground fields k is still an open problem.
Specialization of (stable) rationality

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
Specialization of (stable) rationality

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène–Pirutka (2015): universal CH_0-triviality
Specialization of (stable) rationality

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène–Pirutka (2015): universal CH_0-triviality
- Nicaise–Shinder (2017): $K_0(\text{Var}_k)/\mathbb{L}$, $\text{char}(k) = 0$

This allowed to:
- show the existence of smooth families with rational and stably irrational fibers (Hassett–Pirutka–T. 2016)
- settle the problem of stable rationality for threefolds, with the exception of threefolds birational to a cubic threefold (Hassett–Kresch–T. 2015)
- find many examples of irrational hypersurfaces of low degree (Schreieder 2017)

Rationality problems
Specialization of (stable) rationality

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Nicaise–Shinder (2017): $K_0(Var_k)/\mathbb{L}$, char(k) = 0
- Kontsevich–T. (2017): Burn(k), char(k) = 0

This allowed to:
- show the existence of smooth families with rational and stably irrational fibers (Hassett-Pirutka-T. 2016)
- settle the problem of stable rationality for threefolds, with the exception of threefolds birational to a cubic threefold (Hassett-Kresch-T. 2015)
- find many examples of irrational hypersurfaces of low degree (Schreieder 2017)

...
Specialization of (stable) rationality

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène–Pirutka (2015): universal CH_0-triviality
- Nicaise–Shinder (2017): $K_0(\text{Var}_k)/\mathbb{L}$, $\text{char}(k) = 0$
- Kontsevich–T. (2017): $\text{Burn}(k)$, $\text{char}(k) = 0$

This allowed to:

- show the existence of smooth families with rational and stably irrational fibers (Hassett-Pirutka-T. 2016)

Rationality problems
Specialization of (stable) rationality

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Colliot-Thélène–Pirutka (2015): universal CH_0-triviality
- Nicaise–Shinder (2017): $K_0(\text{Var}_k)/\mathbb{L}$, $\text{char}(k) = 0$
- Kontsevich–T. (2017): $\text{Burn}(k)$, $\text{char}(k) = 0$

This allowed to:

- show the existence of smooth families with rational and stably irrational fibers (Hassett-Pirutka-T. 2016)
- settle the problem of stable rationality for threefolds, with the exception of threefolds birational to a cubic threefold (Hassett-Kresch-T. 2015)
Specialization of (stable) rationality

- Voisin (2013): integral decomposition of Δ (Bloch-Srinivas)
- Nicaise–Shinder (2017): $K_0(\text{Var}_k)/\mathbb{L}$, char($k$) = 0
- Kontsevich–T. (2017): Burn(k), char(k) = 0

This allowed to:

- show the existence of smooth families with rational and stably irrational fibers (Hassett-Pirutka-T. 2016)
- settle the problem of stable rationality for threefolds, with the exception of threefolds birational to a cubic threefold (Hassett-Kresch-T. 2015)
- find many examples of irrational hypersurfaces of low degree (Schreieder 2017)
- ...
Specialization of (stable) rationality

- **Larsen–Lunts (2003):** $K_0(Var_k)/\mathbb{L}$ is isomorphic to the free abelian group spanned by classes of algebraic varieties over k, modulo stable rationality.

- **Nicaise–Shinder (2017):** Motivic reduction – formula for homomorphism $K_0(Var_K)/\mathbb{L} \to K_0(Var_k)/\mathbb{L}$, $K = k((t))$, inspired by motivic integration as in Denef–Loeser, ...

- **Kontsevich–T. (2017):** Same formula for $\text{Burn}(K) \to \text{Burn}(k)$, the free abelian group spanned by classes of varieties over the corresponding field, modulo rationality.
Specialization of (stable) rationality

Larsen–Lunts (2003): $K_0(Var_k)/\mathbb{L}$ is isomorphic to the free abelian group spanned by classes of algebraic varieties over k, modulo stable rationality.

Nicaise–Shinder (2017): motivic reduction – formula for homomorphism

$$K_0(Var_K)/\mathbb{L} \to K_0(Var_k)/\mathbb{L}, \quad K = k((t)),$$

inspired by motivic integration as in Denef–Loeser, , ...
Specialization of (stable) rationality

- **Larsen–Lunts (2003):** $K_0(Var_k)/\mathbb{L}$ is isomorphic to the free abelian group spanned by classes of algebraic varieties over k, modulo stable rationality.

- **Nicaise–Shinder (2017):** motivic reduction – formula for homomorphism

\[K_0(Var_K)/\mathbb{L} \to K_0(Var_k)/\mathbb{L}, \quad K = k((t)), \]

inspired by motivic integration as in Denef–Loeser, , ...

- **Kontsevich–T. (2017):** Same formula for

\[\text{Burn}(K) \to \text{Burn}(k), \]

the free abelian group spanned by classes of varieties over the corresponding field, modulo rationality.
Let $\mathfrak{o} \simeq k[[t]]$, $K \simeq k((t))$, char$(k) = 0$.

Let X/K be a smooth proper (or projective) variety, with function field $L = K(X)$.

Choose a regular model

$$\pi : \mathcal{X} \to \text{Spec}(\mathfrak{o}),$$

such that π is proper and the special fiber \mathcal{X}_0 over $\text{Spec}(k)$ is a simple normal crossings (snc) divisor:

$$\mathcal{X}_0 = \bigcup_{\alpha \in A} d_\alpha D_\alpha, \quad d_\alpha \in \mathbb{Z}_{\geq 1}.$$

Put

$$\rho([L/K]) := \sum_{\emptyset \neq A \subseteq A} (-1)^{\# A - 1} [D_A \times \mathbb{A}^{\# A - 1} / k] \in \text{Burn}(k),$$
There are close similarities between the study of birational properties of varieties over nonclosed fields and the study of birational group actions on varieties over algebraically closed fields.
There are close similarities between the study of birational properties of varieties over nonclosed fields and the study of birational group actions on varieties over algebraically closed fields.

Enormous literature, already in dimension 2, going back to Manin, Iskovskikh, Bogomolov, Colliot-Thélène, Dolgachev, Beauville, Blanc, Prokhorov, Cheltsov, Shramov, ...
There are close similarities between the study of birational properties of varieties over nonclosed fields and the study of birational group actions on varieties over algebraically closed fields.

Enormous literature, already in dimension 2, going back to Manin, Iskovskikh, Bogomolov, Colliot-Thélène, Dolgachev, Beauville, Blanc, Prokhorov, Cheltsov, Shramov, ...

This motivated the search for ways to “integrate in presence of group actions”.
Equivariant bir. types (Kontsevich-T. 2019)

- G - finite abelian group, $A = G^\vee$ its group of characters,
- X - smooth projective, of dimension n, with regular G-action,
- $X^G = \bigsqcup F_\alpha$, where F_α is the (equivalence class of) representation of G acting in the tangent space $T_{X,x\alpha}$ for $x_\alpha \in F_\alpha$.

$\beta_\alpha : X \mapsto \sum \beta \alpha \alpha$.

