The generalized Kähler Calabi-Yau problem

Jeffrey Streets, joint with V. Apostolov, X. Fu, Y. Ustinovskiy

January 2023
Part I: Background and Statements
Generalized Kähler Geometry

Given a smooth manifold M with a closed three-form H_0,

1. I and J are integrable complex structures
2. g is compatible with both I and J, yielding Kähler forms ω^I, ω^J.
3. One has $-d c^I \omega^I = H_0 + db = d c^J \omega^J$.

By Pontecorvo/Hitchin, there is an associated Poisson structure $\sigma = \frac{1}{2} [I, J] g^{-1} \in \Lambda^2 T^* M \cap \Lambda^2, 0+0, 2 I T^* M \cap \Lambda^2, 0+0, 2 J T^* M$.

A special case occurs when the pairing induced by σ is nondegenerate. In this case one has that $\Omega = \sigma^{-1} \in \Lambda^2 T^* M \cap \Lambda^2, 0+0, 2 I T^* M \cap \Lambda^2, 0+0, 2 J T^* M$ is the real part of a holomorphic symplectic form.
Given a smooth manifold M with a closed three-form H_0, a generalized Kähler structure is a quadruple (g, b, I, J) such that

1. I and J are integrable complex structures
2. g is compatible with both I and J, yielding Kähler forms ω_I, ω_J.
3. One has $-d\omega_I = H_0 + db = d\omega_J$.

By Pontecorvo/Hitchin, there is an associated Poisson structure $\sigma = \frac{1}{2} [I, J] g^{-1} \in \Lambda^2_{0+0,2} I T M \cap \Lambda^2_{0+0,2} J T^* M$.

A special case occurs when the pairing induced by σ is nondegenerate. In this case one has that $\Omega = \sigma^{-1} \in \Lambda^2_{0+0,2} I T^* M \cap \Lambda^2_{0+0,2} J T^* M$, is the real part of a holomorphic symplectic form.
Generalized Kähler Geometry

Given a smooth manifold M with a closed three-form H_0, a generalized Kähler structure is a quadruple (g, b, I, J) such that

1. I and J are integrable complex structures

Given a smooth manifold M with a closed three-form H_0, a generalized Kähler structure is a quadruple (g, b, I, J) such that

1. I and J are integrable complex structures
Generalized Kähler Geometry

Given a smooth manifold M with a closed three-form H_0, a generalized Kähler structure is a quadruple (g, b, I, J) such that

1. I and J are integrable complex structures
2. g is compatible with both I and J, yielding Kähler forms ω_I, ω_J.

By Pontecorvo/Hitchin, there is an associated Poisson structure $\sigma = \frac{1}{2} [I, J]_g - I \in \Lambda^2_{0+0,2} I_T M \cap \Lambda^2_{0+0,2} J_T M$.

A special case occurs when the pairing induced by σ is nondegenerate. In this case one has that $\Omega = \sigma - I \in \Lambda^2_{0+0,2} I^*_T M \cap \Lambda^2_{0+0,2} J^*_T M$, is the real part of a holomorphic symplectic form.
Generalized Kähler Geometry

Given a smooth manifold M with a closed three-form H_0, a generalized Kähler structure is a quadruple (g, b, I, J) such that

1. I and J are integrable complex structures
2. g is compatible with both I and J, yielding Kähler forms ω_I, ω_J.
3. One has

$$-d_I^c \omega_I = H_0 + db = d_J^c \omega_J.$$
Generalized Kähler Geometry

Given a smooth manifold M with a closed three-form H_0, a generalized Kähler structure is a quadruple (g, b, I, J) such that

1. I and J are integrable complex structures
2. g is compatible with both I and J, yielding Kähler forms ω_I, ω_J.
3. One has

$$-d^c_I \omega_I = H_0 + db = d^c_J \omega_J.$$

By Pontecorvo/Hitchin, there is an associated Poisson structure
Given a smooth manifold M with a closed three-form H_0, a **generalized Kähler structure** is a quadruple (g, b, I, J) such that

1. I and J are integrable complex structures
2. g is compatible with both I and J, yielding Kähler forms ω_I, ω_J.
3. One has

$$-d^c_I \omega_I = H_0 + db = d^c_J \omega_J.$$

By Pontecorvo/Hitchin, there is an associated **Poisson structure**

$$\sigma = \frac{1}{2} [I, J] g^{-1} \in \Lambda^2,0^{+,2}_I TM \cap \Lambda^2,0^{+,2}_J TM.$$

A special case occurs when the pairing induced by σ is nondegenerate.
Generalized Kähler Geometry

Given a smooth manifold M with a closed three-form H_0, a generalized Kähler structure is a quadruple (g, b, I, J) such that

1. I and J are integrable complex structures
2. g is compatible with both I and J, yielding Kähler forms ω_I, ω_J.
3. One has

$$-d^c_I \omega_I = H_0 + db = d^c_J \omega_J.$$

By Pontecorvo/Hitchin, there is an associated Poisson structure

$$\sigma = \frac{1}{2} [I, J] g^{-1} \in \Lambda^{2,0+0,2}_I TM \cap \Lambda^{2,0+0,2}_J TM.$$

A special case occurs when the pairing induced by σ is nondegenerate.
Given a smooth manifold M with a closed three-form H_0, a generalized Kähler structure is a quadruple (g, b, I, J) such that

1. I and J are integrable complex structures
2. g is compatible with both I and J, yielding Kähler forms ω_I, ω_J.
3. One has

$$-d^c_I \omega_I = H_0 + db = d^c_J \omega_J.$$

By Pontecorvo/Hitchin, there is an associated Poisson structure

$$\sigma = \frac{1}{2} [I, J] g^{-1} \in \Lambda^{2,0+0,2}_I TM \cap \Lambda^{2,0+0,2}_J TM.$$

A special case occurs when the pairing induced by σ is nondegenerate. In this case one has that

$$\Omega = \sigma^{-1} \in \Lambda^{2,0+0,2}_I T^* M \cap \Lambda^{2,0+0,2}_J T^* M,$$

is the real part of a holomorphic symplectic form.
GK structures are alternatively described in terms of generalized geometry.
GK structures are alternatively described in terms of generalized geometry. Given a smooth manifold M endow the bundle $E = T \oplus T^*$ with a neutral inner product and twisted Dorfman bracket:

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2}(\xi(Y) + \eta(X))$$

$$[X + \xi, Y + \eta] = [X, Y] + L_X \eta - i_Y d\xi + i_Y i_X H_0$$
Generalized Kähler Geometry

GK structures are alternatively described in terms of generalized geometry. Given a smooth manifold M endow the bundle $E = T \oplus T^*$ with a neutral inner product and twisted Dorfman bracket:

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2} (\xi(Y) + \eta(X))$$
$$[X + \xi, Y + \eta] = [X, Y] + L_X \eta - i_Y d\xi + i_Y i_X H_0$$

On this background a generalized complex structure is an almost complex structure J on E which is $\langle \cdot, \cdot \rangle$-orthogonal and whose $\sqrt{-1}$-eigenbundle $L^{1,0}$ is closed under the Dorfman bracket.
Generalized Kähler Geometry

GK structures are alternatively described in terms of generalized geometry. Given a smooth manifold M endow the bundle $E = T \oplus T^*$ with a neutral inner product and twisted Dorfman bracket:

\[
\langle X + \xi, Y + \eta \rangle = \frac{1}{2} (\xi(Y) + \eta(X))
\]
\[
[X + \xi, Y + \eta] = [X, Y] + L_X \eta - i_Y d\xi + i_Y i_X H_0
\]

On this background a generalized complex structure is an almost complex structure J on E which is $\langle \cdot, \cdot \rangle$-orthogonal and whose $\sqrt{-1}$-eigenbundle $L^{1,0}$ is closed under the Dorfman bracket. Two fundamental examples are:

\[
J_\omega := \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}, \quad L^{1,0} = \{ X - \sqrt{-1} \omega(X, \cdot) \mid X \in TM \},
\]
\[
J_J := \begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix}, \quad L^{1,0} = T^{1,0} M \oplus \wedge^{0,1}(M).
\]
Theorem
(Gualtieri 2004) Given \((M, H_0)\), a generalized Kähler structure \((g, b, I, J)\) is equivalent to a pair \((\mathcal{J}_1, \mathcal{J}_2)\) of generalized complex structures further satisfying

1. \([\mathcal{J}_1, \mathcal{J}_2] = 0\),
2. \(<-\mathcal{J}_1 \mathcal{J}_2 \cdot, \cdot>\) is positive definite.
Theorem

\textit{(Gualtieri 2004)} Given \((M, H_0)\), a generalized Kähler structure \((g, b, I, J)\) is equivalent to a pair \((\mathbb{J}_1, \mathbb{J}_2)\) of generalized complex structures further satisfying

1. \([\mathbb{J}_1, \mathbb{J}_2] = 0,\)
2. \(\langle -\mathbb{J}_1 \mathbb{J}_2 \cdot, \cdot \rangle\) is positive definite.

Explicitly,

\[
\mathbb{J}_{1/2} = \frac{1}{2} e^b \left(\begin{array}{cc} I \pm J & -\left(\omega^{-1}_I \mp \omega^{-1}_J\right) \\ \omega_I \mp \omega_J & -(I^* \pm J^*) \end{array} \right) e^{-b},
\]
Elements of $T \oplus T^*$ act naturally on differential forms via
\[(X + \xi) \cdot \psi = i_X \psi + \xi \wedge \psi.\]
Elements of $T \oplus T^*$ act naturally on differential forms via
\[(X + \xi) \cdot \psi = i_X \psi + \xi \wedge \psi.\]

A spinor ψ defines a generalized complex structure J on $T \oplus T^*$ if
\[\text{Ker}(J - \sqrt{-1} \text{Id}) = \{X + \xi \in (T \oplus T^*) \otimes \mathbb{C} \mid (X + \xi) \cdot \psi = 0\}.\]
Elements of $T \oplus T^*$ act naturally on differential forms via

$$(X + \xi) \cdot \psi = i_X \psi + \xi \wedge \psi.$$

A spinor ψ defines a generalized complex structure J on $T \oplus T^*$ if

$$\text{Ker}(J - \sqrt{-1} \text{Id}) = \{X + \xi \in (T \oplus T^*) \otimes \mathbb{C} \mid (X + \xi) \cdot \psi = 0\}.$$

Locally every generalized complex structure is described in this way, where ψ is a nonvanishing section of the canonical bundle of J, then denoted J_ψ.
Elements of $T \oplus T^*$ act naturally on differential forms via

$$(X + \xi) \cdot \psi = i_X \psi + \xi \wedge \psi.$$

A spinor ψ defines a generalized complex structure \mathbb{J} on $T \oplus T^*$ if

$$\text{Ker}(\mathbb{J} - \sqrt{-1} \text{Id}) = \{X + \xi \in (T \oplus T^*) \otimes \mathbb{C} | (X + \xi) \cdot \psi = 0\}.$$

Locally every generalized complex structure is described in this way, where ψ is a nonvanishing section of the canonical bundle of \mathbb{J}, then denoted \mathbb{J}_ψ.

