GETTING HIGH ON GLUING ORBIFOLDS

Ethan Torres, University of Pennsylvania
Geometry, Topology and Singular Special Holonomy Spaces
Freiburg University
June $8^{\text {th }} 2022$

SOME OF WHAT YOU JUST HEARD

- Given a non-compact Calabi-Yau 3-fold singularity X, M-theory engineers a 5d superconformal field theory (SCFT) T_{X}
- We claim there is a general procedure to geometrically predict the 0form symmetry, G_{F} (with center Z_{G}), and the 2-group structure of T_{X} (up to some subtleties)
- This refines earlier results in the literature which calculate the I-form symmetry as (assuming electric polarization)

$$
\mathcal{A}^{\vee}=H_{1}(\partial X, \mathbb{Z})
$$

(all bulk compact cycles blown-down)

PLAN OF THIS TALK

I. Derive our general procedure geometrically by examining equivalence classes of line operators and explain why it captures the 0 -form, l -form, and 2group symmetry
2. Examine some examples where $X=\mathbb{C}^{3} / \Gamma$

Number of flavor branes $=0, I, 2$, or 3

$$
\Gamma \cong \mathbb{Z}_{n} \text { or } \mathbb{Z}_{n} \times \mathbb{Z}_{m} \quad \mathrm{~m} \text { divides } \mathrm{n}
$$

I-FORM SYMMETRY

- Recall (Jonathan's talk): I-form symmetry acts on line operators
- Ex. Let $\mathcal{A}=\mathbb{Z}_{n}$
- Then (equivalence classes of) line operators labeled by $\mathcal{A}^{\vee}=\mathbb{Z}_{n}$
- Action:

$$
\Theta_{k}(L) \longmapsto e^{2 \pi i k / n} \Theta_{k}(L)
$$

- Equivalence relation:
$\mathcal{O}(L)$
$\mathcal{O}_{p}^{\text {oc. }}$
$\mathcal{O}^{\prime}(L)$

$$
\Longleftrightarrow \quad \mathcal{O}(L) \sim \mathcal{O}^{\prime}(L)
$$

NAÏVE I-FORM SYMMETRY

- One can define a more refined group from a coarser equivalence relation [Lee, Ohmori, Tachikawa '2I]

NAÏVE I-FORM SYMMETRY

$\mathcal{O}_{p}^{\text {genuine loc. }}$ is a local operator which is faithfully acted upon by the 0 -form symmetry

The term genuine is motivated by considering the converse A non-genuine local operator transforms projectively under Z_{G}, which implies it transforms faithfully under a finite cover $Z_{\tilde{G}} \xrightarrow{\pi} Z_{G}$
Since $Z_{\tilde{G}}$ is not the true 0 -form symmetry, by definition, a nongenuine operator is not truly local

$$
\mathcal{O}_{p}^{\text {non-gen. }}
$$

Line operator equivalence classes give an extension:

$$
0 \rightarrow \mathcal{C}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0
$$

Finite cover of the group acting faithfully written as an extension:

$$
0 \rightarrow \mathcal{C} \rightarrow Z_{\widetilde{G}} \rightarrow Z_{G} \rightarrow 0
$$

$$
\Longrightarrow \quad 0 \rightarrow \mathcal{A} \rightarrow \widetilde{\mathcal{A}} \rightarrow Z_{\widetilde{G}} \rightarrow Z_{G} \rightarrow 0
$$

$$
P \in H^{3}\left(B Z_{G}, \mathcal{A}\right)
$$

WHAT IS A 2-GROUP?

- Abstract nonsense definition: a 2-groupoid with one element [Baez, Lauda ‘03]
- Less abstract definition: A tuple $\left(\pi_{1}, \pi_{2}, \rho, \mathrm{P}\right)$ such that

$$
\rho: \pi_{1} \rightarrow \operatorname{Aut}\left(\pi_{2}\right) \quad P \in H^{3}\left(B \pi_{1},\left(\pi_{2}\right)_{\rho}\right)
$$

- For us, $\pi_{1}=G_{F} \quad \pi_{2}=\mathcal{A}$
- Our methods are sensitive to $Z_{G} \subset G_{F}$ so we take $\pi_{1}=Z_{G}$
- ρ is trivial in the 5d SCFT examples that we consider

> (see also [Kapustin,Thorngren 'I3] and [Benini, Cordova, Psin ‘I8])

NOW LET'S SEE THIS PICTURE FROM THE GEOMETRY!

