Gravity, Geometry, Generalized symmetries

Ling Lin

CERN Theory Department

Simons Collaboration on Special Holonomy Progress and Open Problems 2022 Sep 13, 2022

Plan of the Talk

- 1. Motivation
- 2. Arithmetics of gauge group topology in F-theory compactifications
- 3. Constraining 8d gauge group topology with 1-form symmetry
- 4. Predicting (?) arithmetics of elliptic CY3

Quantum gravity: landscape vs swampland

- Framework of QFT most powerful in *effective field theory* (EFT) approach. RG-flow: details of UV-theory irrelevant in IR (usually).
- Different with gravity: UV-IR-mixing possible!
 What are imprints on EFT(s) of quantum gravity?
- Black hole arguments

 — non-trivial consistency conditions on EFTs:
 No global symmetries, Completeness Hypothesis, Weak Gravity Conjecture,
 … culminates in Swampland program [Vafa '05, Ooguri/Vafa '06]:

Distinguishing UV-completable EFTs (landscape) from consistent EFTs *not* coming from UV-complete gravity (swampland)

Swampland principles from String Geometry

• String theory is (conjecturally) a consistent quantum gravity theory, should give consistent EFTs via compactifications:

String theory on $\mathbb{R}^{1,D-1} \times X_d$: EFT in $\mathbb{R}^{1,D-1}$ determined by geometry of X_d .

- Geometric constraints not expected from perspective of EFT on $\mathbb{R}^{1,D-1}$. So perhaps compactifications of string theory not omnipotent?
- Counter-proposal: "String Universality", or "String Lamppost Principle": String theory realizes all consistent quantum gravity models.
- Leitmotif to Swampland program: find physical, string-independent conditions reflecting (geometric) constraints in string constructions.

Lessons from geometry

- String Universality for allowed gauge algebras in supergravity: "proof" in 10d [Adams/DeWolfe/Taylor '10, Kim/Tarazi/Vafa '19], strong evidence in 9d/8d/7d/6d [Kumar/Taylor '09, García-Etxebarria/Hayashi/Ohmori/Tachikawa/Yonekura '17, Montero/Vafa '20, Cvetič/LL/Turner '21].
- Recurring theme in EFT interpretation: symmetries and their quantum anomalies.
- "Arithmetics" of X_d oftentimes give "discrete" constraints.
- To better understand these: need generalized notion of symmetries.

Generalized global symmetries

Point-like particles charged under ordinary (0-form) symmetries, $S \supset \int_{\gamma} A^{(1)}$; extended objects are charged under *higher-form* symmetries, $S \supset \int_{\Sigma} A^{(p+1)}$.

[Gaiotto/Kapustin/Seiberg/Willett '14]

Generalized global symmetries

- Pure gauge theories with gauge group G have Z(G) 1-form global symmetry.
- 1-form symmetries can describe (de-)confinement, useful to constrain phase structure at finite temperature, ...
- Mixing of higher-form: higher group, non-invertible, categorical symmetries,...
- Also: $G = \tilde{G}/Z$ is equivalent to \tilde{G} with gauged $Z \subset Z(\tilde{G})$ 1-form symmetry.
- Obstructions to gauging 1-form symmetry ⇔ global form (topology) of G
 ⇔ arithmetics of elliptic Calabi—Yau manifolds.

F-theory in a nutshell

- F-theory: (compact) elliptically fibered Calabi Yau X_d \iff supergravity in D=(12-2d) dimensions.
- Local data (i.e., singular fibers) characterize non-Abelian gauge algebra g.
- Global data (Mordell Weil group) determines gauge group $G = \tilde{G}/Z$ [Aspinwall/Morrison '98, Mayrhofer/Morrison/Till/Weigand '14, Cvetič/LL '17].
- In the following, focus on torsional part of MW-group.

Gauge group topology in F-theory

(for simplicity, let X have only I_{n_i} fibers in codim 1, then $\mathfrak{g} = \bigoplus_i \mathfrak{Su}(n_i)$)

- MW-group law \to addition in $\prod_i \mathbb{Z}_{n_i} = Z(\prod_i SU(n_i)) = Z(\tilde{G})$
- In F-theory: MW-torsion $Z \Rightarrow$ non-Abelian gauge group is \tilde{G}/Z .

Arithmetics of gauge group topologies in 8d F-theory

- In 8d $\mathcal{N}=1$ gauge theory, \tilde{G}/Z for any $Z\subset Z(\tilde{G})$ possible.
- In contrast: Z limited in F-theory on (compact) elliptic K3 X, due to [Miranda/Persson '89]:

Let $R \subset H_2(X, \mathbb{Z})$ be spanned by non-affine nodes of I_{n_i} fibers. Then, $Z \cong \text{Tor}(MW) \hookrightarrow (R^*)^*/R$ is isotropic w.r.t. $q(x) = \frac{1}{2}x \cdot x \mod \mathbb{Z}$.

- Consequence: $s \simeq (k_1, k_2, \dots) \in \mathbb{Z}$ satisfy $\sum_i k_i^2 \frac{n_i 1}{2n_i} \in \mathbb{Z}$.
- Note: $Z(\tilde{G}) \cong (R^*)^*/R \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \dots$

$$\sum_{i} k_i^2 \frac{n_i - 1}{2n_i} \in \mathbb{Z} \text{ as an anomaly condition...}$$

- \tilde{G}/Z has fractional instantons ['t Hooft '81]: $\int_{\Sigma_4} \frac{1}{4} \mathrm{Tr}(F^2) \equiv \int_{\Sigma_4} c_2(F) \in \frac{1}{2n} \mathbb{Z} \ \text{for } SU(n)/\mathbb{Z}_n \text{-bundle with curvature } F.$
- Equivalently: $c_2(F) \equiv \alpha_{\tilde{G}}A^{(2)} \cup A^{(2)} \equiv \alpha_{\tilde{G}}(A^{(2)})^2 \mod \mathbb{Z}$, where $A^{(2)}$ gauge field for Z; $(A^{(2)})^2$ integer, but $\alpha_{\tilde{G}}$ fractional; e.g.; $\alpha_{SU(n)} = \frac{n-1}{2n}$ [Kapustin/Seiberg '13]
- Gauging Z 1-form: sum over \tilde{G}/Z bundles in path integral for partition function. \Leftrightarrow sum over all configurations of $A^{(2)}$.
- Only possible if partition function remains invariant under all (other) gauge symmetries!