Integrability of \mathbb{J} is equivalent to the existence of a section $X + \xi$ such that

$$d_{H_0} \psi = (X + \xi) \cdot \psi, \quad d_{H_0} := d + H_0 \wedge.$$
Generalized Kähler Geometry

Elements of $T \oplus T^*$ act naturally on differential forms via

$$(X + \xi) \cdot \psi = i_X \psi + \xi \wedge \psi.$$

A spinor ψ defines a generalized complex structure \mathbb{J} on $T \oplus T^*$ if

$$\text{Ker}(\mathbb{J} - \sqrt{-1} \text{Id}) = \{X + \xi \in (T \oplus T^*) \otimes \mathbb{C} \mid (X + \xi) \cdot \psi = 0\}.$$

Locally every generalized complex structure is described in this way, where ψ is a nonvanishing section of the canonical bundle of \mathbb{J}, then denoted \mathbb{J}_ψ. Integrability of \mathbb{J} is equivalent to the existence of a section $X + \xi$ such that

$$d_{H_0} \psi = (X + \xi) \cdot \psi, \quad d_{H_0} := d + H_0 \wedge.$$

The spinor is closed if $d_{H_0} \psi = 0$.

Examples

Kähler metric \((g, J)\) as GK:

\[(g, 0, J, J), \quad \mathbb{J}_1 = \begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix}, \quad \mathbb{J}_2 = \begin{pmatrix} 0 & -\omega_j^{-1} \\ \omega_j & 0 \end{pmatrix}\]

\[\psi_1 = \bar{\Theta}, \quad \psi_2 = e^{\sqrt{-1}\omega_j}\]
Examples

Kähler metric \((g, J)\) as GK:

\[
(g, 0, J, J), \quad \mathbb{J}_1 = \begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix}, \quad \mathbb{J}_2 = \begin{pmatrix} 0 & -\omega_j^{-1} \\ \omega_j & 0 \end{pmatrix}
\]

\[
\psi_1 = \overline{\Theta}, \quad \psi_2 = e^{\sqrt{-1}\omega_j}
\]

Commuting-type GK \((g, b, l, J)\), \([l, J] = 0\).
Examples

Kähler metric \((g, J)\) as GK:

\[
(g, 0, J, J), \quad \mathbb{J}_1 = \begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix}, \quad \mathbb{J}_2 = \begin{pmatrix} 0 & -\omega_j^{-1} \\ \omega_j & 0 \end{pmatrix}
\]

\[
\psi_1 = \overline{\Theta}, \quad \psi_2 = e^{\sqrt{-1}\omega_j}
\]

Commuting-type GK \((g, b, l, J)\), \([l, J] = 0\). Then \(T = T_+ \oplus T_-\) according to \(l = \pm J\).
Examples

Kähler metric \((g, J)\) as GK:

\[
(g, 0, J, J), \quad \mathbb{J}_1 = \begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix}, \quad \mathbb{J}_2 = \begin{pmatrix} 0 & -\omega_j^{-1} \\ \omega_j & 0 \end{pmatrix}
\]

\[
\psi_1 = \Theta, \quad \psi_2 = e^{\sqrt{-1} \omega_j}
\]

Commuting-type GK \((g, b, I, J)\), \([I, J] = 0\). Then \(T = T_+ \oplus T_-\) according to \(I = \pm J\). Also \(\omega_I = \omega_+ \oplus \omega_-\).
Examples

Kähler metric \((g, J)\) as GK:

\[
(g, 0, J, J), \quad \mathbb{J}_1 = \begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix}, \quad \mathbb{J}_2 = \begin{pmatrix} 0 & -\omega_j^{-1} \\ \omega_j & 0 \end{pmatrix}
\]

\[
\psi_1 = \bar{\Theta}, \quad \psi_2 = e^{\sqrt{-1}\omega_j}
\]

Commuting-type GK \((g, b, I, J), [I, J] = 0\). Then \(T = T_+ \oplus T_-\) according to \(I = \pm J\). Also \(\omega_I = \omega_+ \oplus \omega_-\). One has:

\[
(g, b, I, J), \quad \mathbb{J}_1 = e^b \left(\mathbb{J}_{I+} \oplus \mathbb{J}_{I-} \right) e^{-b}, \quad \mathbb{J}_2 = e^b \left(\mathbb{J}_{I+} \oplus \mathbb{J}_{I-} \right) e^{-b}
\]

\[
\psi_1 = \bar{\Theta}_+ \wedge e^{b+\sqrt{-1}\omega_-} \quad \psi_2 = e^{b+\sqrt{-1}\omega_+} \wedge \bar{\Theta}_-
\]
Examples

HyperKähler metric \((g, I, J, K)\) as GK.

Define
\[F^\pm = -2g(I \pm J) - \frac{1}{2}, \quad b = \frac{1}{2}F^+ (J - I), \quad \Omega = \sigma - 1 = 2g[I, J]. \]

This is GK via:
\[(g, b, I, J_1, J_2) = e^{-2\Omega} (0 - F^- 1 - F^- 0), \quad \psi_1 = e^{2\Omega + \sqrt{-1}F^-}, \quad \psi_2 = e^{\sqrt{-1}F^-}. \]

Nondegenerate GK structure \((g, b, I, J)\). Define \(F^\pm, b\) as above and let \[\Omega = \sigma - 1. \]

Then all structures are described as above.
HyperKähler metric \((g, I, J, K)\) as GK. Define

\[F_\pm = -2g(I \pm J)^{-1}, \quad b = \frac{1}{2} F_+(J - I), \quad \Omega = \sigma^{-1} = 2g[I, J]^{-1} = \omega_K. \]
Examples

HyperKähler metric \((g, I, J, K)\) as GK. Define

\[
F_\pm = -2g(I \pm J)^{-1}, \quad b = \frac{1}{2} F_+(J - I), \quad \Omega = \sigma^{-1} = 2g[I, J]^{-1} = \omega_K.
\]

This is GK via:

\[
(g, b, I, J), \quad J_1 = e^{-2\Omega} \begin{pmatrix} 0 & -F_-^{-1} \\ F_- & 0 \end{pmatrix}, \quad J_2 = \begin{pmatrix} 0 & -F_+^{-1} \\ F_+ & 0 \end{pmatrix}
\]

\[
\psi_1 = e^{2\Omega + \sqrt{-1}F_-}, \quad \psi_2 = e^{\sqrt{-1}F_+}
\]
Examples

HyperKähler metric \((g, I, J, K)\) as GK. Define

\[
F_\pm = -2g(I \pm J)^{-1}, \quad b = \frac{1}{2} F_+(J - I), \quad \Omega = \sigma^{-1} = 2g[I, J]^{-1} = \omega_K.
\]

This is GK via:

\[
(g, b, I, J), \quad \mathbb{J}_1 = e^{-2\Omega} \begin{pmatrix} 0 & -F_-^{-1} \\ F_- & 0 \end{pmatrix}, \quad \mathbb{J}_2 = \begin{pmatrix} 0 & -F_+^{-1} \\ F_+ & 0 \end{pmatrix}
\]

\[
\psi_1 = e^{2\Omega + \sqrt{-1}F_-}, \quad \psi_2 = e^{\sqrt{-1}F_+}
\]

Nondegenerate GK structure \((g, b, I, J)\). Define \(F_\pm, b\) as above and let \(\Omega = \sigma^{-1}\).
Examples

HyperKähler metric \((g, I, J, K)\) as GK. Define

\[
F_\pm = -2g(I \pm J)^{-1}, \quad b = \frac{1}{2} F_+(J - I), \quad \Omega = \sigma^{-1} = 2g[I, J]^{-1} = \omega_K.
\]

This is GK via:

\[
(g, b, I, J), \quad \mathbb{J}_1 = e^{-2\Omega} \begin{pmatrix} 0 & -F_-^{-1} \\ F_- & 0 \end{pmatrix}, \quad \mathbb{J}_2 = \begin{pmatrix} 0 & -F_+^{-1} \\ F_+ & 0 \end{pmatrix}
\]

\[
\psi_1 = e^{2\Omega+\sqrt{-1}F_-}, \quad \psi_2 = e^{\sqrt{-1}F_+}
\]

Nondegenerate GK structure \((g, b, I, J)\). Define \(F_\pm, b\) as above and let \(\Omega = \sigma^{-1}\). Then all structures are described as above.
Deformations

Kähler case: $(g, 0, I, I):

$$\omega_f I := \omega I + \frac{1}{2} \dd c I f$$

Commuting case: (g, b, I, J):

$$\left(g + b\right) f I := \omega I + b I + \frac{1}{2} \dd c J f$$

In terms of the splitting $T = T_1 + T_2 - T_3$ this yields

$$\omega_f I = \omega I + \sqrt{-1} \left(\partial_1 + \partial_2 + \partial_3 - \partial_4 - \partial_5\right) f$$

$$b_f I = b I + \sqrt{-1} \left(\partial_1 - \partial_2 + \partial_3 + \partial_4 - \partial_5\right) f$$

Nondegenerate case: (Ω-Hamiltonian deformations after Joyce):

$$(g, b, I, J, \Omega) = \sigma - 1.$$ Given f_t define $X_f t$ via $df_t = -X_f t \Omega$.

Let ϕ_t be the 1-parameter family of diffeomorphisms of M generated by $X_f t$.

Then $(I, \phi_t^* J, \Omega)$ defines a unique nondegenerate generalized Kähler structure.

Note that the metric g is recovered algebraically from the triple $(I, \phi_t^* J, \Omega)$, and is not given by diffeomorphism modification.
Deformations

Kähler case: \((g, 0, I, I)\):

\[
\omega_f^I := \omega^I + \frac{1}{2} \dd c I f
\]

Commuting case: \((g, b, I, J)\):

\[
(g + b) f^I := \omega^I + b I + \frac{1}{2} \dd c J f
\]

In terms of the splitting \(T = T + T -\) this yields

\[
\omega_f^I = \omega^I + \sqrt{-1} \left(\partial + \partial - \partial + \partial \right) f
\]

\[
b_f^I = b I + \sqrt{-1} \left(\partial + \partial - \partial + \partial \right) f
\]

Nondegenerate case: (Ω-Hamiltonian deformations after Joyce):

\((g, b, I, J)\), \(\Omega = \sigma - 1\).