BOUNDARY GEOMETRY

In the case $\mathrm{X}=\mathbb{C}^{3} / \Gamma$, the flavor loci are $S^{1} \mathrm{~s}$ in $\partial X=S^{5} / \Gamma$

BOUNDARY GEOMETRY SINGULARITY

Focusing on one singularity, we want to geometrically obtain an element in
$\mathcal{C}^{\vee}=\left\{\right.$ line operators which are trivial under \sim, but not under $\left.\sim^{\prime}\right\}$

$$
=\{\text { line operators that can end on non-genuine local operators }\}
$$

$\mathcal{O}^{(\gamma)}(L)$
A_{n-1} singularity

- For an A-type flavor brane along a locus K, the local neighborhood is of the form $\mathbb{C}^{2} / \mathbb{Z}_{n} \times K$, with boundary $S^{3} / \mathbb{Z}_{n} \times K$

$$
\begin{aligned}
& \text { Tor } H_{1}\left(S^{3} / \mathbb{Z}_{n} \times K\right)= \\
& \mathbb{Z}_{n}^{\vee} \simeq \mathbb{Z}_{n}=Z(S U(n))
\end{aligned} \Longrightarrow \begin{aligned}
& \mathcal{O}_{p}^{(D)} \text { is in a representation } \\
& \text { of } \mathbb{Z}_{n} \subset S U(n)_{\text {flavor }}
\end{aligned}
$$

Example which becomes a trivial element in $\mathcal{C}^{\vee} \subset \widetilde{\mathcal{A}}$

γ is contractible in this case

$$
\widetilde{\mathcal{A}} \vee=\operatorname{Tor} H_{1}\left(\partial X^{\circ}, \mathbb{Z}\right) \quad \text { where } \quad \partial X^{\circ}:=\partial X \backslash K
$$

Thus, given $j_{1}: \partial X^{\circ} \hookrightarrow \partial X$ we have $\mathcal{C}^{\vee}=\operatorname{TorKer}\left(j_{1}\right)$

Furthermore, we are naturally led to define

$$
Z_{\widetilde{G}}=\operatorname{Tor} H_{1}\left(\partial X^{\circ} \cap T(K)\right)=\oplus_{i} \operatorname{Ab}\left(\Lambda_{\mathfrak{g}_{i}}\right)
$$

Tubular neighborhood

MAYER-VIETORIS SEQUENCE

- We can then derive the four-term exact sequence defining the 2-group from the long exact sequence of Mayer-Vietoris
$\cdots \longrightarrow H_{2}(\partial X) \xrightarrow{\partial_{2}} H_{1}\left(\partial X^{\circ} \cap T(K)\right) \xrightarrow{\iota_{1}} H_{1}\left(\partial X^{\circ}\right) \oplus H_{1}(T(K)) \xrightarrow{j_{1}-\ell_{1}} H_{1}(\partial X) \xrightarrow{\partial_{1}} 0$

$$
0 \rightarrow \operatorname{Ker}\left(\iota_{1}\right) \rightarrow H_{1}\left(\partial X^{\circ} \cap T(K)\right) \rightarrow H_{1}\left(\partial X^{\circ}\right) \oplus H_{1}(T(K)) \rightarrow H_{1}(\partial X) \rightarrow 0
$$

- Taking the Pontryagin dual of this sequence then reproduces

$$
0 \rightarrow \mathcal{A} \rightarrow \tilde{\mathcal{A}} \rightarrow Z_{\widetilde{G}} \rightarrow Z_{G} \rightarrow 0
$$

ORBIFOLD HOMOLOGY

- We can equivalently phrase this result in terms of orbifold homology
- Orbifold homology is equivalent to equivariant homology when there is a globally defined group action

$$
H_{*}^{\text {orb. }}(X / G)=H_{G}^{\text {equiv. }}(X)
$$

- It can be evaluated on orbifolds that do not necessarily have a presentation as a global quotient
- For first homology, there is a useful relation (when the orbifold singularities have real codimension>2) [Thurston]

$$
H_{1}^{o r b .}(X)=H_{1}\left(X^{\circ}\right)
$$

- This assists us in evaluating the naïve I-form symmetry in the case when

$$
\partial X=S^{5} / \Gamma_{S U(3)}
$$

CASE STUDY: $X=\mathbb{C}^{3} / \Gamma$

$X=\mathbb{C}^{3} / \Gamma$ AND M-THEORY

- Constructs 5d $\mathrm{N}=\mathrm{I}$ SCFT localized at the origin (8 supercharges)
- Physics is usually elucidated by resolving or deforming singularity at origin (Coulomb branch/Higgs branch respectively), non-Lagrangian at fixed point
- 3d McKay Correspondence [Ito Reid '94] is a central tool, (for some modern physics references see [Tian,Wang '2I] and [Del Zotto, Heckman, Meynet, Moscrop, Zhang '22])
- Physics is usually the strongly coupled completion of 5d gauge theories

$$
g_{I}^{2} \sim \frac{1}{\operatorname{Vol}\left(\mathbb{P}_{I}^{1}\right)}
$$

- Ranks of gauge group and flavor group Lie algebras given in terms of group theoretic data of Γ