Equivariant birational types
Equivariant bir. types (Kontsevich-T. 2019)

- G - finite abelian group, $A = G^\vee$ its group of characters,
- X - smooth projective, of dimension n, with regular G-action,
- $X^G = \bigsqcup F_\alpha$,
- β_α - (equivalence class of) representation of G, acting in the tangent space T_{X,x_α}, for $x_\alpha \in F_\alpha$, i.e.,

$$\beta_\alpha := [a_{1,\alpha}, \ldots, a_{n,\alpha}],$$

an unordered n-tuple of characters $a_i \in A$,
- G - finite abelian group, $A = G^\vee$ its group of characters,
- X - smooth projective, of dimension n, with regular G-action,
- $X^G = \bigsqcup F_\alpha$,
- β_α - (equivalence class of) representation of G, acting in the tangent space T_{X,x_α}, for $x_\alpha \in F_\alpha$, i.e.,

$$\beta_\alpha := [a_{1,\alpha}, \ldots, a_{n,\alpha}],$$

an unordered n-tuple of characters $a_i \in A$,

$$\beta : X \mapsto \sum_\alpha \beta_\alpha.$$
Consider an action of $\mathbb{Z}/N\mathbb{Z}$ on $X = \mathbb{P}^2$ given by

$$(x : y : z) \mapsto (\zeta^a x : \zeta^b y : z),$$

$\zeta = \zeta_N, \quad a, b \in \mathbb{Z}/N\mathbb{Z}, \quad \gcd(a, b, N) = 1, \quad a \neq b.$

Fixed points are

$$(0 : 0 : 1), \quad (0 : 1 : 0), \quad (1 : 0 : 0).$$
Consider an action of \(\mathbb{Z}/N\mathbb{Z} \) on \(X = \mathbb{P}^2 \) given by

\[
(x : y : z) \mapsto (\zeta^a x : \zeta^b y : z),
\]

\[
\zeta = \zeta_N, \quad a, b \in \mathbb{Z}/N\mathbb{Z}, \quad \gcd(a, b, N) = 1, \quad a \neq b.
\]

Fixed points are

\[
(0 : 0 : 1), \quad (0 : 1 : 0), \quad (1 : 0 : 0).
\]

Then

\[
\beta(X) = [a, b] + [a - b, -b] + [b - a, -a].
\]
First examples: \mathbb{P}^2

All such actions are equivalent. Declare $\beta(X) = 0$, i.e.,

$$[a, b] = -[b - a, -a] - [a - b, -b]$$

Allowing

$$[a, b] = -[a, -b]$$

we find

$$[a, b] = [a, b - a] + [a - b, b].$$
Birational types $\mathcal{B}_2(\mathbb{Z}/N\mathbb{Z})$

Generators: $[a, b], a, b \in \mathbb{Z}/N\mathbb{Z}, \gcd(a, b, N) = 1$

Relations:
- $[a, b] = [b, a]$
- $[a, b] = [a, b - a] + [a - b, b]$ if $a \neq b$
- $[a, a] = [a, 0]$
Let $N = p$ be a prime. We have $\binom{p}{2}$ linear equations in the same number of variables.
Let $N = p$ be a prime. We have $\left(\frac{p}{2}\right)$ linear equations in the same number of variables.

\[
\text{rk}_\mathbb{Q}(\mathcal{B}_2(G)) = \frac{p^2 + 23}{24} = \frac{p^2 - 1}{24} + 1
\]
Birational types $\mathcal{B}_n(G)$

Consider the \mathbb{Z}-module $\mathcal{B}_n(G)$

generated by unordered tuples $[a_1, \ldots, a_n]$, $a_i \in A$, such that

(G) $\sum_i \mathbb{Z}a_i = A$, and

(B) for all $a_1, a_2, b_1, \ldots, b_{n-2} \in A$ we have

\[
[a_1, a_2, b_1, \ldots, b_{n-2}] =
\]

\[
[a_1 - a_2, a_2, b_1, \ldots, b_{n-2}] + [a_1, a_2 - a_1, b_1, \ldots, b_{n-2}] \text{ if } a_1 \neq a_2,
\]

\[
[a_1, 0, b_1, \ldots, b_{n-2}] \quad \text{ if } a_1 = a_2.
\]
For $n \geq 3$ the systems of equations are highly overdetermined.
For \(n \geq 3 \) the systems of equations are highly overdetermined.

\[
\text{rk}_\mathbb{Q}(B_3(G)) = \frac{(p - 5)(p - 7)}{24} = \frac{p^2 - 1}{24} + 1 - \frac{p - 1}{2}
\]
For $n \geq 3$ the systems of equations are highly overdetermined.

$$\text{rk}_{\mathbb{Q}}(\mathcal{B}_3(G)) = \frac{(p - 5)(p - 7)}{24} = \frac{p^2 - 1}{24} + 1 - \frac{p - 1}{2}$$

Jumps at

$$p = 43, 59, 67, 83, \ldots$$
BIRATIONAL TYPES

Consider $X^G = \sqcup F_\alpha$ and record eigenvalues of G

$$[a_{1,\alpha}, \ldots, a_{n,\alpha}]$$

in the tangent space $\mathcal{T}_{x_\alpha} X$, at some $x_\alpha \in F_\alpha$. Put

$$\beta(X) := \sum_{\alpha} [a_{1,\alpha}, \ldots, a_{n,\alpha}]$$
Consider $X^G = \sqcup F_\alpha$ and record eigenvalues of G

$$[a_{1,\alpha}, \ldots, a_{n,\alpha}]$$

in the tangent space $T_{x_\alpha}X$, at some $x_\alpha \in F_\alpha$. Put

$$\beta(X) := \sum_\alpha [a_{1,\alpha}, \ldots, a_{n,\alpha}]$$

Kontsevich-T. 2019

The class

$$\beta(X) \in \mathcal{B}_n(G)$$

is a well-defined G-equivariant birational invariant.
Birational types

Variant: introduce the quotient

\[\mu^- : B_n(G') \to B_{n^-}(G') \]

by an additional relation

\[[a_1, a_2, \ldots, a_n] = -[-a_1, a_2, \ldots, a_n]. \]
Birational types

Variant: introduce the quotient

\[\mu^{-} : B_n(G) \to B_n^{-}(G) \]

by an additional relation

\[[a_1, a_2, \ldots, a_n] = -[-a_1, a_2, \ldots, a_n]. \]

The class of \(\mathbb{P}^n, n \geq 2 \), with linear action of \(G := \mathbb{Z}/N\mathbb{Z} \) is

- torsion in \(B_n(G) \) and
- trivial in \(B_n^{-}(G) \).
Connections to arithmetic groups

\[\mathcal{B}_n^-(G) \otimes \mathbb{Q} \cong H^{\frac{n(n-1)}{2}}(\Gamma(G,n), \text{or}_n) = H_0(\Gamma(G,n), \text{St}_n \otimes \text{or}_n) \]

where

\[\Gamma(G, n) \subset \text{GL}_n(\mathbb{Z}) \]

is a congruence subgroup,

or is the orientation (the sign of the determinant), and

\[\text{St}_n \] is the Steinberg representation.
Connections to arithmetic groups

\[B_n^-(G) \otimes \mathbb{Q} \cong H^{\frac{n(n-1)}{2}}(\Gamma(G, n), \text{or} \otimes n) = H_0(\Gamma(G, n), \text{St}_n \otimes \text{or}_n) \]

where

- \(\Gamma(G, n) \subset \text{GL}_n(\mathbb{Z}) \)

 is a congruence subgroup,

- or is the orientation (the sign of the determinant), and

- \(\text{St}_n \) is the Steinberg representation.