Given \(f_t\) define \(X_f t\) via

\[
df_t = -X_f t\Omega.
\]

Let \(\phi_t\) be the 1-parameter family of diffeomorphisms of \(M\) generated by \(X_f t\).

Then \((I, \phi_t^* J, \Omega)\) defines a unique nondegenerate generalized Kähler structure.

Note that the metric \(g\) is recovered algebraically from the triple \((I, \phi_t^* J, \Omega)\), and is not given by diffeomorphism modification.
Deformations

Kähler case: \((g, 0, I, I)\): \(\omega_I^f := \omega_I + \frac{1}{2} dd_I^c f\)
Deformations

Kähler case: \((g, 0, I, I)\): \(\omega_I^f := \omega_I + \frac{1}{2} dd_I^c f\)

Commuting case: \((g, b, I, J)\):
Deformations

Kähler case: \((g, 0, I, I)\):

\[
\omega_I^f := \omega_I + \frac{1}{2} dd^c_I f
\]

Commuting case: \((g, b, I, J)\):

\[
(g + b)^f I := \omega_I + bI + \frac{1}{2} dd^c_J f
\]
Deformations

Kähler case: \((g, 0, l, l)\): \(\omega^f_I := \omega_I + \frac{1}{2} dd^c_I f\)

Commuting case: \((g, b, l, J)\):
\[(g + b)^f l := \omega_l + bl + \frac{1}{2} dd^c_l f\]

In terms of the splitting \(T = T_+ + T_-\) this yields
\[
\omega^f_I = \omega_I + \sqrt{-1} \left(\partial_+ \bar{\partial}_+ - \partial_- \bar{\partial}_- \right) f
\]
\[
b^f l = bl + \sqrt{-1} \left(\partial_+ \bar{\partial}_- - \bar{\partial}_+ \bar{\partial}_- \right) f
\]
Deformations

Kähler case: \((g, 0, l, l)\):
\[
\omega^f_I := \omega_I + \frac{1}{2} dd^c_I f
\]

Commuting case: \((g, b, l, J)\):
\[
(g + b)^f l := \omega_I + bl + \frac{1}{2} dd^c_J f
\]

In terms of the splitting \(T = T_+ + T_-\) this yields
\[
\omega^f_I = \omega_I + \sqrt{-1} \left(\partial_+ \bar{\partial}_+ - \partial_- \bar{\partial}_- \right) f
\]
\[
b^f l = bl + \sqrt{-1} \left(\partial_+ \partial_- - \bar{\partial}_+ \bar{\partial}_- \right) f
\]

Nondegenerate case: \((\Omega\text{-Hamiltonian deformations after Joyce})\):
Deformations

Kähler case: \((g, 0, I, I)\):
\[
\omega^f_I := \omega_I + \frac{1}{2} dd^c_I f
\]

Commuting case: \((g, b, I, J)\):
\[
(g + b)^f I := \omega_I + bl + \frac{1}{2} dd^c_J f
\]

In terms of the splitting \(T = T_+ + T_-\) this yields
\[
\omega^f_I = \omega_I + \sqrt{-1} (\partial_+ \bar{\partial}_+ - \partial_- \bar{\partial}_-) f
\]
\[
b^f I = bl + \sqrt{-1} (\partial_+ \partial_- - \bar{\partial}_+ \bar{\partial}_-) f
\]

Nondegenerate case: \((\Omega\text{-Hamiltonian deformations after Joyce)}\):
\((g, b, I, J), \Omega = \sigma^{-1}\).
Deformations

Kähler case: \((g, 0, I, I)\):
\[\omega^f_I := \omega_I + \frac{1}{2} dd^c_I f \]

Commuting case: \((g, b, I, J)\):
\[(g + b)^f I := \omega_I + bl + \frac{1}{2} dd^c_J f \]

In terms of the splitting \(T = T_+ + T_- \) this yields
\[\omega^f_I = \omega_I + \sqrt{-1} (\partial_+ \overline{\partial}_+ - \partial_- \overline{\partial}_-) f \]
\[b^f I = bl + \sqrt{-1} (\partial_+ \overline{\partial}_- - \overline{\partial}_+ \overline{\partial}_-) f \]

Nondegenerate case: (\(\Omega\)-Hamiltonian deformations after Joyce):
\((g, b, I, J), \Omega = \sigma^{-1} \). Given \(f_t\) define \(X_{f_t}\) via
\[df_t = - X_{f_t} - \Omega. \]
Deformations

Kähler case: \((g, 0, l, I)\): \(\omega_I^f := \omega_I + \frac{1}{2} dd_I^c f\)

Commuting case: \((g, b, l, J)\):

\[(g + b)^f l := \omega_l + bl + \frac{1}{2} dd_J^c f\]

In terms of the splitting \(T = T_+ + T_-\) this yields

\[
\omega_I^f = \omega_I + \sqrt{-1} \left(\partial_+ \overline{\partial}_+ - \partial_- \overline{\partial}_- \right) f
\]

\[
b_I^f l = bl + \sqrt{-1} \left(\partial_+ \partial_- - \overline{\partial}_+ \overline{\partial}_- \right) f
\]

Nondegenerate case: \((\Omega-\text{Hamiltonian deformations after Joyce})\):

\((g, b, l, J), \Omega = \sigma^{-1}\). Given \(f_t\) define \(X_{f_t}\) via

\[df_t = - X_{f_t} \Omega.\]

Let \(\phi_t\) be the 1-parameter family of diffeomorphisms of \(M\) generated by \(X_{f_t}\).
Deformations

Kähler case: \((g, 0, I, I)\): \(\omega^f_I := \omega_I + \frac{1}{2} dd^c_I f\)

Commuting case: \((g, b, I, J)\):

\[(g + b)^f I := \omega_I + bI + \frac{1}{2} dd^c_J f\]

In terms of the splitting \(T = T_+ + T_-\) this yields

\[\omega^f_I = \omega_I + \sqrt{-1} \left(\partial_+ \bar{\partial}_+ - \partial_- \bar{\partial}_- \right) f\]

\[b^f I = bI + \sqrt{-1} \left(\partial_+ \partial_- - \bar{\partial}_+ \bar{\partial}_- \right) f\]

Nondegenerate case: (\(\Omega\)-Hamiltonian deformations after Joyce):

\((g, b, I, J), \Omega = \sigma^{-1}\). Given \(f_t\) define \(X_{f_t}\) via

\[df_t = - X_{f_t} \lrcorner \Omega.\]

Let \(\phi_t\) be the 1-parameter family of diffeomorphisms of \(M\) generated by \(X_{f_t}\). Then \((I, \phi_t^* J, \Omega)\) defines a unique nondegenerate generalized Kähler structure.
Deformations

Kähler case: \((g, 0, l, l)\): \(\omega^f_I := \omega_I + \frac{1}{2} dd^c_I f\)

Commuting case: \((g, b, l, J)\):

\[(g + b)^f l := \omega_I + bl + \frac{1}{2} dd^c_J f\]

In terms of the splitting \(T = T_+ + T_-\) this yields

\[
\omega^f_I = \omega_I + \sqrt{-1} \left(\partial_+ \partial_+ - \partial_- \overline{\partial}_- \right) f
\]

\[
b^f l = bl + \sqrt{-1} \left(\partial_+ \partial_- - \overline{\partial}_+ \overline{\partial}_- \right) f
\]

Nondegenerate case: \((\Omega\text{-Hamiltonian deformations after Joyce})\):

\((g, b, l, J), \Omega = \sigma^{-1}\). Given \(f_t\) define \(X_{f_t}\) via

\[df_t = - X_{f_t} \Omega.\]

Let \(\phi_t\) be the 1-parameter family of diffeomorphisms of \(M\) generated by \(X_{f_t}\). Then \((l, \phi^*_t J, \Omega)\) defines a unique nondegenerate generalized Kähler structure. Note that the metric \(g\) is recovered algebraically from the triple \((l, \phi^*_t J, \Omega)\), and is not given by diffeomorphism modification.
Deformations

General case:

\[\partial \frac{\partial}{\partial t} \left(g_t + b_t \right) I_t = \frac{1}{2} \delta d c J_t f, \quad \partial \frac{\partial}{\partial t} J_t = \frac{1}{2} \sigma d c J_t f. \]

More generally, we replace \(\frac{1}{2} \delta d c J_t f \) by any family of exact 2-forms \(K_t \in \Lambda^1, J_t \).

Equivalently,

\[\partial \frac{\partial}{\partial t} J_{1} = [J_{1}, K J_{1}], \quad \partial \frac{\partial}{\partial t} J_{2} = [J_{2}, K J_{2}]. \]

Definition

Given a GK structure \((g, b, I, J) \), its generalized Kähler class is its equivalence class under canonical deformations, and is denoted \([(g, b, I, J)]\).
Deformations

General case: given f_t a one-parameter family of functions, this defines a canonical deformation (g_t, b_t, I, J_t) by

$$\frac{\partial}{\partial t} (g + b) \omega = \frac{1}{2} dd_{J_t}^c f, \quad \frac{\partial}{\partial t} J = \frac{1}{2} \sigma dd_{J_t}^c f$$
Deformations

General case: given f_t a one-parameter family of functions, this defines a canonical deformation (g_t, b_t, I, J_t) by

$$\frac{\partial}{\partial t} (g + b)I = \frac{1}{2} dd^c_{J_t} f, \quad \frac{\partial}{\partial t} J = \frac{1}{2} \sigma dd^c_{J_t} f$$

More generally, we replace $\frac{1}{2} dd^c_{J_t} f$ by any family of exact 2-forms $K_t \in \Lambda^{1,1}_{J_t}$.
Deformations

General case: given f_t a one-parameter family of functions, this defines a canonical deformation (g_t, b_t, l, J_t) by

$$\frac{\partial}{\partial t} (g + b)l = \frac{1}{2} dd^c_{J_t} f, \quad \frac{\partial}{\partial t} J = \frac{1}{2} \sigma dd^c_{J_t} f$$

More generally, we replace $\frac{1}{2} dd^c_{J_t} f$ by any family of exact 2-forms $K_t \in \Lambda^1_{J_t}$. Equivalently,

$$\frac{\partial}{\partial t} J_1 = [J_1, KJ_1], \quad \frac{\partial}{\partial t} J_2 = [J_2, KJ_2].$$
Deformations

General case: given f_t a one-parameter family of functions, this defines a canonical deformation (g_t, b_t, I, J_t) by

$$\frac{\partial}{\partial t} (g + b) I = \frac{1}{2} dd^c_{J_t} f, \quad \frac{\partial}{\partial t} J = \frac{1}{2} \sigma dd^c_{J_t} f$$