$X=\mathbb{C}^{3} / \Gamma$ GEOMETRY

- We will focus on abelian Г
- Two possibilities: $\Gamma \cong \mathbb{Z}_{n}$ or $\mathbb{Z}_{n} \times \mathbb{Z}_{m} \quad$ (m divides n)
- When $\Gamma \cong \mathbb{Z}_{n}$ the action is given by

$$
\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(\omega^{k_{1}} z_{1}, \omega^{k_{2}} z_{2}, \omega^{k_{3}} z_{3}\right) \quad\left(\Sigma_{i} k_{i}=1, \omega^{n}=1\right)
$$

- Can have 0 , I, 2, or 3 flavor branes on loci parametrized by $\operatorname{Arg}\left(z_{i}\right)$
- For $\Gamma=\mathbb{Z}_{n} \times \mathbb{Z}_{m}$, we have additional generator

$$
\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}, \eta z_{2}, \eta^{-1} z_{3}\right) \quad\left(\eta^{m}=1\right)
$$

- Always have 3 flavor branes

$X=\mathbb{C}^{3} / \Gamma$ GEOMETRY

- Can be presented as toric model $T^{3} / \Gamma \hookrightarrow S^{5} / \Gamma \rightarrow B$

$$
\left|z_{3}\right|=1
$$

$=\mathrm{A}$-type singularities

EXAMPLE I: T_{N} THEORY

- Take $X=\mathbb{C}^{3} /\left(\mathbb{Z}_{n} \times \mathbb{Z}_{n}\right)$, can define action as

$$
\begin{aligned}
\left(z_{1}, z_{2}, z_{3}\right) & \sim\left(\omega z_{1}, z_{2}, \omega^{-1} z_{3}\right) \\
& \sim\left(z_{1}, \eta z_{2}, \eta^{-1} z_{3}\right)
\end{aligned}
$$

$$
\left(\eta^{N}=\omega^{N}=1\right)
$$

- Physics: After compactifying on S^{1} becomes $4 \mathrm{~d} T_{N}$ Theory which is the building block of class S 4d N=2 SCFTs [Gaiotto'IO]
$=A_{N-1}$ singularity along S^{1} fiber

Using the relation to orbifold homology

$$
H_{1}\left(\partial X^{\circ}\right)=\mathbb{Z}_{N}^{2}=\widetilde{\mathcal{A}}
$$

While from Armstrong's theorem, which states that the fundamental group is the quotient of Γ by the subgroup which acts non-freely [Armstrong '68], it follows that

$$
\pi_{1}(\partial X)=H_{1}(\partial X)=0=\mathcal{A}
$$

Thus

$$
\begin{aligned}
& 0 \rightarrow \mathcal{C}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0 \Longrightarrow \mathcal{C}=\mathbb{Z}_{N}^{2} \\
& 0 \rightarrow \mathcal{C} \rightarrow Z_{\widetilde{G}} \rightarrow Z_{G} \rightarrow 0 \Longrightarrow Z_{G}=\mathbb{Z}_{N} \\
& G_{F}=S U(N)^{3} / \mathbb{Z}_{N}^{2}
\end{aligned}
$$

This agrees with earlier QFT results [Bhardwaj '20], up to some subtleties with symmetry enhancement

EXAMPLE 2:SU(N)N

- Consider $\Gamma \cong \mathbb{Z}_{2 N}$ with $\left(k_{1}, k_{2}, k_{3}\right)=(1,1,2 N-2)$
- Have one fixed point of type A_{1} parametrized by $\operatorname{Arg}\left(z_{3}\right)$
- Physics (for even N) is UV completion of pure $\mathcal{N}=I S U(N)$ gauge theory with Chern-Simons level N

$$
N \operatorname{Tr} A \wedge F \wedge F \subset \mathcal{L}_{5 \mathrm{~d} \text { theory }}
$$

