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Plan of the Talk

1. Motivation
2. Arithmetics of gauge group topology in F-theory compactifications
3. Constraining 8d gauge group topology with 1-form symmetry

4. Predicting (?) arithmetics of elliptic CY3



Quantum gravity: landscape vs swampland

 Framework of QFT most powerful in effective field theory (EFT) approach.
RG-flow: details of UV-theory irrelevant in IR (usually).

» Different with gravity: UV-IR-mixing possible!
What are imprints on EFT(s) of quantum gravity?

 Black hole arguments = non-trivial consistency conditions on EFTs:
No global symmetries, Completeness Hypothesis, Weak Gravity Conjecture,
... culminates in Swampland program vata 05, Ooguri/Vvafa '06):

Distinguishing UV-completable EFTs (landscape) from
consistent EFTs not coming from UV-complete gravity (swampland)



Swampland principles from String Geometry

o String theory is (conjecturally) a consistent quantum gravity theory, should
give consistent EFTs via compactifications:

String theory on R"P~-1 x X : EFT in R!"P~! determined by geometry of X ..
d d

1,D—-1

 Geometric constraints not expected from perspective of EFT on |
So perhaps compactifications of string theory not omnipotent?

* Counter-proposal: “String Universality”, or “String Lamppost Principle”:
String theory realizes all consistent quantum gravity models.

» |eitmotif to Swampland program: find physical, string-independent conditions
reflecting (geometric) constraints in string constructions.
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Lessons from geometry

o String Universality for allowed gauge algebras in supergravity:
“proof” in 10d [Adams/DeWolfe/Taylor 10, Kim/Tarazi/Vafa ’19],

strong evidence in 9d/8d/7d/6d [Kumar/Taylor *09, Garcia-Etxebarria/Hayashi/Ohmori/Tachikawa/
Yonekura 17, Montero/Vafa ’20, Cvetic/LL/Turner 21].

* Recurring theme in EFT interpretation: symmetries and their guantum
anomalies.

» “Arithmetics” of X, oftentimes give “discrete” constraints.

* Jo better understand these: need generalized notion of symmetries.



Generalized global symmetries

Point-like particles charged under ordinary (0-form) symmetries, S D ij“);

extended objects are charged under higher-form symmetries, S > [ AP+,
[Gaiotto/Kapustin/Seiberg/Willett °14]




Generalized global symmetries

* Pure gauge theories with gauge group G have Z(G) 1-form global symmetry.

* 1-form symmetries can describe (de-)confinement, useful to constrain phase
structure at finite temperature, ...

* Mixing of higher-form: higher group, non-invertible, categorical symmetries,...
 Also: G = G/Z is equivalent to G with gauged Z c Z(G) 1-form symmetry.
=  Obstructions to gauging 1-form symmetry < global form (topology) of G

& arithmetics of elliptic Calabi— Yau manifolds.



F-theory in a nutshell

» F-theory: (compact) elliptically fibered Calabi—Yau X,
< supergravity in D = (12 — 2d) dimensions.

* Local data (i.e., singular fibers) characterize non-Abelian gauge algebra q.

 Global data (Mordell—Weil group) determines gauge group G = G/Z
[Aspinwall/Morrison 98, Mayrhofer/Morrison/Till/Weigand ’14, Cvetic/LL ’17].

* |n the following, focus on torsional part of MW-group.



Gauge group topology in F-theory

(for simplicity, let X have only /, fibers in codim 1, then g = . 3u(n,))
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g, = 3u(n,) g; = su(n)
« MW-group law — addition in [].Z, = Z([].SU1)) = Z(G)

e In F-theory: MW-torsion Z = non-Abelian gauge group is G/Z.



Arithmetics of gauge group topologies in 8d F-theory

 In 8d ./ =1 gauge theory, G/Z for any Z c Z(G) possible.

* |n contrast: Z limited in F-theory on (compact) elliptic K3 X, due to viranda/

Persson ’89].

Let R C H,(X, Z) be spanned by non-affine nodes of L, fibers. Then,
Z = Tor(MW) < (R*)*/R IS Isotropic W.I.t. g(x) = —x X mod Z.

« Consequence: s ~ (k;,k,,...) € ZsatisfyZ k? nz;l /.