In particular, the groups \(B_n(G) \) and \(B_n^-(G) \) carry Hecke operators.
$n = 2$:

$$B_2(\mathbb{Z}/p) \otimes \mathbb{Q} \simeq H^1(X_1(p), \mathbb{Q}).$$
Connections to arithmetic groups

$n = 2$:

\[\mathcal{B}_2(\mathbb{Z}/p) \otimes \mathbb{Q} \cong H^1(X_1(p), \mathbb{Q}). \]

Manin symbols.
Let G be a finite group. Let

$$\text{Burn}_n(G)$$

be the quotient of the free abelian group generated by symbols

$$(H, N \subseteq K, \beta),$$

where

- $H \subseteq G$ is an abelian subgroup, $N = N_G(H)/H$,
- K is an N-Galois algebra over a field of transcendence degree $d \leq n$ over k, up to isomorphism, and β is a faithful $(n - d)$-dimensional representation of H,

modulo somewhat complicated blowup relations.
Equivariant Burnside group: relations

The symbols are subject to conjugation and blowup relations:

(C): \((H, N \subset K, \beta) = (H', N' \subset K, \beta')\), when

\[H' = gHg^{-1}, \quad N' = N_G(H')/H', \quad \text{with } g \in G, \]

and \(\beta\) and \(\beta'\) are related by conjugation by \(g\).
The symbols are subject to **conjugation** and **blowup** relations:

(C): $(H, N \lhd K, \beta) = (H', N' \lhd K, \beta')$, when

$$H' = gHg^{-1}, \quad N' = N_G(H')/H', \quad \text{with } g \in G,$$

and β and β' are related by conjugation by g.

(B1): $(H, N \lhd K, \beta) = 0$ when $b_1 + b_2 = 0$.
Equivariant Burnside group: relations

(B2): \((H, N \lhd K, \beta) = \Theta_1 + \Theta_2\), where

\[
\Theta_1 = \begin{cases}
0, & \text{if } b_1 = b_2, \\
(H, N \lhd K, \beta_1) + (H, N \lhd K, \beta_2), & \text{otherwise},
\end{cases}
\]

with

\[
\beta_1 := (b_1, b_2 - b_1, b_3, \ldots, b_{n-d}), \quad \beta_2 := (b_1 - b_2, b_2, b_3, \ldots, b_{n-d}),
\]

and
Equivariant Burnside group: relations

\((B2)\): \((H, N \subset K, \beta) = \Theta_1 + \Theta_2\), where

\[
\Theta_1 = \begin{cases}
0, & \text{if } b_1 = b_2, \\
(H, N \subset K, \beta_1) + (H, N \subset K, \beta_2), & \text{otherwise,}
\end{cases}
\]

with

\[
\beta_1 := (b_1, b_2 - b_1, b_3, \ldots, b_{n-d}), \quad \beta_2 := (b_1 - b_2, b_2, b_3, \ldots, b_{n-d}),
\]

and

\[
\Theta_2 = \begin{cases}
0, & \text{if } b_i \in \langle b_1 - b_2 \rangle \text{ for some } i, \\
(H, N \subset \overline{K}, \overline{\beta}), & \text{otherwise,}
\end{cases}
\]

with

\[
\overline{H}^\vee := H^\vee / \langle b_1 - b_2 \rangle, \quad \overline{\beta} := (\overline{b}_2, \overline{b}_3, \ldots, \overline{b}_{n-d}), \quad \overline{b}_i \in \overline{H}^\vee.
\]
Equivariant Burnside group: relations

Model case: Blowing up an isolated point (with abelian stabilizer) on a surface.

It will explain the action of \overline{N} on \overline{K}.
The class of a G-variety is computed on a standard model X:

- X is smooth projective,
- there exists a Zariski open $U \subset X$ such that G acts freely on U,
- the complement $X \setminus U$ is a normal crossings divisor,
- for every $g \in G$ and every irreducible component D of $X \setminus U$, either $g(D) = D$ or $g(D) \cap D = \emptyset$.
Equivariant Burnside group

Passing to a standard model X, define:

$$[X \lhd G] := \sum_H \sum_F (H, N \lhd k(F), \beta_F(X)) \in \text{Burn}_n(G),$$

where

- the sum is over all (orbits of) strata $F \subset X$ with generic stabilizer (orbits of) H,
- the symbols record the eigenvalues of H in the tangent space at $x \in F$, as before, as well as the N-action on the function field of F, respectively the orbit of F.

Equivariant birational types
Equivariant Burnside group

Passing to a standard model X, define:

$$[X \wr G] := \sum_H \sum_F (H, N \subset k(F), \beta_F(X)) \in \text{Burn}_n(G),$$

where

- the sum is over all (orbits of) strata $F \subset X$ with generic stabilizer (orbits of) H,
- the symbols record the eigenvalues of H in the tangent space at $x \in F$, as before, as well as the N-action on the function field of F, respectively the orbit of F.

This is a G-birational invariant.
Equivariant birational geometry

We work over an algebraically closed field k, of characteristic zero. Let X be a smooth projective G-variety (regular, generically free action).
Equivariant birational geometry

We work over an algebraically closed field k, of characteristic zero. Let X be a smooth projective G-variety (regular, generically free action). Of particular interest are rational X.
Equivariant birational geometry

We work over an algebraically closed field k, of characteristic zero. Let X be a smooth projective G-variety (regular, generically free action). Of particular interest are rational X.

Basic problems:

- Linearizability: $X \sim_G \mathbb{P}(V)$, where V is a faithful linear representation of G
Equivariant birational geometry

We work over an algebraically closed field k, of characteristic zero. Let X be a smooth projective G-variety (regular, generically free action). Of particular interest are rational X.

Basic problems:

- Linearizability: $X \sim_G \mathbb{P}(V)$, where V is a faithful linear representation of G
- Stable Linearizability: $X \times \mathbb{P}^m \sim_G \mathbb{P}(V)$, with trivial action on the second factor
Problem
What are the finite subgroups of PGL_3, up to conjugation?
Linear actions

Problem
What are the finite subgroups of PGL_3, up to conjugation? And PGL_4?

Blichfeldt 1905.
Problem

What are the finite subgroups of the Cremona group

$$\text{Cr}_n = \text{BirAut}(\mathbb{P}^n), \quad n \geq 2,$$

up to conjugation?
Problem

What are the finite subgroups of the Cremona group

\[\text{Cr}_n = \text{BirAut}(\mathbb{P}^n), \quad n \geq 2, \]

up to conjugation?

Enormous literature, already for \(n = 2 \).
Problem
What are the finite subgroups of the Cremona group

\[Cr_n = \text{BirAut}(\mathbb{P}^n), \quad n \geq 2, \]

up to conjugation?

Enormous literature, already for \(n = 2 \). Just a few references:

- Bertini, Castelnuovo, Kantor, \ldots
- Beauville, de Fernex (2004) – cyclic subgroups
Problem

What are the finite subgroups of the Cremona group

$$\text{Cr}_n = \text{BirAut}(\mathbb{P}^n), \quad n \geq 2,$$

up to conjugation?

Enormous literature, already for $n = 2$. Just a few references:

- Bertini, Castelnuovo, Kantor, ...
- Beauville, de Fernex (2004) – cyclic subgroups
- Blanc (2006) – abelian subgroups
Equivariant geometry

Problem

What are the finite subgroups of the Cremona group

\[\text{Cr}_n = \text{BirAut}(\mathbb{P}^n), \quad n \geq 2, \]

up to conjugation?

Enormous literature, already for \(n = 2 \). Just a few references:

- Bertini, Castelnuovo, Kantor, …
- Beauville, de Fernex (2004) – cyclic subgroups
- Blanc (2006) – abelian subgroups
- Dolgachev-Iskovskikh (2006) – classification of (conjugacy classes of) finite subgroups
Problem

What are the finite subgroups of the *Cremona group*

\[\text{Cr}_n = \text{BirAut}(\mathbb{P}^n), \quad n \geq 2, \]

up to conjugation?