- From the geometry:

$$
\widetilde{\mathcal{A}}=\mathbb{Z}_{2 N} \quad \mathcal{A}=\mathbb{Z}_{N} \quad Z_{\widetilde{G}}=\mathbb{Z}_{2}
$$

$\bigcirc=A_{1}$ singularity

$$
\widetilde{\mathcal{A}}=\mathbb{Z}_{2 N} \quad \mathcal{A}=\mathbb{Z}_{N} \quad Z_{\widetilde{G}}=\mathbb{Z}_{2}
$$

$$
0 \rightarrow \mathcal{A} \rightarrow \tilde{\mathcal{A}} \rightarrow \mathcal{C} \rightarrow 0 \quad \Longrightarrow \quad 0 \rightarrow \mathbb{Z}_{N} \rightarrow \mathbb{Z}_{2 N} \rightarrow \mathbb{Z}_{2} \rightarrow 0
$$

$$
0 \rightarrow \mathcal{C} \rightarrow Z_{\widetilde{G}} \rightarrow Z_{G} \rightarrow 0 \Longrightarrow 0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \rightarrow 0 \rightarrow 0
$$

Results: $\quad \mathcal{C}=\mathbb{Z}_{2} \quad Z_{G}=0 \quad G_{F}=S O(3)$

- Flavor symmetry consistent with [Apruzzi, Bhardwaj, Oh, Schäfer-Nameki '2I]
- Can still in principle have a non-trivial 2-group for N even since $H^{3}\left(B S O(3), \mathbb{Z}_{N}\right) \neq 0$

EX.3: NON-TRIVIAL 2-GROUP

- Consider $\Gamma \cong \mathbb{Z}_{9} \times \mathbb{Z}_{3}$ with generator weights

$$
\left(k_{1}, k_{2}, k_{3}\right)=(1,1,7) \quad \text { and } \quad(0,1,2)
$$

- Neat IR physics description is currently unknown to us, can still understand the 2-group!
- We have three A_{2} singularities which means $Z_{\widetilde{G}}=\mathbb{Z}_{3}^{3}$

$$
\widetilde{\mathcal{A}}=\mathbb{Z}_{9} \times \mathbb{Z}_{3} \quad \mathcal{A}=\mathbb{Z}_{3}
$$

$\bigcirc=A_{2}$ singularity

$$
\tilde{\mathcal{A}}=\mathbb{Z}_{9} \times \mathbb{Z}_{3} \quad \mathcal{A}=\mathbb{Z}_{3} \quad Z_{\widetilde{G}}=\mathbb{Z}_{3}^{3}
$$

$$
0 \rightarrow \mathcal{A} \rightarrow \tilde{\mathcal{A}} \rightarrow \mathcal{C} \rightarrow 0 \quad \Longrightarrow \quad 0 \rightarrow \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{9} \times \mathbb{Z}_{3} \rightarrow \mathbb{Z}_{3} \times \mathbb{Z}_{3} \rightarrow 0
$$

$$
0 \rightarrow \mathcal{C} \rightarrow Z_{\widetilde{G}} \rightarrow Z_{G} \rightarrow 0 \Longrightarrow 0 \rightarrow \mathbb{Z}_{3}^{2} \rightarrow \mathbb{Z}_{3}^{3} \rightarrow \mathbb{Z}_{3} \rightarrow 0
$$

Results: $\quad \mathcal{C}=\mathbb{Z}_{3} \times \mathbb{Z}_{3} \quad Z_{G}=\mathbb{Z}_{3} \quad G_{F}=S U(3)^{3} / \mathbb{Z}_{3}^{2}$
$P \neq 0 \in H^{3}\left(B Z_{G}, \mathcal{A}\right) \Longrightarrow$ This sequence does not split:

$$
0 \rightarrow \mathcal{A} \rightarrow \widetilde{\mathcal{A}} \rightarrow Z_{\widetilde{G}} \rightarrow Z_{G} \rightarrow 0
$$

SUMMARY/OUTLOOK

- We have introduced a general procedure to calculate the 0 -form, l-form, and 2-group symmetries
- Can be applied to M/F-theory geometric engineering setups of various dimensions
- Is not yet sensitive to symmetry enhancements: still dealing with classical geometry. Is there a generalization that sees this?
- Compact models (see Max's talk)
- Further study how this constrains dynamics of theories engineered from G_{2} (see Mirjam+Max talks) and Spin(7)
- N-group? More general categorical symmetries?