« Note: Z(G) = (R")*/R= Z, X Z, X...
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€ /Z as an anomaly condition...

W

e (J/Z has fractional instantons °t Hooft *811;
Iz %Tr(Fz) j cz(F) E —Z for SU(n)/ Z,-bundle with curvature F.
4

o Equivalently: ¢,(F) = agA®P UA® = ax(AP)> mod Z, where A® gauge field for Z;

(A(Z))2 Inte er, but a - fractlonal e. 0/ — n— [Kapustin/Seiberg '13]
g G g., SU(n) M

» Gauging Z 1-form: sum over G/Z bundles in path integral for partition function.
& sum over all configurations of A,

* Only possible if partition function remains invariant under all (other) gauge
symmetries!
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€ /Z as an anomaly condition in 8d

W

 |In8d ./ =1 SYM (only vector multiplet): no restrictions on Z 1-form.

o But with gravity multiplet: § D Izic2(Fi) A B, [Awada/Townsend ’85];
with gauge field for Z 1-form: AS = [} as(A”)* A B, mod Z.

o For SUSY: B, enjoys U(1) gauge symmetry w/ large gauge transformations

» In A" background, partition function [2[B,,A®,...] exp(2ziS[B,, A®),...])

acquires phase exp(27i [ ), as(Al”)* A b)) => anomaly!
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€ /Z as an anomaly condition in 8d

+ Phase exp(27i | )’ a(A”)* A by) in general non-trivial, so
gauge group [[].G;1/Z inconsistent for generic Z c [] . Z(G).

* Necessary consistency condition: no anomaly generated by (k;,k,,...) € Z.

« Take G, = SU(n)), with Z(G) = Z, and a; = (n, — 1)/2n,. Then, for Z, C H Z, W|th
generator (k;, k,,...), baokground fleld sets A(z) = kA( ) [Cordova/Freed/Lam/Selberg '19].

e Phase becomes:

2| Y ag(AP) Aby = 27:(2 k- _1) X [(A®)* A by
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Allowed gauge groups in 8d ./' = | supergravity

 “Anomalies” of non-SU groups is integer sum of SU groups [Cordova/Freed/Lam/Seiberg *19].

n — 1 . C
. Solutionsto ) . k’—— € Z, subject to Z,-’”li — 1 = 18 [Montero/vafa '20], limited.

e E.g.: N0 G/Zf with £ > 8 anomaly-free; unigue solutions for £ = 7,8:
SU(7)°/Z, and [SU(8)* x SU(4) x SU(2)|/Zs.

* With slight modifications: also makes predictions for rank 10 and 2 theories.
Confirmed in string compactifications [cveti¢/Dierigi/LL/Zhang 21, 22].
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G/Z realizable in consistent 8d (s)QFT ',

Anomaly constraint for gauging 1-form symmetry
(due to gravity!)

1

Geometric constraints in compactification
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Compactifications to 6d / arithmetics of elliptic CY3

* |In 6d: ¢,(F;) couples to B, & BPS strings,
mechanism also present in non-gravitational theories / SCFTs [Apruzzi/Dierigi/LL *20]
= constrains global symmetry group [Heckman/Lawrie/LL/Zhang/Zoccarato *22].

* |n compact F-theory models / 6d 4/ = (1,0) supergravity, there is a similar
arithmetic constraint for Tor(MW):

Let 7 : X - B be smooth, flat elliptically fibered CY3, with L, fibers over
W. e H,(B, Z). Let s € Tor(MW) meet the k-th exceptional component of L,

Then, for any D € H,(B, Z), one must have

Zl 2ni klz X (W ’B2 D) E Z.
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Conclusion

* (Geometric constraints in string compactifications are features, not bugs:
reflect UV-constraints on EFT description (“Swampland”).

 Can be quantified and sharpened — independent of string theory — using
generalized symmetries.

consistently looking EFTs of QG
[fEFTS with UV-completion

W “Landscape”
- b _ 4 g/
“Swampland”
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Outlook

 Can generalized symmetries inspire new geometric insights?

* Interplay between geometry and further generalizations of symmetries (higher-
groups, non-invertible, ...) in guantum gravity or non-perturbative QFT?

i %m/
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