More generally, we replace $\frac{1}{2} dd^c_{J_t} f$ by any family of exact 2-forms $K_t \in \Lambda^1_{J_t}$. Equivalently,

$$\frac{\partial}{\partial t} J_1 = [J_1, KJ_1], \quad \frac{\partial}{\partial t} J_2 = [J_2, KJ_2].$$

Definition
Given a GK structure (g, b, I, J), its generalized Kähler class
Deformations

General case: given f_t a one-parameter family of functions, this defines a canonical deformation (g_t, b_t, I, J_t) by

$$\frac{\partial}{\partial t} (g + b) I = \frac{1}{2} dd_J^c f, \quad \frac{\partial}{\partial t} J = \frac{1}{2} \sigma dd_J^c f$$

More generally, we replace $\frac{1}{2} dd_J^c f$ by any family of exact 2-forms $K_t \in \Lambda_{J_t}^{1,1}$. Equivalently,

$$\frac{\partial}{\partial t} J_1 = [J_1, KJ_1], \quad \frac{\partial}{\partial t} J_2 = [J_2, KJ_2].$$

Definition

Given a GK structure (g, b, I, J), its generalized Kähler class is its equivalence class under canonical deformations,
Deformations

General case: given f_t a one-parameter family of functions, this defines a canonical deformation (g_t, b_t, l, J_t) by

$$\frac{\partial}{\partial t} (g + b)l = \frac{1}{2} dd^c J_t f, \quad \frac{\partial}{\partial t} J = \frac{1}{2} \sigma dd^c J_t f$$

More generally, we replace $\frac{1}{2} dd^c J_t f$ by any family of exact 2-forms $K_t \in \Lambda_{j_t}^{1,1}$. Equivalently,

$$\frac{\partial}{\partial t} J_1 = [J_1, K J_1], \quad \frac{\partial}{\partial t} J_2 = [J_2, K J_2].$$

Definition

Given a GK structure (g, b, l, J), its generalized Kähler class is its equivalence class under canonical deformations, and is denoted $[(g, b, l, J)]$.
A Generalized Calabi-Yau problem

Calabi-type problem: Find a ‘canonical’ representative of a generalized Kähler class.
Calabi-type problem: Find a ‘canonical’ representative of a generalized Kähler class. We will impose the further restriction that the underlying generalized complex structures have **holomorphically trivial canonical bundles**,

\[\Phi := -\log (\psi_1, \psi_1) (\psi_2, \psi_2) = \lambda. \]

Conjecture

Let \((M, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles. Then there exists a unique generalized Calabi-Yau geometry \((g_{CY}, b_{CY}, I, J_{CY}) \in [(g, b, I, J)]\), and furthermore \((g_{CY}, I)\) and \((g_{CY}, J_{CY})\) are both Kähler Ricci-flat.
A Generalized Calabi-Yau problem

Calabi-type problem: Find a ‘canonical’ representative of a generalized Kähler class. We will impose the further restriction that the underlying generalized complex structures have holomorphically trivial canonical bundles, that is that they are globally defined by closed pure spinors.
A Generalized Calabi-Yau problem

Calabi-type problem: Find a ‘canonical’ representative of a generalized Kähler class. We will impose the further restriction that the underlying generalized complex structures have holomorphically trivial canonical bundles, that is that they are globally defined by closed pure spinors. For spinors φ, ψ, the Mukai pairing is

$$ (\varphi, \psi) = (2\sqrt{-1})^{-n}[\varphi \wedge s(\psi)]_{\text{top}}. $$

For $(J_\varphi \psi_1, J_\psi \psi_2)$ a GK structure with holomorphically trivial canonical bundles, Gualtieri defines the generalized Calabi-Yau equation:

$$ \Phi := -\log (\varphi_1, \varphi_1)(\psi_2, \psi_2) = \lambda. $$
A Generalized Calabi-Yau problem

Calabi-type problem: Find a ‘canonical’ representative of a generalized Kähler class. We will impose the further restriction that the underlying generalized complex structures have holomorphically trivial canonical bundles, that is that they are globally defined by closed pure spinors. For spinors φ, ψ, the Mukai pairing is

$$(\varphi, \psi) = (2\sqrt{-1})^{-n}[\varphi \wedge s(\psi)]_{top}.$$

For $(\mathbb{J}_1, \mathbb{J}_2)$ a GK structure with holomorphically trivial canonical bundles,
A Generalized Calabi-Yau problem

Calabi-type problem: Find a ‘canonical’ representative of a generalized Kähler class. We will impose the further restriction that the underlying generalized complex structures have holomorphically trivial canonical bundles, that is that they are globally defined by closed pure spinors. For spinors \(\varphi, \psi \), the Mukai pairing is

\[
(\varphi, \psi) = (2\sqrt{-1})^{-n}[\varphi \wedge s(\psi)]_{\text{top}}.
\]

For \((J_1 \psi_1, J_2 \psi_2)\) a GK structure with holomorphically trivial canonical bundles, Gualtieri defines the generalized Calabi-Yau equation:

\[
\Phi := -\log \frac{(\psi_1, \psi_1)}{(\psi_2, \psi_2)} = \lambda.
\]
A Generalized Calabi-Yau problem

Calabi-type problem: Find a ‘canonical’ representative of a generalized Kähler class. We will impose the further restriction that the underlying generalized complex structures have holomorphically trivial canonical bundles, that is that they are globally defined by closed pure spinors. For spinors φ, ψ, the Mukai pairing is

$$(\varphi, \psi) = \left(2\sqrt{-1}\right)^{-n}[\varphi \wedge s(\psi)]_{\text{top}}.$$

For $(\mathbb{J}_1, \mathbb{J}_2)$ a GK structure with holomorphically trivial canonical bundles, Gualtieri defines the generalized Calabi-Yau equation:

$$\Phi := -\log \frac{(\psi_1, \overline{\psi}_1)}{(\psi_2, \overline{\psi}_2)} = \lambda.$$

Conjecture

Let (M^{2n}, g, b, l, J) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles. Then there exists a unique generalized Calabi-Yau geometry $(g_{CY}, b_{CY}, l, J_{CY}) \in [(g, b, l, J)]$, and furthermore (g_{CY}, l) and (g_{CY}, J_{CY}) are both Kähler Ricci-flat.
A Generalized Calabi-Yau problem

Kähler setting: $\psi_1 = \Theta, \psi_2 = e^{\sqrt{-1} \omega_J}$,
A Generalized Calabi-Yau problem

Kähler setting: $\psi_1 = \overline{\Theta}$, $\psi_2 = e^{\sqrt{-1} \omega J}$, and

$$\Phi = \log \frac{\omega_j^n}{\Theta \wedge \Theta}.$$
A Generalized Calabi-Yau problem

Kähler setting: $\psi_1 = \Theta$, $\psi_2 = e^{\sqrt{-1}\omega J}$, and

$$\Phi = \log \frac{\omega^m}{\Theta \wedge \Theta}.$$

Commuting type: $\psi_1 = \Theta_+ \wedge e^{b+\sqrt{-1}\omega_-}$, $\psi_2 = e^{b+\sqrt{-1}\omega_+} \wedge \Theta_-$,
A Generalized Calabi-Yau problem

Kähler setting: \(\psi_1 = \overline{\Theta}, \psi_2 = e^{\sqrt{-1}\omega_J}, \) and
\[
\Phi = \log \frac{\omega_j^n}{\Theta \wedge \overline{\Theta}}.
\]

Commuting type: \(\psi_1 = \overline{\Theta} \wedge e^{b+\sqrt{-1}\omega_-}, \psi_2 = e^{b+\sqrt{-1}\omega_+} \wedge \overline{\Theta}, \) and
\[
\Phi = \log \frac{\omega^k_+ \wedge \Theta_- \wedge \overline{\Theta}_-}{\Theta_+ \wedge \overline{\Theta}_+ \wedge \omega_-^l}.
\]
A Generalized Calabi-Yau problem

Kähler setting: \(\psi_1 = \overline{\Theta}, \psi_2 = e^{\sqrt{-1} \omega_J}, \) and

\[
\Phi = \log \frac{\omega^n_j}{\Theta \wedge \overline{\Theta}}.
\]

Commuting type: \(\psi_1 = \overline{\Theta}_+ \wedge e^{b+\sqrt{-1} \omega_-}, \psi_2 = e^{b+\sqrt{-1} \omega_+} \wedge \overline{\Theta}_-, \) and

\[
\Phi = \log \frac{\omega^k_+ \wedge \Theta_- \wedge \overline{\Theta}_-}{\Theta_+ \wedge \overline{\Theta}_+ \wedge \omega^-_+}
\]

Nondegenerate case: \(\psi_1 = e^{2\Omega+\sqrt{-1} F_-}, \psi_2 = e^{\sqrt{-1} F_+}, \)
A Generalized Calabi-Yau problem

Kähler setting: \(\psi_1 = \Theta, \psi_2 = e^{\sqrt{-1} \omega J}, \) and

\[
\Phi = \log \frac{\omega^n_j}{\Theta \wedge \overline{\Theta}}.
\]

Commuting type: \(\psi_1 = \Theta_+ \wedge e^{b+\sqrt{-1} \omega_-}, \psi_2 = e^{b+\sqrt{-1} \omega_+} \wedge \overline{\Theta}_-, \) and

\[
\Phi = \log \frac{\omega^k_+ \wedge \Theta_- \wedge \overline{\Theta}_-}{\Theta_+ \wedge \overline{\Theta}_+ \wedge \omega_-^l}.
\]

Nondegenerate case: \(\psi_1 = e^{2\Omega+\sqrt{-1}F_-}, \psi_2 = e^{\sqrt{-1}F_+}, \) and

\[
\Phi = \log \frac{F^{2n}_+}{F^{2n}_-} = \log \frac{\det(I + J)}{\det(I - J)}
\]
A Generalized Calabi-Yau problem

Kähler setting: \(\psi_1 = \Theta, \psi_2 = e^{\sqrt{-1}\omega_J}, \) and

\[
\Phi = \log \frac{\omega_J^n}{\Theta \wedge \Theta}.
\]

Commuting type: \(\psi_1 = \Theta_+ \wedge e^{b+\sqrt{-1}\omega_-}, \psi_2 = e^{b+\sqrt{-1}\omega_+} \wedge \Theta_-, \) and

\[
\Phi = \log \frac{\omega_+^k \wedge \Theta_- \wedge \Theta_-}{\Theta_+ \wedge \Theta_+ \wedge \omega_-^l}.
\]

Nondegenerate case: \(\psi_1 = e^{2\Omega+\sqrt{-1}F_-}, \psi_2 = e^{\sqrt{-1}F_+}, \) and

\[
\Phi = \log \frac{F_+^{2n}}{F_-^{2n}} = \log \frac{\det(I+J)}{\det(I-J)}.
\]