Enormous literature, already for \(n = 2 \). Just a few references:

- Bertini, Castelnuovo, Kantor, …
- Beauville, de Fernex (2004) – cyclic subgroups
- Blanc (2006) – abelian subgroups
- Dolgachev-Iskovskikh (2006) – classification of (conjugacy classes of) finite subgroups, with follow-up work by many
Basic strategy:

- The actions are realized as regular actions on \textit{minimal} rational surfaces \(X \).
Basic strategy:

- The actions are realized as regular actions on minimal rational surfaces X,
- By MMP, X is either a Del Pezzo surface or a conic bundle,
Basic strategy:

- The actions are realized as regular actions on minimal rational surfaces X.
- By MMP, X is either a Del Pezzo surface or a conic bundle.
- If the (anticanonical) degree is small, the action is rigid, and visible via the induced action on the Picard group $\text{Pic}(X)$, i.e., through the Weyl group of the associated root lattice.
In higher dimensions:

- Existence of fixed points upon restrictions to abelian subgroups
Equivariant birational geometry: tools

In higher dimensions:

- Existence of fixed points upon restrictions to abelian subgroups
- Equivariant MMP (classification of links, ...)
Equivariant birational geometry: tools

In higher dimensions:

- Existence of fixed points upon restrictions to abelian subgroups
- Equivariant MMP (classification of links, ...)
- Equivariant birational rigidity (analysis of singularities, ...)

Cohomology, e.g., $H^1(G, \text{Pic}(X))$,

Equivariant intermediate Jacobians (building on work of Clemens-Griffiths, Benoist-Wittenberg, ...), ...

Equivariant birational types
In higher dimensions:

- Existence of fixed points upon restrictions to abelian subgroups
- Equivariant MMP (classification of links, ...)
- Equivariant birational rigidity (analysis of singularities, ...)
- Cohomology, e.g., $H^1(G, \text{Pic}(X))$
In higher dimensions:

- Existence of fixed points upon restrictions to abelian subgroups
- Equivariant MMP (classification of links, ...)
- Equivariant birational rigidity (analysis of singularities, ...)
- Cohomology, e.g., $H^1(G, \text{Pic}(X))$
- G-equivariant intermediate Jacobians (building on work of Clemens-Griffiths, Benoist-Wittenberg, ...), ...
If X is rational and G is cyclic, then $X^G \neq \emptyset$.
Basic facts

- If X is rational and G is cyclic, then $X^G \neq \emptyset$.
- If $Y \to X$ is a G-birational map between smooth projective G-varieties, and G is abelian, then

$$Y^G \neq \emptyset \iff X^G \neq \emptyset.$$
Basic facts

More precisely, let X be smooth projective of dimension n, G abelian, and let $p \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of G in the tangent space to X at p.

Reichstein-Youssin (2002)

Let $Y \to X$ be a G-equivariant blowup. Then Y contains a point $q \in Y^G$ (in the preimage of p) with weights $\{b_1, \ldots, b_n\}$ in the tangent space, and such that

$$\det(b_1, \ldots, b_n) = \pm \det(a_1, \ldots, a_n),$$

i.e., this is an equivariant birational invariant.

Thus, $\mathbb{Z}/N\mathbb{Z}$-actions on \mathbb{P}^n, with $n \geq 2$ are equivariantly birational.

Equivariant birational types
More precisely, let X be smooth projective of dimension n, G abelian, and let $p \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of G in the tangent space to X at p. Let

$$\det(a_1, \ldots, a_n) = a_1 \wedge \ldots \wedge a_n \in \wedge^n(G^\vee).$$
Basic facts

More precisely, let X be smooth projective of dimension n, G abelian, and let $p \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of G in the tangent space to X at p. Let

$$\det(a_1, \ldots, a_n) = a_1 \wedge \ldots \wedge a_n \in \wedge^n(G^\vee).$$

Reichstein-Youssin (2002)

Let $Y \to X$ be a G-equivariant blowup. Then Y contains a point $q \in Y^G$ (in the preimage of p) with weights $\{b_1, \ldots, b_n\}$ in the tangent space, and such that

$$\det(b_1, \ldots, b_n) = \pm \det(a_1, \ldots, a_n),$$

i.e., this is a equivariant birational invariant.
Basic facts

More precisely, let X be smooth projective of dimension n, G abelian, and let $p \in X^G$. Let $\{a_1, \ldots, a_n\}$ be the characters (weights) of G in the tangent space to X at p. Let

$$
det(a_1, \ldots, a_n) = a_1 \wedge \ldots \wedge a_n \in \wedge^n(G^\vee).
$$

Reichstein-Youssin (2002)

Let $Y \to X$ be a G-equivariant blowup. Then Y contains a point $q \in Y^G$ (in the preimage of p) with weights $\{b_1, \ldots, b_n\}$ in the tangent space, and such that

$$
det(b_1, \ldots, b_n) = \pm \det(a_1, \ldots, a_n),
$$

i.e., this is a equivariant birational invariant.

Thus, $\mathbb{Z}/N\mathbb{Z}$-actions on \mathbb{P}^n, with $n \geq 2$ are equivariantly birational.
Abelian actions on surfaces

- If there is no curve of genus ≥ 1 in the fixed locus X^G, then all actions are linear, with the exception of one fixed-point free action of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

Equivariant birational types
If there is no curve of genus ≥ 1 in the fixed locus X^G, then all actions are linear, with the exception of one fixed-point free action of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

When there is a curve of genus ≥ 1 in X^G, it will appear on every equivariantly birational model.
If there is no curve of genus ≥ 1 in the fixed locus X^G, then all actions are linear, with the exception of one fixed-point free action of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

When there is a curve of genus ≥ 1 in X^G, it will appear on every equivariantly birational model.

In particular, $\mathcal{B}_2(G)$ does not give anything new in dimension 2.
If there is no curve of genus ≥ 1 in the fixed locus X^G, then all actions are linear, with the exception of one fixed-point free action of $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$.

When there is a curve of genus ≥ 1 in X^G, it will appear on every equivariantly birational model.

In particular, $B_2(G)$ does not give anything new in dimension 2. However, it enters as coefficient group in higher dimensions, and can contribute nontrivially.
Abelian actions in dimension 3 are not fully settled, but should be, in principle, accessible.
Abelian actions in dimension 3 are not fully settled, but should be, in principle, accessible.

The following examples focus on dimension 4, where we currently do not know how to systematically factor birational maps, and in particular, do not understand the (failure of) rationality of cubic fourfolds.
Cubic fourfolds

There is an extensive literature on their automorphisms (and on automorphisms of their variety of lines), e.g., Laza, Zheng, Fu, Mongardi, Mayanskiy, Ouchi, ...
Cubic fourfolds

There is an extensive literature on their automorphisms (and on automorphisms of their variety of lines), e.g., Laza, Zheng, Fu, Mongardi, Mayanskiy, Ouchi, ...
Here are $N > 1$, with $\mathbb{Z}/N\mathbb{Z}$ acting on a smooth cubic fourfold:

\[N = 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 18, 21, 24, 30, 32, 33, 36, 48. \]

Note that

\[d_\mathbb{Q} \coloneqq \dim B_4(\mathbb{Z}/N\mathbb{Z}) \otimes \mathbb{Q} = 0, \quad \text{for all } N < 27, \ N = 30, 32, \]

but

\[
\begin{array}{c|c|c|c}
N & 33 & 36 & 48 \\
\hline
d_\mathbb{Q} & 2 & 3 & 7 \\
\end{array}
\]
Cubic fourfolds

One can also work with finite coefficients. Let

$$d_p = d_p(N) := \dim \mathcal{B}_4(\mathbb{Z}/N\mathbb{Z}) \otimes \mathbb{F}_p.$$

We have $d_2, d_3 = 0$, for all $N \leq 15$, and $N = 18, 21$.

