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SOME OF WHAT YOU JUST HEARD

• Given a non-compact Calabi-Yau 3-fold singularity X, M-theory 
engineers a 5d superconformal field theory (SCFT) 𝑇𝑇𝑋𝑋

• We claim there is a general procedure to geometrically predict the 0-
form symmetry, 𝐺𝐺𝐹𝐹 (with center 𝑍𝑍𝐺𝐺), and the 2-group structure of 𝑇𝑇𝑋𝑋
(up to some subtleties) 

• This refines earlier results in the literature which calculate the 1-form 
symmetry as (assuming electric polarization)

(all bulk compact cycles blown-down)



PLAN OF THIS TALK

1. Derive our general procedure geometrically by 
examining equivalence classes of line operators and 
explain why it captures the 0-form, 1-form, and 2-
group symmetry

2. Examine some examples where 𝑋𝑋 = ℂ3/Γ
Number of flavor branes = 0, 1, 2, or 3

Γ ≅ ℤ𝑛𝑛 or ℤ𝑛𝑛 × ℤ𝑚𝑚 m divides n



1-FORM SYMMETRY

• Recall (Jonathan’s talk): 1-form symmetry acts on line operators 

• Ex. Let 

• Then (equivalence classes of) line operators labeled by 

• Action:

• Equivalence relation: 



NAÏVE 1-FORM SYMMETRY

• One can define a more refined group from a coarser equivalence 
relation [Lee, Ohmori,  Tachikawa ‘21]



NAÏVE 1-FORM SYMMETRY

is a local operator which is faithfully acted upon by 
the 0-form symmetry

The term genuine is motivated by considering the converse

A non-genuine local operator transforms projectively under 𝑍𝑍𝐺𝐺 , 

which implies it transforms faithfully under a finite cover 𝑍𝑍 �𝐺𝐺 →
𝜋𝜋
𝑍𝑍𝐺𝐺

Since 𝑍𝑍 �𝐺𝐺 is not the true 0-form symmetry, by definition, a non-
genuine operator is not truly local

Topological line operator ( or, conceptually, a cut)



Line operator equivalence classes 
give an extension:

Finite cover of the group acting 
faithfully written as an extension:

(Postnikov Class)



WHAT IS A 2-GROUP?

• Abstract nonsense definition: a 2-groupoid with one element [Baez, 
Lauda ‘03]

• Less abstract definition:  A tuple (𝜋𝜋1,𝜋𝜋2, 𝜌𝜌, P) such that 

• For us, 

• Our methods are sensitive to                            so we take

• 𝜌𝜌 is trivial in the 5d SCFT examples that we consider

(see also [Kapustin, Thorngren ‘13] and [Benini, Cordova, Psin ‘18])



NOW LET’S SEE THIS PICTURE FROM THE 
GEOMETRY!



BOUNDARY GEOMETRY

In the case X=ℂ3/Γ, the flavor loci are 𝑆𝑆1s in 𝜕𝜕𝑋𝑋 = 𝑆𝑆5/Γ



BOUNDARY GEOMETRY SINGULARITY

Focusing on one singularity, we want to geometrically obtain an element 
in 



•



𝛾𝛾 is contractible in this case

Example which becomes a trivial element in 

where

Thus, given we have

Furthermore, we are naturally led to define

Tubular neighborhood



MAYER-VIETORIS SEQUENCE

• We can then derive the four-term exact sequence defining the 2-group from the
long exact sequence of Mayer-Vietoris

• Taking the Pontryagin dual of this sequence then reproduces



ORBIFOLD HOMOLOGY 

• We can equivalently phrase this result in terms of orbifold homology

• Orbifold homology is equivalent to equivariant homology when there is a 
globally defined group action

• It can be evaluated on orbifolds that do not necessarily have a presentation as 
a global quotient

• For first homology, there is a useful relation (when the orbifold singularities 
have real codimension>2) [Thurston]

• This assists us in evaluating the naïve 1-form symmetry in the case when 



CASE STUDY: 𝑋𝑋 = ℂ3/Γ



𝑋𝑋 = ℂ3 /Γ AND M-THEORY

• Constructs 5d N=1 SCFT localized at the origin (8 supercharges)

• Physics is usually elucidated by resolving or deforming singularity at origin 
(Coulomb branch/Higgs branch respectively), non-Lagrangian at fixed point

• 3d McKay Correspondence [Ito Reid ‘94] is a central tool, (for some modern 
physics references see [Tian, Wang ‘21] and [Del Zotto, Heckman, Meynet, 
Moscrop, Zhang ‘22])

• Physics is usually the strongly coupled completion of 5d gauge theories

• Ranks of gauge group and flavor group Lie algebras given in terms of group 
theoretic data of Γ



𝑋𝑋 = ℂ3 /Γ GEOMETRY

• We will focus on abelian Γ

• Two possibilities: Γ ≅ ℤ𝑛𝑛 or ℤ𝑛𝑛 × ℤ𝑚𝑚 (m divides n)

• When Γ ≅ ℤ𝑛𝑛 the action is given by

• Can have 0, 1, 2, or 3 flavor branes on loci parametrized by 𝐴𝐴𝐴𝐴𝐴𝐴(𝑧𝑧𝑖𝑖)

• For Γ=ℤ𝑛𝑛 × ℤ𝑚𝑚, we have additional generator

• Always have 3 flavor branes



𝑋𝑋 = ℂ3 /Γ GEOMETRY

• Can be presented as toric model



EXAMPLE 1: 𝑇𝑇𝑁𝑁 THEORY

• Take 𝑋𝑋 = ℂ3/(ℤ𝑛𝑛× ℤ𝑛𝑛), can define action as

• Physics: After compactifying on 𝑆𝑆1 becomes 4d 𝑇𝑇𝑁𝑁 Theory

which is the building block of class S 4d N=2 SCFTs [Gaiotto’10]



Using the relation to orbifold homology

While from Armstrong’s theorem, which states that the fundamental group is the quotient of 
Γ by the subgroup which acts non-freely [Armstrong ‘68],  it follows that

Thus

This agrees with earlier QFT results [Bhardwaj ‘20], up to some subtleties with symmetry enhancement



EXAMPLE 2:SU(N)N

• Consider Γ ≅ ℤ2𝑁𝑁 with 

• Have one fixed point of type 𝐴𝐴1 parametrized by Arg(𝑧𝑧3)

• Physics (for even N) is UV completion of pure 𝒩𝒩=1 SU(N) gauge theory with 
Chern-Simons level N

• From the geometry:

= 𝐴𝐴1 singularity



• Flavor symmetry consistent with [Apruzzi, Bhardwaj, Oh, Schäfer-Nameki ‘21]

• Can still in principle have a non-trivial 2-group for N even since 

Results: 



EX.3: NON-TRIVIAL 2-GROUP

• Consider Γ ≅ ℤ9 × ℤ3 with generator weights 

and

• Neat IR physics description is currently unknown to us, can still understand 
the 2-group!

• We have three 𝐴𝐴2 singularities which means



Results:

This sequence does not split:



SUMMARY/OUTLOOK

• We have introduced a general procedure to calculate the 0-form, 1-form, and 
2-group symmetries 

• Can be applied to M/F-theory geometric engineering setups of various 
dimensions

• Is not yet sensitive to symmetry enhancements: still dealing with classical 
geometry. Is there a generalization that sees this? 

• Compact models (see Max’s talk)

• Further study how this constrains dynamics of theories engineered from 𝐺𝐺2
(see Mirjam+Max talks) and Spin(7)

• N-group? More general categorical symmetries?



DANKE!
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