In terms of the local potential theory, the equation \(\Phi \equiv \lambda \) corresponds to a (generally) nonconvex fully nonlinear PDE.
Uniqueness and Kähler rigidity

For a generalized Kähler structure \((g, b, l, J)\) we have the associated Bismut connections

\[
\nabla^l = \nabla + \frac{1}{2} g^{-1} H, \quad \nabla^J = \nabla - \frac{1}{2} g^{-1} H.
\]
Uniqueness and Kähler rigidity

For a generalized Kähler structure \((g, b, I, J)\) we have the associated Bismut connections

\[
\nabla^I = \nabla + \frac{1}{2} g^{-1} H, \quad \nabla^J = \nabla - \frac{1}{2} g^{-1} H.
\]

Denote the curvatures by \(\Omega^I, \Omega^J\), and define Bismut Ricci forms

\[
\rho_I = \frac{1}{2} \text{tr} \Omega^I \circ I, \quad \rho_J = \frac{1}{2} \text{tr} \Omega^J \circ J.
\]
For a generalized Kähler structure \((g, b, I, J)\) we have the associated Bismut connections

\[
\nabla^I = \nabla + \frac{1}{2} g^{-1} H, \quad \nabla^J = \nabla - \frac{1}{2} g^{-1} H.
\]

Denote the curvatures by \(\Omega^I, \Omega^J\), and define Bismut Ricci forms

\[
\rho_I = \frac{1}{2} \text{tr} \, \Omega^I \circ I, \quad \rho_J = \frac{1}{2} \text{tr} \, \Omega^J \circ J.
\]

These are closed forms such that \(\rho_I \in 2\pi c_1(M, I), \rho_J \in 2\pi c_1(M, J)\).
Uniqueness and Kähler rigidity

For a generalized Kähler structure \((g, b, I, J)\) we have the associated Bismut connections

\[
\nabla^I = \nabla + \frac{1}{2} g^{-1} H, \quad \nabla^J = \nabla - \frac{1}{2} g^{-1} H.
\]

Denote the curvatures by \(\Omega^I, \Omega^J\), and define Bismut Ricci forms

\[
\rho_I = \frac{1}{2} \text{tr} \ \Omega^I \circ I, \quad \rho_J = \frac{1}{2} \text{tr} \ \Omega^J \circ J.
\]

These are closed forms such that \(\rho_I \in 2\pi c_1(M, I), \rho_J \in 2\pi c_1(M, J)\). A key starting point for our work is the following transgression formula:

Proposition

Given a GK structure \((J_{\psi_1}, J_{\psi_2})\), one has

\[
\rho_I = -\frac{1}{2} dJ d\Phi, \quad \rho_J = -\frac{1}{2} dI d\Phi.
\]
Uniqueness and Kähler rigidity

For a generalized Kähler structure \((g, b, l, J)\) we have the associated Bismut connections

\[
\nabla^l = \nabla + \frac{1}{2} g^{-1} H, \quad \nabla^J = \nabla - \frac{1}{2} g^{-1} H.
\]

Denote the curvatures by \(\Omega^l, \Omega^J\), and define Bismut Ricci forms

\[
\rho_l = \frac{1}{2} \text{tr} \Omega^l \circ l, \quad \rho_J = \frac{1}{2} \text{tr} \Omega^J \circ J.
\]

These are closed forms such that \(\rho_l \in 2\pi c_1(M, l), \rho_J \in 2\pi c_1(M, J)\). A key starting point for our work is the following transgression formula:

Proposition

Given a GK structure \((\mathcal{J}_\psi_1, \mathcal{J}_\psi_2)\), one has

\[
\rho_l = -\frac{1}{2} dJd\Phi, \quad \rho_J = -\frac{1}{2} dld\Phi.
\]

Thus gCY structures have vanishing Bismut Ricci forms.
Theorem

(Apostolov, Fu, S, Ustinovskiy, 2022) Compact generalized Calabi-Yau geometries \((g, b, I, J)\) satisfy that \((g, I)\) and \((g, J)\) are Kähler, Ricci-flat, and are furthermore unique in their GK class.

Proof

The proof exploits the partial Ricci potentials \(\Psi_i = -\log (\psi_i, \psi_i) dV_g\), \(\Phi = \Psi_1 - \Psi_2\).

For a gCY geometry one has

\[-\Delta \Psi_1 + |d \Psi_1|^2 = \frac{1}{6} |H|^2.\]

By the strong maximum principle, \(\Psi_1\) is constant and \(H\) vanishes.

Uniqueness follows by showing that a gCY structure has \([\omega_I]\) and \([\omega_J]\) uniquely determined by the spinor classes \([\psi_1]\), \([\psi_2]\), using the Beauville-Bogomolov decomposition.
Uniqueness and Kähler rigidity

Theorem

(Apostolov, Fu, S, Ustinovskiy, 2022) Compact generalized Calabi-Yau geometries \((g, b, I, J)\) satisfy that \((g, I)\) and \((g, J)\) are Kähler, Ricci-flat, and are furthermore unique in their GK class.
Uniqueness and Kähler rigidity

Theorem
(Apostolov, Fu, S, Ustinovskiy, 2022) Compact generalized Calabi-Yau geometries \((g, b, I, J)\) satisfy that \((g, I)\) and \((g, J)\) are Kähler, Ricci-flat, and are furthermore unique in their GK class.

Proof
The proof exploits the partial Ricci potentials

\[\psi_i = -\log \left(\frac{\psi_i, \overline{\psi}_i}{dV_g} \right), \quad \Phi = \psi_1 - \psi_2. \]
Uniqueness and Kähler rigidity

Theorem
(Apostolov, Fu, S, Ustinovskiy, 2022) Compact generalized Calabi-Yau geometries \((g, b, I, J)\) satisfy that \((g, I)\) and \((g, J)\) are Kähler, Ricci-flat, and are furthermore unique in their GK class.

Proof
The proof exploits the partial Ricci potentials

\[
\psi_i = - \log \left(\frac{\psi_i, \psi_i}{dV_g} \right), \quad \Phi = \psi_1 - \psi_2.
\]

For a gCY geometry one has

\[
-\Delta \psi_1 + |d\psi_1|^2 = \frac{1}{6} |H|^2.
\]

By the strong maximum principle, \(\psi_1\) is constant and \(H\) vanishes.
Uniqueness and Kähler rigidity

Theorem
(Apostolov, Fu, S, Ustinovskiy, 2022) Compact generalized Calabi-Yau geometries \((g, b, I, J)\) satisfy that \((g, I)\) and \((g, J)\) are Kähler, Ricci-flat, and are furthermore unique in their GK class.

Proof
The proof exploits the partial Ricci potentials

\[
\psi_i = - \log \left(\frac{\psi_i, \overline{\psi}_i}{dV_g} \right), \quad \Phi = \psi_1 - \psi_2.
\]

For a gCY geometry one has

\[
-\Delta \psi_1 + |d\psi_1|^2 = \frac{1}{6} |H|^2.
\]

By the strong maximum principle, \(\psi_1\) is constant and \(H\) vanishes. Uniqueness follows by showing that a gCY structure has \([\omega_I]\) and \([\omega_J]\) uniquely determined by the spinor classes \([\psi_1], [\psi_2]\), using the Beauville-Bogomolov decomposition.
Aside: non-Kähler examples

Consider the standard Hopf surface

\[M^4 = \left(\mathbb{C}^2 - \{0\} \right) / \langle (z_1, z_2) \rightarrow (2z_1, 2z_2) \rangle \cong S^3 \times S^1. \]
Aside: non-Kähler examples

Consider the standard Hopf surface

\[M^4 = \left(\mathbb{C}^2 - \{0\} \right) / \langle (z_1, z_2) \to (2z_1, 2z_2) \rangle \cong S^3 \times S^1. \]

Let \(I \) denote induced complex structure and let \(J := j^* I \), where

\[j(z_1, z_2) = \left(\frac{\overline{z_2}}{|z_1|^2 + |z_2|^2}, \frac{z_1}{|z_1|^2 + |z_2|^2} \right). \]
Aside: non-Kähler examples

Consider the standard Hopf surface

$$M^4 = \left(\mathbb{C}^2 - \{0\} \right) / \langle (z_1, z_2) \to (2z_1, 2z_2) \rangle \cong S^3 \times S^1.$$

Let I denote induced complex structure and let $J := j^* I$, where

$$j(z_1, z_2) = \left(\frac{\bar{z}_2}{|z_1|^2 + |z_2|^2}, \frac{z_1}{|z_1|^2 + |z_2|^2} \right).$$

Furthermore let $g = g_{S^3} \oplus g_{S^1}.$
Aside: non-Kähler examples

Consider the standard Hopf surface

\[M^4 = \left(\mathbb{C}^2 - \{0\} \right) / \langle (z_1, z_2) \rightarrow (2z_1, 2z_2) \rangle \cong S^3 \times S^1. \]

Let \(I \) denote induced complex structure and let \(J := j^* I \), where

\[j(z_1, z_2) = \begin{pmatrix} \overline{z_2} & z_1 \\ \frac{|z_1|^2 + |z_2|^2}{|z_1|^2 + |z_2|^2} & \frac{|z_1|^2 + |z_2|^2}{|z_1|^2 + |z_2|^2} \end{pmatrix}. \]

Furthermore let \(g = g_{S^3} \oplus g_{S^1} \). Then \((M, g, I, J)\) is a GK structure, which is Bismut-Ricci flat.
Aside: non-Kähler examples

Consider the standard Hopf surface

\[M^4 = \left(\mathbb{C}^2 - \{0\} \right) / \langle (z_1, z_2) \rightarrow (2z_1, 2z_2) \rangle \cong S^3 \times S^1. \]

Let \(I \) denote induced complex structure and let \(J := j^* I \), where

\[j(z_1, z_2) = \left(\frac{\bar{z}_2}{|z_1|^2 + |z_2|^2}, \frac{z_1}{|z_1|^2 + |z_2|^2} \right). \]

Furthermore let \(g = g_{S^3} \oplus g_{S^1} \). Then \((M, g, I, J) \) is a GK structure, which is Bismut-Ricci flat. The Poisson tensor \(\sigma \) is

\[\sigma = -\Re \left(z_1 \frac{\partial}{\partial z_1} \wedge z_2 \frac{\partial}{\partial z_2} \right). \]
Aside: non-Kähler examples

Consider the standard Hopf surface

\[M^4 = \left(\mathbb{C}^2 - \{0\} \right) / \langle (z_1, z_2) \rightarrow (2z_1, 2z_2) \rangle \cong S^3 \times S^1. \]