<table>
<thead>
<tr>
<th>N</th>
<th>16</th>
<th>24</th>
<th>30</th>
<th>32</th>
<th>33</th>
<th>36</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_2</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>3</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>d_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>
Birational types: using $\mathcal{B}_n(G)$

Consider the cubic fourfold $X \subset \mathbb{P}^5$ given by

$$x_1^2x_2 + x_2^2x_3 + x_3^2x_1 + x_4^2x_5 + x_5^2x_0 + x_0^3 = 0.$$
Consider the cubic fourfold $X \subset \mathbb{P}^5$ given by

$$x_1^2x_2 + x_2^2x_3 + x_3^2x_1 + x_4^2x_5 + x_5^2x_0 + x_0^3 = 0.$$

$G = \mathbb{Z}/36\mathbb{Z}$ acts with weights $(0, 4, 28, 16, 9, 18)$ and isolated fixed points.
Consider the cubic fourfold \(X \subset \mathbb{P}^5 \) given by
\[
x_1^2x_2 + x_2^2x_3 + x_3^2x_1 + x_4^2x_5 + x_5^2x_0 + x_0^3 = 0.
\]

\(G = \mathbb{Z}/36\mathbb{Z} \) acts with weights \((0, 4, 28, 16, 9, 18)\) and isolated fixed points. Computing the weights in the tangent spaces, we find that \(\beta(X) = \)

\[
[4, 24, 31, 22] + [28, 24, 19, 10] + [24, 12, 7, 34] + [9, 5, 17, 29] + [14, 26, 2, 9]
\]
Consider the cubic fourfold \(X \subset \mathbb{P}^5\) given by

\[
x_1^2x_2 + x_2^2x_3 + x_3^2x_1 + x_4^2x_5 + x_5^2x_0 + x_0^3 = 0.
\]

\(G = \mathbb{Z}/36\mathbb{Z}\) acts with weights \((0, 4, 28, 16, 9, 18)\) and isolated fixed points. Computing the weights in the tangent spaces, we find that \(\beta(X) = [4, 24, 31, 22] + [28, 24, 19, 10] + [24, 12, 7, 34] + [9, 5, 17, 29] + [14, 26, 2, 9]\)

(Solving a system of 443557 linear equations in 82251 variables,...)

\[
\beta(X) \neq \beta(\mathbb{P}^4) = 0 \in \mathcal{B}_4(\mathbb{Z}/36\mathbb{Z}) \otimes \mathbb{F}_2 = \mathbb{F}_2^{19}
\]
Consider the cubic fourfold $X \subset \mathbb{P}^5$ given by

$$x_1^2x_2 + x_2^2x_3 + x_3^2x_1 + x_4^2x_5 + x_5^2x_0 + x_0^3 = 0.$$

$G = \mathbb{Z}/36\mathbb{Z}$ acts with weights $(0, 4, 28, 16, 9, 18)$ and isolated fixed points. Computing the weights in the tangent spaces, we find that $\beta(X) = [4, 24, 31, 22] + [28, 24, 19, 10] + [24, 12, 7, 34] + [9, 5, 17, 29] + [14, 26, 2, 9]$ (Solving a system of 443557 linear equations in 82251 variables,...)

$$\beta(X) \neq \beta(\mathbb{P}^4) = 0 \in \mathcal{B}_4(\mathbb{Z}/36\mathbb{Z}) \otimes \mathbb{F}_2 = \mathbb{F}_2^{19}$$

Thus X is not G-equivariantly birational to \mathbb{P}^4 (with linear action).
Birational types: using $\text{Burn}_n(G)$

Consider the cubic fourfold $X \subset \mathbb{P}^5$, given by

$$x_0x_1^2 + x_0^2x_2 - x_0x_2^2 - 4x_0x_4^2 + x_1^2x_2 + x_3^2x_5 - x_2x_4^2 - x_5^3 = 0.$$

$G = \mathbb{Z}/6\mathbb{Z}$ acts with weights $(0, 0, 0, 1, 3, 4)$. This X is rational, since it contains the disjoint planes

$$x_0 = x_1 - x_4 = x_3 - x_5 = 0 \quad \text{and} \quad x_2 = x_1 - 2x_4 = x_3 + x_5 = 0,$$

but not G-equivariantly birational to \mathbb{P}^4 with linear action.
Consider the cubic fourfold $X \subset \mathbb{P}^5$, given by

$$x_0x_1^2 + x_0^2x_2 - x_0x_2^2 - 4x_0x_4^2 + x_1^2x_2 + x_3^2x_5 - x_2x_4^2 - x_5^3 = 0.$$

$G = \mathbb{Z}/6\mathbb{Z}$ acts with weights $(0, 0, 0, 1, 3, 4)$. This X is rational, since it contains the disjoint planes

$$x_0 = x_1 - x_4 = x_3 - x_5 = 0 \quad \text{and} \quad x_2 = x_1 - 2x_4 = x_3 + x_5 = 0,$$

but not G-equivariantly birational to \mathbb{P}^4 with linear action. There is a cubic surface $S \subset X$, with $\mathbb{Z}/3\mathbb{Z}$-stabilizer, $\mathbb{Z}/2\mathbb{Z}$ fixes an elliptic curve, and this S is not stably $\mathbb{Z}/2\mathbb{Z}$-equivariantly rational; the corresponding symbol

$$[\mathbb{Z}/3\mathbb{Z}, \mathbb{Z}/2\mathbb{Z} \curvearrowright k(S), \beta] \neq 0 \in \text{Burn}_4(\mathbb{Z}/6\mathbb{Z}),$$

does not interact with any other symbols in $[X \curvearrowright G]$.
Consider the action of \(G = C_2 \times \mathfrak{S}_3 = \mathcal{W}(G_2) \) on the corresponding torus \(T \) and its Lie algebra \(t \).

- These are \textit{stably} equivariantly birational
 (Lemire-Popov-Reichstein 2005)
Consider the action of \(G = C_2 \times S_3 = W(G_2) \) on the corresponding torus \(T \) and its Lie algebra \(\mathfrak{t} \).

- These are stably equivariantly birational (Lemire-Popov-Reichstein 2005)
- They are not equivariantly birational (Iskovskikh 2005)
Nonabelian actions on surfaces

These actions can be realized via:

- the action on $y_1 y_2 y_3 = 1$ via permutation of variables and taking inverses, with model DP6
Nonabelian actions on surfaces

These actions can be realized via:

- the action on $y_1 y_2 y_3 = 1$ via permutation of variables and taking inverses, with model DP6
- the action on $x_1 + x_2 + x_3$ via permutation and reversing signs, with model \mathbb{P}^2
The action on $\mathbb{P}^2 = \mathbb{P}(I \oplus V)$, with coordinates $(u_0 : u_1 : u_2)$ is given by

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & -1 \\
\end{pmatrix}, \quad \iota := \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1 \\
\end{pmatrix}.
\]

There is one fixed point, $(1 : 0 : 0)$; after blowing up, the exceptional curve is stabilized by the central involution ι, and comes with a nontrivial S_3-action, contributing the symbol $\left(\mathbb{C}^2, S_3 \right) \in \mathcal{Xr} \left[G \right]$. Additionally, the line $\ell_0 := \{u_0 = 0\}$ has as stabilizer the central \mathbb{C}^2, contributing the same symbol. There are also other terms.