$\sum_{i} k_i^2 \frac{n_i - 1}{2n_i} \in \mathbb{Z} \text{ as an anomaly condition in 8d}$

- In 8d $\mathcal{N}=1$ SYM (only vector multiplet): no restrictions on Z 1-form.
- But with gravity multiplet: $S \supset \int \sum_i c_2(F_i) \wedge B_4$ [Awada/Townsend '85]; with gauge field for Z 1-form: $\Delta S \equiv \int \sum_i \alpha_{\tilde{G}_i} (A_i^{(2)})^2 \wedge B_4 \mod \mathbb{Z}$.
- For SUSY: B_4 enjoys U(1) gauge symmetry w/ large gauge transformations $B_4 \rightarrow B_4 + b_4$.
- In $A_i^{(2)}$ background, partition function $\int \mathcal{D}[B_4, A^{(2)}, \dots] \exp(2\pi i S[B_4, A^{(2)}, \dots])$ acquires phase $\exp(2\pi i \int \sum_i \alpha_{\tilde{G}_i}(A_i^{(2)})^2 \wedge b_4) \implies$ anomaly!

$$\sum_{i} k_i^2 \frac{n_i - 1}{2n_i} \in \mathbb{Z} \text{ as an anomaly condition in 8d}$$

- Phase $\exp(2\pi i \int \sum_i \alpha_{\tilde{G}_i}(A_i^{(2)})^2 \wedge b_4)$ in general non-trivial, so gauge group $[\prod_i \tilde{G}_i]/Z$ inconsistent for generic $Z \subset \prod_i Z(\tilde{G}_i)$.
- Necessary consistency condition: no anomaly generated by $(k_1, k_2, \dots) \in Z$.
- Take $\tilde{G}_i = SU(n_i)$, with $Z(\tilde{G}_i) = \mathbb{Z}_{n_i}$ and $\alpha_i = (n_i 1)/2n_i$. Then, for $\mathbb{Z}_{\ell} \subset \prod_i \mathbb{Z}_{n_i}$ with generator (k_1, k_2, \dots) , background field sets $A_i^{(2)} = k_i A^{(2)}$ [Cordova/Freed/Lam/Seiberg '19].
- Phase becomes:

$$2\pi \int \sum_{i} \alpha_{\tilde{G}_{i}} (A_{i}^{(2)})^{2} \wedge b_{4} = 2\pi \left(\sum_{i} k_{i}^{2} \frac{n_{i} - 1}{2n_{i}} \right) \times \int (A^{(2)})^{2} \wedge b_{4}$$

Allowed gauge groups in 8d $\mathcal{N}=1$ supergravity

- ullet "Anomalies" of non-SU groups is integer sum of SU groups [Cordova/Freed/Lam/Seiberg '19].
- Solutions to $\sum_i k_i^2 \frac{n_i 1}{2n_i} \in \mathbb{Z}$, subject to $\sum_i n_i 1 = 18$ [Montero/Vafa '20], limited.
- E.g.: no $\tilde{G}/\mathbb{Z}_{\ell}$ with $\ell > 8$ anomaly-free; unique solutions for $\ell = 7,8$: $SU(7)^3/\mathbb{Z}_7$ and $[SU(8)^2 \times SU(4) \times SU(2)]/\mathbb{Z}_8$.
- With slight modifications: also makes predictions for rank 10 and 2 theories. Confirmed in string compactifications [Cvetič/Dierigl/LL/Zhang '21, '22].

Anomaly constraint for gauging 1-form symmetry (due to gravity!)

Geometric constraints in compactification

Compactifications to 6d / arithmetics of elliptic CY3

- In 6d: $c_2(F_i)$ couples to $B_2 \Leftrightarrow \text{BPS}$ strings, mechanism also present in non-gravitational theories / SCFTs [Apruzzi/Dierigl/LL '20] \Rightarrow constrains global symmetry *group* [Heckman/Lawrie/LL/Zhang/Zoccarato '22].
- In compact F-theory models / 6d $\mathcal{N}=(1,0)$ supergravity, there is a similar arithmetic constraint for Tor(MW):

Let $\pi: X \to B$ be smooth, flat elliptically fibered CY3, with I_{n_i} fibers over $W_i \in H_2(B, \mathbb{Z})$. Let $s \in \text{Tor}(MW)$ meet the k_i -th exceptional component of I_{n_i} .

Then, for any $D \in H_2(B, \mathbb{Z})$, one must have

$$\sum_{i} \frac{n_i - 1}{2n_i} k_i^2 \times (W_i \cdot_{B_2} D) \in \mathbb{Z}.$$

Conclusion

- Geometric constraints in string compactifications are features, not bugs: reflect UV-constraints on EFT description ("Swampland").
- Can be quantified and sharpened independent of string theory using generalized symmetries.

Outlook

- Can generalized symmetries inspire new geometric insights?
- Interplay between geometry and further generalizations of symmetries (higher-groups, non-invertible, ...) in quantum gravity or non-perturbative QFT?

Thank you!