Let \(I \) denote induced complex structure and let \(J := j^* I \), where

\[j(z_1, z_2) = \left(\frac{\bar{z}_2}{|z_1|^2 + |z_2|^2}, \frac{z_1}{|z_1|^2 + |z_2|^2} \right). \]

Furthermore let \(g = g_{S^3} \oplus g_{S^1} \). Then \((M, g, I, J)\) is a GK structure, which is Bismut-Ricci flat. The Poisson tensor \(\sigma \) is

\[\sigma = -\Re \left(z_1 \frac{\partial}{\partial z_1} \wedge z_2 \frac{\partial}{\partial z_2} \right). \]

The degeneracy loci are the elliptic curves \(\{z_1 = 0\} \), \(\{z_2 = 0\} \) where \(I = -J \) and \(I = J \), respectively.
Aside: non-Kähler examples

Consider the standard Hopf surface

\[M^4 = \left(\mathbb{C}^2 - \{0\} \right) / \langle (z_1, z_2) \rightarrow (2z_1, 2z_2) \rangle \cong S^3 \times S^1. \]

Let \(I \) denote induced complex structure and let \(J := j^* I \), where

\[j(z_1, z_2) = \left(\frac{\bar{z}_2}{|z_1|^2 + |z_2|^2}, \frac{z_1}{|z_1|^2 + |z_2|^2} \right). \]

Furthermore let \(g = g_{S^3} \oplus g_{S^1} \). Then \((M, g, I, J) \) is a GK structure, which is Bismut-Ricci flat. The Poisson tensor \(\sigma \) is

\[\sigma = -\Re \left(z_1 \frac{\partial}{\partial z_1} \wedge z_2 \frac{\partial}{\partial z_2} \right). \]

The degeneracy loci are the elliptic curves \(\{z_1 = 0\}, \{z_2 = 0\} \) where \(I = -J \) and \(I = J \), respectively. Near these loci the structure cannot be described by closed spinors.
Generalized Kähler-Ricci flow

A one-parameter family \((g_t, b_t, I_t, J_t)\) satisfies generalized Kähler-Ricci flow

\[
\frac{\partial}{\partial t} g_t = -2 \text{Rc} + \frac{1}{2} H^2,
\]

\[
\frac{\partial}{\partial t} b_t = - d^* g H,
\]

\[
H^2(X, Y) = \langle i_X H, i_Y H \rangle,
\]

\[
\frac{\partial}{\partial t} I_t = L_{\theta I} I_t,
\]

\[
\frac{\partial}{\partial t} J_t = L_{\theta J} J_t.
\]

where \(H^2(X, Y)\) and \(\theta_I, \theta_J\) are the Lee forms.

• One can modify by diffeomorphisms to fix \(I\).
• This flow is a special case of pluriclosed flow, which in turn is a special case of generalized Ricci flow (RG flow).

Theorem (Cao, 1986) Let \((M^{2n}, g, J)\) be a compact Kähler manifold with \(c_1(M, J) = 0\).

The solution to Kähler-Ricci flow with initial condition \(g\) exists for all time and converges to the unique Calabi-Yau metric in \([\omega]\).
A one-parameter family \((g_t, b_t, I_t, J_t)\) satisfies **generalized Kähler-Ricci flow** if

\[
\frac{\partial}{\partial t} g = -2 \text{Rc} + \frac{1}{2} H^2, \quad \frac{\partial}{\partial t} b = -d^* H, \quad H = H_0 + db,
\]

\[
\frac{\partial}{\partial t} I = L_{\theta_I^*} I, \quad \frac{\partial}{\partial t} J = L_{\theta_J^*} J,
\]

where \(H^2(X, Y) = \langle i_X H, i_Y H \rangle\), and \(\theta_I = Id_g^* \omega_I, \theta_J = Id_g^* \omega_J\) are the Lee forms.
Generalized Kähler-Ricci flow

A one-parameter family \((g_t, b_t, l_t, J_t)\) satisfies generalized Kähler-Ricci flow if

\[
\frac{\partial}{\partial t} g = -2 \text{Rc} + \frac{1}{2} H^2, \quad \frac{\partial}{\partial t} b = -d^* H, \quad H = H_0 + db,
\]

\[
\frac{\partial}{\partial t} l = L_{\theta^*_l} l, \quad \frac{\partial}{\partial t} J = L_{\theta^*_J} J,
\]

where \(H^2(X, Y) = \langle i_X H, i_Y H \rangle\), and \(\theta_l = \text{Id}^*_g \omega_l, \theta_J = Jd^*_g \omega_J\) are the Lee forms.

- One can modify by diffeomorphisms to fix \(l\).
Generalized Kähler-Ricci flow

A one-parameter family \((g_t, b_t, l_t, J_t) \) satisfies generalized Kähler-Ricci flow if

\[
\frac{\partial}{\partial t} g = -2 \text{Rc} + \frac{1}{2} H^2, \quad \frac{\partial}{\partial t} b = -d_g^* H, \quad H = H_0 + db,
\]

\[
\frac{\partial}{\partial t} l = L_{\theta_l^\#} l, \quad \frac{\partial}{\partial t} J = L_{\theta_J^\#} J,
\]

where \(H^2(X, Y) = \langle i_X H, i_Y H \rangle \), and \(\theta_l = ld_g^\# \omega_l, \theta_J = Jd_g^\# \omega_J \) are the Lee forms.

- One can modify by diffeomorphisms to fix \(l \).
- This flow is a special case of pluriclosed flow, which in turn is a special case of generalized Ricci flow (RG flow).
Generalized Kähler-Ricci flow

A one-parameter family \((g_t, b_t, I_t, J_t)\) satisfies generalized Kähler-Ricci flow if

\[
\frac{\partial}{\partial t} g = -2 \text{Rc} + \frac{1}{2} H^2, \quad \frac{\partial}{\partial t} b = -d^* H, \quad H = H_0 + db, \\
\frac{\partial}{\partial t} I = L_{\theta_I} I, \quad \frac{\partial}{\partial t} J = L_{\theta_J} J,
\]

where \(H^2(X, Y) = \langle i_X H, i_Y H \rangle\), and \(\theta_I = Id_g^* \omega_I, \theta_J = Jd_g^* \omega_J\) are the Lee forms.

- One can modify by diffeomorphisms to fix \(I\).
- This flow is a special case of pluriclosed flow, which in turn is a special case of generalized Ricci flow (RG flow).

Theorem

(Cao, 1986) Let \((M^{2n}, g, J)\) be a compact Kähler manifold with \(c_1(M, J) = 0\).
Generalized Kähler-Ricci flow

A one-parameter family \((g_t, b_t, l_t, J_t)\) satisfies generalized Kähler-Ricci flow if

\[
\frac{\partial}{\partial t} g = -2 \text{Rc} + \frac{1}{2} H^2, \quad \frac{\partial}{\partial t} b = -d^* H, \quad H = H_0 + db,
\]

\[
\frac{\partial}{\partial t} l = L_{\theta_l}^\# l, \quad \frac{\partial}{\partial t} J = L_{\theta_J}^\# J,
\]

where \(H^2(X, Y) = \langle i_X H, i_Y H \rangle\), and \(\theta_l = l d_g^* \omega_l, \theta_J = J d_g^* \omega_J\) are the Lee forms.

- One can modify by diffeomorphisms to fix \(l\).
- This flow is a special case of pluriclosed flow, which in turn is a special case of generalized Ricci flow (RG flow).

Theorem

(Cao, 1986) Let \((M^{2n}, g, J)\) be a compact Kähler manifold with \(c_1(M, J) = 0\).

The solution to Kähler-Ricci flow with initial condition \(g\) exists for all time and converges to the unique Calabi-Yau metric in \([\omega]\).
Conjecture

Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles. Then the GKRF with this initial data preserves the generalized Kähler class, exists for all time, and converges to the unique generalized Calabi-Yau geometry in this class.
Generalized Kähler-Ricci flow

Conjecture

Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles. Then the GKRF with this initial data preserves the generalized Kähler class, exists for all time, and converges to the unique generalized Calabi-Yau geometry in this class.

Theorem

(AFSU 2022) Given a solution \((g_t, b_t, I_t, J_t)\) to generalized Kähler-Ricci flow with initial data defined by holomorphically trivial canonical bundles one has:
Generalized Kähler-Ricci flow

Conjecture
Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles. Then the GKRF with this initial data preserves the generalized Kähler class, exists for all time, and converges to the unique generalized Calabi-Yau geometry in this class.

Theorem
(AFSU 2022) Given a solution \((g_t, b_t, I, J_t)\) to generalized Kähler-Ricci flow with initial data defined by holomorphically trivial canonical bundles one has:

1. The canonical bundles of \(J^\xi_i\) are holomorphically trivial for all time, defined by closed pure spinors \(\psi^\xi_i \in [\psi^0_i]\). Furthermore the GK class is preserved.
Generalized Kähler-Ricci flow

Conjecture
Let \((M^{2n}, g, b, l, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles. Then the GKRF with this initial data preserves the generalized Kähler class, exists for all time, and converges to the unique generalized Calabi-Yau geometry in this class.

Theorem
(AFSU 2022) Given a solution \((g_t, b_t, l, J_t)\) to generalized Kähler-Ricci flow with initial data defined by holomorphically trivial canonical bundles one has:

1. The canonical bundles of \(J_i^c\) are holomorphically trivial for all time, defined by closed pure spinors \(\psi_i^c \in [\psi_i^0]\). Furthermore the GK class is preserved.
2. One has Ricci potential bounds

\[
\sup_{M \times \{t\}} \left(\Phi^2 + t |\nabla \Phi|^2 \right) \leq \sup_{M \times \{0\}} \Phi^2.
\]
Generalized Kähler-Ricci flow

Conjecture
Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles. Then the GKRF with this initial data preserves the generalized Kähler class, exists for all time, and converges to the unique generalized Calabi-Yau geometry in this class.

Theorem
(AF SU 2022) Given a solution \((g_t, b_t, I, J_t)\) to generalized Kähler–Ricci flow with initial data defined by holomorphically trivial canonical bundles one has:

1. The canonical bundles of \(\mathbb{J}_i^t\) are holomorphically trivial for all time, defined by closed pure spinors \(\psi_i^t \in [\psi_i^0]\). Furthermore the GK class is preserved.
2. One has Ricci potential bounds

\[
\sup_{M \times \{t\}} \left(\Phi^2 + t |\nabla \Phi|^2 \right) \leq \sup_{M \times \{0\}} \Phi^2.
\]

3. There exist Mabuchi-type functionals \(M_i := \int_M \Phi(\psi_i, \bar{\psi}_i)\) whose only critical points are generalized Calabi-Yau geometries, and which are bounded and monotone along GKRF.
Generalized Kähler-Ricci flow

Theorem
(AFSU 2022) Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles.
Generalized Kähler-Ricci flow

Theorem
(AFU 2022) Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles.