Equivariant birational types
The action on $\mathbb{P}^2 = \mathbb{P}(I \oplus V)$, with coordinates $(u_0 : u_1 : u_2)$ is given by

$$
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & -1
\end{pmatrix},
\iota := \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}.
$$

There is one fixed point, $(1 : 0 : 0)$; after blowing up, the exceptional curve is stabilized by the central involution ι, and comes with a nontrivial S_3-action, contributing the symbol

$$(C_2, S_3 \acts k(\mathbb{P}^1), (1)) \in [X \acts G].$$

Additionally, the line $\ell_0 := \{u_0 = 0\}$ has as stabilizer the central C_2, contributing the same symbol.
The action on $\mathbb{P}^2 = \mathbb{P}(I \oplus V)$, with coordinates $(u_0 : u_1 : u_2)$ is given by

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & -1
\end{pmatrix}, \quad \iota := \begin{pmatrix}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{pmatrix}.
\]

There is one fixed point, $(1 : 0 : 0)$; after blowing up, the exceptional curve is stabilized by the central involution ι, and comes with a nontrivial S_3-action, contributing the symbol

\[(C_2, S_3 \ltimes k(\mathbb{P}^1), (1)) \in [X \ltimes G].\]

Additionally, the line $\ell_0 := \{u_0 = 0\}$ has as stabilizer the central C_2, contributing the same symbol. ... There are also other terms.
Nonabelian actions on surfaces

A better model for the second action is the quadric

\[v_0 v_1 + v_1 v_2 + v_2 v_0 = 3w^2, \]

where \(\mathfrak{S}_3 \) permutes the coordinates \((v_0 : v_1 : v_2)\) and the central involution exchanges the sign on \(w \). There are no \(G \)-fixed points, but a conic \(R_0 := \{w = 0\} \) with stabilizer the central \(C_2 \) and a nontrivial action of \(\mathfrak{S}_3 \),

Equivariant birational types
A better model for the second action is the quadric

\[v_0v_1 + v_1v_2 + v_2v_0 = 3w^2, \]

where \(S_3 \) permutes the coordinates \((v_0 : v_1 : v_2)\) and the central involution exchanges the sign on \(w \). There are no \(G \)-fixed points, but a conic \(R_0 := \{ w = 0 \} \) with stabilizer the central \(C_2 \) and a nontrivial action of \(S_3 \), ... and some other terms.
The crucial difference is that the summand

\[(C_2, \mathfrak{S}_3 \cong k(\mathbb{P}^1), (1))\]

appears twice in the \mathbb{P}^2 model, and only once in the quadric model.
The crucial difference is that the summand

\[(C_2, \mathfrak{S}_3 \circlearrowleft k(\mathbb{P}^1), (1))\]

appears twice in the \(\mathbb{P}^2\) model, and only once in the quadric model. No relations can eliminate this symbol.

This \(\mathbb{P}^1\), with \(\mathfrak{S}_3\)-action, should be viewed as an analog of a curve of genus \(\geq 1\) in the fixed locus – it will appear on every equivariantly birational model.
Stable linearizability

New examples of nonlinearizable but stably linearizable actions:

Theorem (Hassett-T. 2022)

The following actions are not linearizable but stably linearizable:

- (generically free) G-actions on quadric surfaces, where G is an extension

\[1 \rightarrow \mathbb{D}_{2n} \rightarrow G \rightarrow \mathbb{Z}/2 \rightarrow 1 \]

with odd n
New examples of nonlinearizable but stably linearizable actions:

Theorem (Hassett-T. 2022)

The following actions are not linearizable but stably linearizable:

- (generically free) \(G\)-actions on quadric surfaces, where \(G\) is an extension

 \[
 1 \to D_{2n} \to G \to \mathbb{Z}/2 \to 1
 \]

 with odd \(n\)

- \(S_4\) on a DP6
New examples of nonlinearizable but stably linearizable actions:

Theorem (Hassett-T. 2022)

The following actions are not linearizable but stably linearizable:

- (generically free) G-actions on quadric surfaces, where G is an extension
 \[
 1 \to \mathbb{D}_{2n} \to G \to \mathbb{Z}/2 \to 1
 \]
 with odd n
- S_4 on a DP6
- A_5 on a DP5

This gives new examples of failure of the equivariant analog of Zariski's problem.
Stable linearizability

New examples of nonlinearizable but stably linearizable actions:

Theorem (Hassett-T. 2022)

The following actions are not linearizable but stably linearizable:

- (generically free) G-actions on quadric surfaces, where G is an extension
 \[1 \to S(2n) \to G \to \mathbb{Z}/2 \to 1 \]
 with odd n
- S_4 on a DP6
- A_5 on a DP5
- the standard action of A_5 on a Segre cubic threefold.
New examples of nonlinearizable but stably linearizable actions:

Theorem (Hassett-T. 2022)

The following actions are not linearizable but stably linearizable:

- (generically free) G-actions on quadric surfaces, where G is an extension

\[1 \rightarrow \mathbb{D}_{2n} \rightarrow G \rightarrow \mathbb{Z}/2 \rightarrow 1 \]

with odd n

- S_4 on a DP6
- A_5 on a DP5
- the standard action of A_5 on a Segre cubic threefold.

Proof: via a G-equivariant analog of the theory of universal torsors.
Stable linearizability

New examples of nonlinearizable but stably linearizable actions:

Theorem (Hasse-T. 2022)

The following actions are not linearizable but stably linearizable:

- (generically free) G-actions on quadric surfaces, where G is an extension

$$1 \to \mathcal{O}_{2n} \to G \to \mathbb{Z}/2 \to 1$$

with odd n

- S_4 on a DP6
- A_5 on a DP5
- the standard action of A_5 on a Segre cubic threefold.

Proof: via a G-equivariant analog of the theory of universal torsors.
Nonabelian actions on \mathbb{P}^2

Dolgachev/Iskovskikh “Are there embeddings of a finite group G into PGL_3 that are not conjugate in Cr_2?”
Nonabelian actions on \mathbb{P}^2

Dolgachev/Iskovskikh “Are there embeddings of a finite group G into PGL_3 that are not conjugate in Cr_2?”

Reichstein-Youssin provide such embeddings, but in their examples G has to contain an abelian subgroup of rank 2.
Dolgachev/Iskovskikh “Are there embeddings of a finite group G into PGL_3 that are not conjugate in Cr_2?”

Reichstein-Youssin provide such embeddings, but in their examples G has to contain an abelian subgroup of rank 2.

Let $G = C_5 \times S_3$, and V be the standard 2-dimensional representation of S_3. Let χ be a nontrivial character of C_5.

Nonabelian actions on \mathbb{P}^2
Dolgachev/Iskovskikh “Are there embeddings of a finite group G into PGL_3 that are not conjugate in Cr_2?”

Reichstein-Youssin provide such embeddings, but in their examples G has to contain an abelian subgroup of rank 2.

Let $G = C_5 \times S_3$, and V be the standard 2-dimensional representation of S_3. Let χ be a nontrivial character of C_5. We get a generically free action of G on $\mathbb{P}^2 = \mathbb{P}(I \oplus V_\chi)$, where $V_\chi := V \otimes \chi$.
Nonabelian actions on \(\mathbb{P}^2 \)

Dolgachev/Iskovskikh “Are there embeddings of a finite group \(G \) into \(\text{PGL}_3 \) that are not conjugate in \(\text{Cr}_2 \)?”

Reichstein-Youssin provide such embeddings, but in their examples \(G \) has to contain an abelian subgroup of rank 2.