1. Suppose \((M, I)\) is a Kähler manifold.
Theorem
(AF SU 2022) Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles.

1. \textit{Suppose} \((M, I)\) is a Kähler manifold. \textit{Then the solution to generalized Kähler-Ricci flow with initial data} \((g, b, I, J)\) \textit{exists for all time, and the Mabuchi energies converge to their topologically determined extreme values.}
Generalized Kähler-Ricci flow

Theorem
(AFSU 2022) Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles.

1. Suppose \((M, I)\) is a Kähler manifold. Then the solution to generalized Kähler-Ricci flow with initial data \((g, b, I, J)\) exists for all time, and the Mabuchi energies converge to their topologically determined extreme values.

2. Suppose there exists a generalized Calabi-Yau geometry in \([g, b, I, J]\).

Corollary
Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold satisfying

1. \(\sigma = 0\),
2. \((M, I)\) is Kähler and \(c_1(M, I) = 0\).

Then the solution to generalized Kähler-Ricci flow with initial data \((g, b, I, J)\) exists for all time and converges to a Kähler Calabi-Yau metric.
Generalized Kähler-Ricci flow

Theorem
(AF SU 2022) Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles.

1. Suppose \((M, I)\) is a Kähler manifold. Then the solution to generalized Kähler-Ricci flow with initial data \((g, b, I, J)\) exists for all time, and the Mabuchi energies converge to their topologically determined extreme values.

2. Suppose there exists a generalized Calabi-Yau geometry in \([(g, b, I, J)]\). Then the solution to generalized Kähler-Ricci flow with initial data \((g, b, I, J)\) converges exponentially to this necessarily unique generalized Calabi-Yau geometry.
Generalized Kähler-Ricci flow

Theorem
(AF SU 2022) Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles.

1. Suppose \((M, I)\) is a Kähler manifold. Then the solution to generalized Kähler-Ricci flow with initial data \((g, b, I, J)\) exists for all time, and the Mabuchi energies converge to their topologically determined extreme values.

2. Suppose there exists a generalized Calabi-Yau geometry in \([(g, b, I, J)]\). Then the solution to generalized Kähler-Ricci flow with initial data \((g, b, I, J)\) converges exponentially to this necessarily unique generalized Calabi-Yau geometry.

Corollary
Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold satisfying

1. \(\sigma = 0\),
Generalized Kähler-Ricci flow

Theorem
(AF SU 2022) Let (M^{2n}, g, b, I, J) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles.

1. **Suppose** (M, I) is a Kähler manifold. Then the solution to generalized Kähler-Ricci flow with initial data (g, b, I, J) exists for all time, and the Mabuchi energies converge to their topologically determined extreme values.

2. **Suppose there exists a generalized Calabi-Yau geometry in** $[(g, b, I, J)]$. Then the solution to generalized Kähler-Ricci flow with initial data (g, b, I, J) converges exponentially to this necessarily unique generalized Calabi-Yau geometry.

Corollary
Let (M^{2n}, g, b, I, J) be a compact generalized Kähler manifold satisfying

1. $\sigma = 0$,
2. (M, I) is Kähler and $c_1(M, I) = 0$.

Generalized Kähler-Ricci flow

Theorem

(AFSU 2022) Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold with holomorphically trivial canonical bundles.

1. Suppose \((M, I)\) is a Kähler manifold. Then the solution to generalized Kähler-Ricci flow with initial data \((g, b, I, J)\) exists for all time, and the Mabuchi energies converge to their topologically determined extreme values.

2. Suppose there exists a generalized Calabi-Yau geometry in \([(g, b, I, J)] \). Then the solution to generalized Kähler-Ricci flow with initial data \((g, b, I, J)\) converges exponentially to this necessarily unique generalized Calabi-Yau geometry.

Corollary

Let \((M^{2n}, g, b, I, J)\) be a compact generalized Kähler manifold satisfying

1. \(\sigma = 0\),

2. \((M, I)\) is Kähler and \(c_1(M, I) = 0\).

Then the solution to generalized Kähler-Ricci flow with initial data \((g, b, I, J)\) exists for all time and converges to a Kähler Calabi-Yau metric.
The structure of generalized Kähler classes

Corollary

Let \((M^{2n}, g, I)\) be a Kähler Calabi-Yau manifold which is part of a generalized Calabi-Yau geometry \((g, b, I, J)\).
Corollary

Let (M^{2n}, g, I) be a Kähler Calabi-Yau manifold which is part of a generalized Calabi-Yau geometry (g, b, I, J). Then

$$[(g, b, I, J)] \cong \ast.$$
Corollary
Let \((M^{2n}, g, l)\) be a Kähler Calabi-Yau manifold which is part of a generalized Calabi-Yau geometry \((g, b, l, J)\). Then
\[
[(g, b, l, J)] \cong *.
\]

Corollary
Let \((M^{4n}, g, l, J, K)\) be a hyperKähler manifold. Let
\[
\text{Ham}^+(\omega_K) := \{ \phi \in \text{Ham}(\omega_K) \mid \phi^* \omega_I(X, lX) > 0 \text{ for nonzero } X \in TM \}.
\]
The structure of generalized Kähler classes

Corollary
Let \((M^{2n}, g, I)\) be a Kähler Calabi-Yau manifold which is part of a generalized Calabi-Yau geometry \((g, b, I, J)\). Then
\[
[(g, b, I, J)] \cong \ast.
\]

Corollary
Let \((M^{4n}, g, I, J, K)\) be a hyperKähler manifold. Let
\[
\Ham^+(\omega_K) := \{ \phi \in \Ham(\omega_K) | \phi^* \omega_I(X, IX) > 0 \text{ for nonzero } X \in TM \}.
\]
Then \(\Ham_0^+(\omega_K) \subset \Ham^+(\omega_K)\) is contractible:
\[
\Ham_0^+(\omega_K) \cong \ast.
\]
Part II: Proofs of Main Theorems
Formal structure of GKRF

Recall again the generalized Kähler-Ricci flow:

\[
\frac{\partial}{\partial t} g = -2 \text{Rc} + \frac{1}{2} H^2, \quad \frac{\partial}{\partial t} b = -d^* H, \quad H = H_0 + db,
\]

\[
\frac{\partial}{\partial t} I = L_{\theta^\#} I, \quad \frac{\partial}{\partial t} J = L_{\theta^\#} J,
\]
Formal structure of GKRF

Recall again the generalized Kähler-Ricci flow:

$$\frac{\partial}{\partial t} g = -2 \text{Rc} + \frac{1}{2} H^2, \quad \frac{\partial}{\partial t} b = -d^* H, \quad H = H_0 + db,$$

$$\frac{\partial}{\partial t} I = L_{\theta^\#_I} I, \quad \frac{\partial}{\partial t} J = L_{\theta^\#_J} J,$$

Pulling back by the diffeomorphisms generated by $\theta^\#_I$ yields

$$\frac{\partial}{\partial t} \omega_I = -2 \rho^{1,1}_I, \quad \frac{\partial}{\partial t} J = L_{\theta^\#_J - \theta^\#_I} J, \quad \frac{\partial}{\partial t} \beta = -2 \rho^{2,0}_I,$$

where $\beta = \sqrt{-1} b^{2,0}_I$.
Formal structure of GKRF

Recall again the generalized Kähler-Ricci flow:

\[
\frac{\partial}{\partial t} g = -2 \text{Rc} + \frac{1}{2} H^2, \quad \frac{\partial}{\partial t} b = -d_g^* H, \quad H = H_0 + db,
\]

\[
\frac{\partial}{\partial t} I = L_{\theta_i} I, \quad \frac{\partial}{\partial t} J = L_{\theta_j} J,
\]

Pulling back by the diffeomorphisms generated by \(\theta_i\) yields

\[
\frac{\partial}{\partial t} \omega_i = -2\rho_i^{1,1}, \quad \frac{\partial}{\partial t} J = L_{\theta_j} - \theta_i J, \quad \frac{\partial}{\partial t} \beta = -2\rho_i^{2,0},
\]

where \(\beta = \sqrt{-1} b_2^{2,0}\). Equivalently,

\[
\frac{\partial}{\partial t} \mathbb{J}_1 = -2[\mathbb{J}_1, \rho_i \mathbb{J}_1], \quad \frac{\partial}{\partial t} \mathbb{J}_2 = -2[\mathbb{J}_2, \rho_i \mathbb{J}_2].
\]
Formal structure of GKRF

Recall again the generalized Kähler-Ricci flow:

\[
\frac{\partial}{\partial t} g = -2 \text{Rc} + \frac{1}{2} H^2, \quad \frac{\partial}{\partial t} b = -d_g^* H, \quad H = H_0 + db,
\]

\[
\frac{\partial}{\partial t} l = L_{\theta^\#} l, \quad \frac{\partial}{\partial t} J = L_{\theta^\#} J,
\]

Pulling back by the diffeomorphisms generated by $\theta^\#$ yields

\[
\frac{\partial}{\partial t} \omega_1 = -2 \rho_1^{1,1}, \quad \frac{\partial}{\partial t} J = L_{\theta^\# - \theta_i^\#} J, \quad \frac{\partial}{\partial t} \beta = -2 \rho_1^{2,0},
\]

where $\beta = \sqrt{-1} b_i^{2,0}$. Equivalently,

\[
\frac{\partial}{\partial t} \mathcal{J}_1 = -2[\mathcal{J}_1, \rho_1 \mathcal{J}_1], \quad \frac{\partial}{\partial t} \mathcal{J}_2 = -2[\mathcal{J}_2, \rho_1 \mathcal{J}_2].
\]

Equivalently,

\[
\frac{\partial}{\partial t} \psi_1 = -2 \sqrt{-1} \rho_1 \wedge \psi_1, \quad \frac{\partial}{\partial t} \psi_2 = -2 \sqrt{-1} \rho_1 \wedge \psi_2.
\]
The local structure of GK manifolds

Theorem

Let (J_1, J_2) be a generalized Kähler structure with both J_1 and J_2 of even type. Near any point where both J_1 and J_2 have locally constant type, there exist spinors ψ_1, ψ_2 defining J_1 and J_2 and a sequence of nondegenerate generalized Kähler structures $(J_{\psi_j 1}, J_{\psi_j 2})$ such that

$$\lim_{j \to \infty} J_{\psi_j 1} = J_1,$$

$$\lim_{j \to \infty} J_{\psi_j 2} = J_2.$$

1. Gualtieri's Darboux theorem: locally $J \sim J_{\text{complex}} \oplus J_{\text{symplectic}}$

2. Hitchin: deform GC structure of complex type to one of symplectic type:

$$\Omega = \eta \rightarrow \psi_t = t \eta \exp(\eta/t),$$

$$\lim_{t \to 0} \psi_t = \Omega.$$

3. Goto's Kodaira-Spencer-type stability theorem: augment variation of J_1 with a variation of J_2 which preserves GK. We prove a local version of this, relying on a H^0-twisted Hodge decomposition on the closed ball.
The local structure of GK manifolds