Let \(G = C_5 \times \mathfrak{S}_3 \), and \(V \) be the standard 2-dimensional representation of \(\mathfrak{S}_3 \). Let \(\chi \) be a nontrivial character of \(C_5 \). We get a generically free action of \(G \) on \(\mathbb{P}^2 = \mathbb{P}(I \oplus V_\chi) \), where \(V_\chi := V \otimes \chi \).

Kresch-T. 2021

The class

\[[\mathbb{P}^2 \ltimes G] \in \text{Burn}_2(G) \]

is nontrivial.
Nonabelian actions on \mathbb{P}^2

Dolgachev/Iskovskikh “Are there embeddings of a finite group G into PGL_3 that are not conjugate in Cr_2?”

Reichstein-Youssin provide such embeddings, but in their examples G has to contain an abelian subgroup of rank 2.

Let $G = C_5 \times S_3$, and V be the standard 2-dimensional representation of S_3. Let χ be a nontrivial character of C_5. We get a generically free action of G on $\mathbb{P}^2 = \mathbb{P}(I \oplus V_\chi)$, where $V_\chi := V \otimes \chi$.

Kresch-T. 2021

The class

$$[\mathbb{P}^2 \ltimes G] \in \text{Burn}_2(G)$$

is nontrivial. Moreover, if $\chi \neq \pm \chi'$ then the corresponding classes are distinct.
Equivariant Burnside group

How to reach a standard model?

Explicit algorithms for:

- Linear actions on \mathbb{P}^n, $G \rtimes \mathbb{PGL}_{n+1}(k)$,
- Toric actions, i.e., $G \rtimes \mathbb{Aut}(X^\ast(T)) = \mathbb{GL}_n(\mathbb{Z})$,

via De Concini-Procesi models of subspace arrangements.

Unpleasant combinatorial formulas (Kresch-T. 2021); implemented in Magma by my students Kaiqi Yang and Zhijia Zhang.

Equivariant birational types
How to reach a standard model? Explicit algorithms for:

- Linear actions on \mathbb{P}^n, $G \hookrightarrow \text{PGL}_{n+1}(k)$,
How to reach a standard model? Explicit algorithms for:

- Linear actions on \mathbb{P}^n, $G \hookrightarrow \text{PGL}_{n+1}(k)$,
- Toric actions, i.e., $G \hookrightarrow \text{Aut}(\mathcal{X}^*(T)) = \text{GL}_n(\mathbb{Z})$,
Equivariant Burnside group

How to reach a standard model? Explicit algorithms for:

- Linear actions on \mathbb{P}^n, $G \hookrightarrow \text{PGL}_{n+1}(k)$,
- Toric actions, i.e., $G \hookrightarrow \text{Aut}(\mathcal{X}^*(T)) = \text{GL}_n(\mathbb{Z})$,

via De Concini-Procesi models of subspace arrangements.
Equivariant Burnside group

How to reach a standard model? Explicit algorithms for:

- Linear actions on \mathbb{P}^n, $G \hookrightarrow \text{PGL}_{n+1}(k)$,
- Toric actions, i.e., $G \hookrightarrow \text{Aut}(\mathfrak{X}^*(T)) = \text{GL}_n(\mathbb{Z})$,

via De Concini-Procesi models of subspace arrangements.

Unpleasant combinatorial formulas (Kresch-T. 2021); implemented in magma by my students Kaiqi Yang and Zhijia Zhang.
Consider $G = A_5$ and let V be a faithful 3-dimensional representation of G. Then the class

$$[\mathbb{P}(V) \simeq G] \in \text{Burn}_2(G)$$

is given by

$$= (C_1, A_5 \simeq k(t, u), ()) + 2(C_2, C_2 \simeq k(t), (1))$$
$$+ 2(C_3, 1 \simeq k, (1, 1)) + (C_3, 1 \simeq k, (2, 2))$$
$$+ 2(C_5, 1 \simeq k, (1, 3)) + (C_5, 1 \simeq k, (4, 4))$$
$$+ (C_2^2, 1 \simeq k, ((0, 1), (1, 0))) + (C_2^2, 1 \simeq k, ((0, 1), (1, 1)))$$
$$= (C_1, A_5 \simeq k(t, u), ()) + (C_3, 1 \simeq k, (1, 1)) + (C_5, 1 \simeq k, (4, 4))$$
Burnside groups: incompressibles

Simplifications arise when we focus on geometric properties of strata.
Simplifications arise when we focus on geometric properties of strata. E.g., there is a subgroup

\[\text{Burn}_{n}^{\text{inc}}(G) \subset \text{Burn}_{n}(G), \]

generated by incompressible divisor symbols, i.e.,

\[s = (H, Z \subseteq K, \beta), \quad \text{trdeg}(K) = n - 1, \]

\(H \) a nontrivial cyclic group, and such that \(s \) cannot arise from \(\Theta_2 \) in relation (B2).
The subgroup

\[\text{Burn}^\text{inc}_n(G) \subseteq \text{Burn}_n(G), \]

is a direct summand, **freely** generated by incompressible divisor symbols (modulo conjugation).
Burnside groups: incompressibles

\(n = 1 \) Every divisor symbol in incompressible, hence

\[
\text{Burn}_1(G) = \text{Burn}^{\text{inc}}_1(G) \oplus \text{Burn}^{\text{H}_{\text{triv}}}_1(G).
\]
Burnside groups: incompressibles

\[n = 1 \] Every divisor symbol in incompressible, hence
\[
\text{Burn}_1(G) = \text{Burn}_{1}^{\text{inc}}(G) \oplus \text{Burn}_{1}^{\text{H}_{\text{triv}}}(G).
\]

\[n = 2 \] A divisor symbol
\[
(H, Y \subseteq K, \beta), \quad \beta = (b),
\]
is compressible if and only if \(Y \) is cyclic and \(K = k(t) \).

Equivariant birational types
Let X be a smooth projective G-variety of dimension $n - r$ over k with a G-linearized line bundles L_0, \ldots, L_r. Then

$$[\mathbb{P}(L_0 \oplus \cdots \oplus L_r) \bowtie G] = \sum \ldots \in \text{Burn}_n(G),$$

a (rather unpleasant) combinatorial formula.
Let $G := C_5 \times \mathfrak{S}_3$, acting on $X := \mathbb{P}^1$ via an irreducible 2-dimensional representation of \mathfrak{S}_3.
Let $G := C_5 \times S_3$, acting on $X := \mathbb{P}^1$ via an irreducible 2-dimensional representation of S_3. Let L_0 be trivial line bundle and L_1 the twist of $O_{\mathbb{P}^1}(1)$ by a nontrivial character $\chi : C_5 \to k^\times$.
Let $G := C_5 \times S_3$, acting on $X := \mathbb{P}^1$ via an irreducible 2-dimensional representation of S_3. Let L_0 be trivial line bundle and L_1 the twist of $\mathcal{O}_{\mathbb{P}^1}(1)$ by a nontrivial character $\chi : C_5 \to k^\times$.

We would like to compute the class

$$[\mathbb{P}(L_0 \oplus L_1) \cup G] \in \text{Burn}_2(G).$$
The outcome of the fibration formula is

\[[\mathbb{P}(L_0 \oplus L_1) \curvearrowright G] = (\text{triv}, G \curvearrowright \mathbb{C}(\mathbb{P}^1)(t), \emptyset) + (\langle (1, 2) \rangle, C_5 \overset{\chi}{\curvearrowright} \mathbb{C}(t), 1) \]
\[+ (C_5, S_3 \overset{\chi}{\curvearrowright} \mathbb{C}(\mathbb{P}^1), \chi) + (C_5 \times \langle (1, 2) \rangle, \text{triv} \curvearrowright \mathbb{C}, ((0, 1), (\chi, 0))) \]
\[+ (C_5 \times \langle (1, 2) \rangle, \text{triv} \curvearrowright \mathbb{C}, ((0, 1), (\chi, 1))) \]
\[+ (C_5 \times A_3, S_3/A_3 \overset{\chi}{\curvearrowright} \mathbb{C} \times \mathbb{C}, ((0, 1), (\chi, 1))) \]
\[+ (C_5, S_3 \overset{\chi}{\curvearrowright} \mathbb{C}(\mathbb{P}^1), -\chi) + (C_5 \times \langle (1, 2) \rangle, \text{triv} \curvearrowright \mathbb{C}, ((0, 1), (-\chi, 0))) \]
\[+ (C_5 \times \langle (1, 2) \rangle, \text{triv} \curvearrowright \mathbb{C}, ((0, 1), (-\chi, 1))) \]
\[+ (C_5 \times A_3, S_3/A_3 \overset{\chi}{\curvearrowright} \mathbb{C} \times \mathbb{C}, ((0, 1), (-\chi, 1))). \]
Burnside groups: incompressibles

We have

$$(C_5, \mathcal{G}_3 \subset \mathbb{C}(\mathbb{P}^1), \chi) + (C_5, \mathcal{G}_3 \subset \mathbb{C}(\mathbb{P}^1), -\chi) \in \text{Burn}_{2}^{\text{inc}}(G).$$
We have

$$(C_5, S_3 \triangleleft \mathbb{C}(\mathbb{P}^1), \chi) + (C_5, S_3 \triangleleft \mathbb{C}(\mathbb{P}^1), -\chi) \in \text{Burn}_{2\text{inc}}(G).$$

These classes are different for $\chi \in \{\pm 1\}$ as compared to $\chi \in \{\pm 2\}$.
Basic terminology: a (faithful) representations $G \to GL(V)$ is called:

- *intransitive*: if it is reducible, *transitive* if it is irreducible;
Basic terminology: a (faithful) representations $G \to \text{GL}(V)$ is called:

- **intransitive**: if it is reducible, **transitive** if it is irreducible;
- **imprimitive** if it is transitive but contains an intransitive normal subgroup G'; in this case G/G' permutes the G' representations;
Linear actions

Basic terminology: a (faithful) representation $G \to \text{GL}(V)$ is called:

- **intransitive:** if it is reducible, **transitive** if it is irreducible;
- **imprimitive** if it is transitive but contains an intransitive normal subgroup G'; in this case G/G' permutes the G' representations;
- **primitive** if it is neither intransitive, nor imprimitive.
\mathbb{P}^2: INTRANSITIVE

\[G \subset k^\times \times \text{GL}_2(k); \]
\mathbb{P}^2: INTRANSITIVE

$G \subset k^{\times} \times \text{GL}_2(k)$;

finite subgroups of GL_2 arise as binary extensions of subgroups of PGL_2, which in turn are:

$C_n, \mathcal{D}_{2n}, \mathcal{A}_4, \mathcal{S}_4, \mathcal{A}_5$.
(1) extension of C_3 by $(\mathbb{Z}/n\mathbb{Z})^2$, with the action

$$(\zeta_n x_0, x_1, x_2), \quad (x_0, \zeta_n x_1, x_2), \quad (x_2, x_0, x_1),$$

(2) extension of \mathcal{S}_3 by $(\mathbb{Z}/n\mathbb{Z})^2$, \mathcal{S}_3 permutes the coordinates, the abelian subgroup acts as above,

(3) extension of C_3 by $(\mathbb{Z}/n\mathbb{Z}) \oplus (\mathbb{Z}/m\mathbb{Z})$, $m = n/r$, with $r > 1$, $r \mid n$, $s^2 - s + 1 = 0 \pmod r$, and with the action

$$(\zeta_m x_0, x_1, x_2), \quad (\zeta_n^s x_0, \zeta_n x_1, x_2), \quad (x_2, x_0, x_1),$$

(4) extension of \mathcal{S}_3 by $(\mathbb{Z}/n\mathbb{Z}) \oplus (\mathbb{Z}/m\mathbb{Z})$, $m = n/3$, $3 \mid n$, \mathcal{S}_3 permutes the coordinates, the abelian subgroup acts by

$$(\zeta_m x_0, x_1, x_2), \quad (\zeta_n^2, \zeta_n x_1, x_2).$$
\[P^2: \text{ PRIMITIVE} \]

- \(\mathfrak{A}_5 \)
- \(3^2 : \text{SL}_2(\mathbb{F}_3) \), and two of its subgroups
- \(\text{PSL}_2(\mathbb{F}_7) \) (has dual 3-dimensional representations),
- \(\mathfrak{A}_6 \)
\(\mathbb{P}^2: \text{BIRATIONAL RIGIDITY}\)

The standard approaches to distinguishing \(G\)-actions, up to birationality, rely on \(H^1(G, \text{Pic}(X))\) or birational rigidity.
The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.
The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.

Sakovics (2019)

Let $G \subset \text{PGL}_3$ be a finite group. Then \mathbb{P}^2 is G-birationally rigid if and only if G is transitive and not isomorphic to A_4 or S_4.

Applications
The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.

Sakovics (2019)

Let $G \subset \text{PGL}_3$ be a finite group. Then \mathbb{P}^2 is G-birationally rigid if and only if G is transitive and not isomorphic to \mathfrak{A}_4 or \mathfrak{S}_4.

There are two actions of \mathfrak{A}_5; they are not conjugated in PGL_3 but are conjugated in Cr_2.

Applications
The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.

Sakovics (2019)

Let $G \subset \text{PGL}_3$ be a finite group. Then \mathbb{P}^2 is G-birationally rigid if and only if G is transitive and not isomorphic to \mathfrak{A}_4 or \mathfrak{S}_4.

There are two actions of \mathfrak{A}_5; they are not conjugated in PGL_3 but are conjugated in Cr_2. On the other hand, the two actions of $\text{PSL}_2(\mathbb{F}_7)$ are not conjugated in Cr_2.
P^2: BIRATIONAL RIGIDITY

The standard approaches to distinguishing G-actions, up to birationality, rely on $H^1(G, \text{Pic}(X))$ or birational rigidity. The first tool is not applicable since $\text{Pic}(\mathbb{P}^n) = \mathbb{Z}$.

Sakovics (2019)

Let $G \subset \text{PGL}_3$ be a finite group. Then \mathbb{P}^2 is G-birationally rigid if and only if G is transitive and not isomorphic to \mathbb{A}_4 or \mathbb{S}_4.

There are two actions of \mathbb{A}_5; they are not conjugated in PGL_3 but are conjugated in Cr_2. On the other hand, the two actions of $\text{PSL}_2(\mathbb{F}_7)$ are not conjugated in Cr_2.

This settles the primitive actions. The Burnside invariants allow to distinguish many intransitive and imprimitive actions.
Let G' be $S_4, A_5, \text{PSL}_2(\mathbb{F}_7)$, or $2.A_6$.

Let C_p be the cyclic group of prime order $p > 7$, with and $G := C_n \times G'$. Then there exist embeddings $G \hookrightarrow \text{PGL}_4$ which are not conjugated in C_{r_3}.

Applications
Birational types: summary

- Construction of new invariants in equivariant birational geometry
Birational types: summary

- Construction of new invariants in equivariant birational geometry
- Intricate structure of these invariants
Birational types: summary

- Construction of new invariants in equivariant birational geometry
- Intricate structure of these invariants
- Applications to classical problems