Theorem

Let \((J_1, J_2)\) be a generalized Kähler structure with both \(J_1\) and \(J_2\) of even type.
The local structure of GK manifolds

Theorem
Let \((\mathcal{J}_1, \mathcal{J}_2)\) be a generalized Kähler structure with both \(\mathcal{J}_1\) and \(\mathcal{J}_2\) of even type. Near any point where both \(\mathcal{J}_1\) and \(\mathcal{J}_2\) have locally constant type,

1. Gualtieri’s Darboux theorem: locally \(\mathcal{J} \sim \mathcal{J}_{\text{complex}} \oplus \mathcal{J}_{\text{symplectic}}\)
2. Hitchin: deform GC structure of complex type to one of symplectic type: \(\Omega = \eta \rightarrow \psi_t = t^k \exp(\eta/t), \lim_{t \to 0} \psi_t = \Omega\)
3. Goto’s Kodaira-Spencer-type stability theorem: augment variation of \(\mathcal{J}_1\) with a variation of \(\mathcal{J}_2\) which preserves GK. We prove a local version of this, relying on a \(H_0\)-twisted Hodge decomposition on the closed ball
The local structure of GK manifolds

Theorem
Let \((J_1, J_2)\) be a generalized Kähler structure with both \(J_1\) and \(J_2\) of even type. Near any point where both \(J_1\) and \(J_2\) have locally constant type, there exist spinors \(\psi_1, \psi_2\) defining \(J_1\) and \(J_2\) and a sequence of nondegenerate generalized Kähler structures \((J_{\psi_1}^j, J_{\psi_2}^j)\) such that

\[
\lim_{j \to \infty} J_{\psi_1}^j = J_1, \quad \lim_{j \to \infty} J_{\psi_2}^j = J_2.
\]
The local structure of GK manifolds

Theorem
Let \((J_1, J_2)\) be a generalized Kähler structure with both \(J_1\) and \(J_2\) of even type. Near any point where both \(J_1\) and \(J_2\) have locally constant type, there exist spinors \(\psi_1, \psi_2\) defining \(J_1\) and \(J_2\) and a sequence of nondegenerate generalized Kähler structures \((J_{\psi_1}^j, J_{\psi_2}^j)\) such that

\[
\lim_{j \to \infty} J_{\psi_1}^j = J_1, \quad \lim_{j \to \infty} J_{\psi_2}^j = J_2.
\]

1. Gualtieri’s Darboux theorem:
The local structure of GK manifolds

Theorem
Let \((J_1, J_2)\) be a generalized Kähler structure with both \(J_1\) and \(J_2\) of even type. Near any point where both \(J_1\) and \(J_2\) have locally constant type, there exist spinors \(\psi_1, \psi_2\) defining \(J_1\) and \(J_2\) and a sequence of nondegenerate generalized Kähler structures \((J_{\psi_1}^j, J_{\psi_2}^j)\) such that

\[
\lim_{j \to \infty} J_{\psi_1}^j = J_1, \quad \lim_{j \to \infty} J_{\psi_2}^j = J_2.
\]

1. Gualtieri’s Darboux theorem: locally

\[
J \sim J_{\text{complex}} \oplus J_{\text{symplectic}}
\]
The local structure of GK manifolds

Theorem
Let \((J_1, J_2)\) be a generalized Kähler structure with both \(J_1\) and \(J_2\) of even type. Near any point where both \(J_1\) and \(J_2\) have locally constant type, there exist spinors \(\psi_1, \psi_2\) defining \(J_1\) and \(J_2\) and a sequence of nondegenerate generalized Kähler structures \((J_{\psi_1}^j, J_{\psi_2}^j)\) such that

\[
\lim_{j \to \infty} J_{\psi_1}^j = J_1, \quad \lim_{j \to \infty} J_{\psi_2}^j = J_2.
\]

1. Gualtieri’s Darboux theorem: locally

\[J \sim J_{\text{complex}} \oplus J_{\text{symplectic}} \]

2. Hitchin: deform GC structure of complex type to one of symplectic type:
The local structure of GK manifolds

Theorem

Let \((\mathbb{J}_1, \mathbb{J}_2)\) be a generalized Kähler structure with both \(\mathbb{J}_1\) and \(\mathbb{J}_2\) of even type. Near any point where both \(\mathbb{J}_1\) and \(\mathbb{J}_2\) have locally constant type, there exist spinors \(\psi_1, \psi_2\) defining \(\mathbb{J}_1\) and \(\mathbb{J}_2\) and a sequence of nondegenerate generalized Kähler structures \((\mathbb{J}_{\psi_1}^j, \mathbb{J}_{\psi_2}^j)\) such that

\[
\lim_{j \to \infty} \mathbb{J}_{\psi_1}^j = \mathbb{J}_1, \quad \lim_{j \to \infty} \mathbb{J}_{\psi_2}^j = \mathbb{J}_2.
\]

1. Gualtieri’s Darboux theorem: locally

\[
\mathbb{J} \sim \mathbb{J}_{\text{complex}} \oplus \mathbb{J}_{\text{symplectic}}
\]

2. Hitchin: deform GC structure of complex type to one of symplectic type:

\[
\Omega = \eta^k \longrightarrow \psi_t = t^k \exp(\eta/t), \quad \lim_{t \to 0} \psi_t = \Omega.
\]
The local structure of GK manifolds

Theorem

Let \((\mathcal{J}_1, \mathcal{J}_2)\) be a generalized Kähler structure with both \(\mathcal{J}_1\) and \(\mathcal{J}_2\) of even type. Near any point where both \(\mathcal{J}_1\) and \(\mathcal{J}_2\) have locally constant type, there exist spinors \(\psi_1, \psi_2\) defining \(\mathcal{J}_1\) and \(\mathcal{J}_2\) and a sequence of nondegenerate generalized Kähler structures \((\mathcal{J}_{\psi_j}^1, \mathcal{J}_{\psi_j}^2)\) such that

\[
\lim_{j \to \infty} \mathcal{J}_{\psi_j}^1 = \mathcal{J}_1, \quad \lim_{j \to \infty} \mathcal{J}_{\psi_j}^2 = \mathcal{J}_2.
\]

1. Gualtieri’s Darboux theorem: locally

\[
\mathcal{J} \sim \mathcal{J}_{\text{complex}} \oplus \mathcal{J}_{\text{symplectic}}
\]

2. Hitchin: deform GC structure of complex type to one of symplectic type:

\[
\Omega = \eta^k \longrightarrow \psi_t = t^k \exp(\eta/t), \quad \lim_{t \to 0} \psi_t = \Omega.
\]

3. Goto’s Kodaira-Spencer-type stability theorem:
The local structure of GK manifolds

Theorem
Let $(\mathbb{J}_1, \mathbb{J}_2)$ be a generalized Kähler structure with both \mathbb{J}_1 and \mathbb{J}_2 of even type. Near any point where both \mathbb{J}_1 and \mathbb{J}_2 have locally constant type, there exist spinors ψ_1, ψ_2 defining \mathbb{J}_1 and \mathbb{J}_2 and a sequence of nondegenerate generalized Kähler structures $(\mathbb{J}_{\psi_1^j}, \mathbb{J}_{\psi_2^j})$ such that

$$\lim_{j \to \infty} \mathbb{J}_{\psi_1^j} = \mathbb{J}_1, \quad \lim_{j \to \infty} \mathbb{J}_{\psi_2^j} = \mathbb{J}_2.$$

1. Gualtieri’s Darboux theorem: locally

$$\mathbb{J} \sim \mathbb{J}_{\text{complex}} \oplus \mathbb{J}_{\text{symplectic}}$$

2. Hitchin: deform GC structure of complex type to one of symplectic type:

$$\Omega = \eta^k \longrightarrow \psi_t = t^k \exp(\eta/t), \quad \lim_{t \to 0} \psi_t = \Omega.$$

3. Goto’s Kodaira-Spencer-type stability theorem: augment variation of \mathbb{J}_1 with a variation of \mathbb{J}_2 which preserves GK.
The local structure of GK manifolds

Theorem
Let \((\mathbb{J}_1, \mathbb{J}_2)\) be a generalized Kähler structure with both \(\mathbb{J}_1\) and \(\mathbb{J}_2\) of even type. Near any point where both \(\mathbb{J}_1\) and \(\mathbb{J}_2\) have locally constant type, there exist spinors \(\psi_1, \psi_2\) defining \(\mathbb{J}_1\) and \(\mathbb{J}_2\) and a sequence of nondegenerate generalized Kähler structures \((\mathbb{J}_{\psi_1}^j, \mathbb{J}_{\psi_2}^j)\) such that

\[
\lim_{j \to \infty} \mathbb{J}_{\psi_1}^j = \mathbb{J}_1, \quad \lim_{j \to \infty} \mathbb{J}_{\psi_2}^j = \mathbb{J}_2.
\]

1. Gualtieri’s Darboux theorem: locally

\[
\mathbb{J} \sim \mathbb{J}_{\text{complex}} \oplus \mathbb{J}_{\text{symplectic}}
\]

2. Hitchin: deform GC structure of complex type to one of symplectic type:

\[
\Omega = \eta^k \quad \longrightarrow \quad \psi_t = t^k \exp(\eta/t), \quad \lim_{t \to 0} \psi_t = \Omega.
\]

3. Goto’s Kodaira-Spencer-type stability theorem: augment variation of \(\mathbb{J}_1\) with a variation of \(\mathbb{J}_2\) which preserves GK. We prove a local version of this, relying on a \(H_0\)-twisted Hodge decomposition on the closed ball.
Ricci potential estimates

Using the perturbation theorem we prove for instance the transgression formulas:

\[\rho_I = -\frac{1}{2} dJd\Phi, \quad \rho_J = -\frac{1}{2} dld\Phi, \quad \Phi = -\log \frac{(\psi_1, \overline{\psi}_1)}{(\psi_2, \overline{\psi}_2)}. \]
Ricci potential estimates

Using the perturbation theorem we prove for instance the transgression formulas:

\[\rho_I = -\frac{1}{2} dJd\Phi, \quad \rho_J = -\frac{1}{2} dId\Phi, \quad \Phi = -\log \frac{(\psi_1, \overline{\psi}_1)}{(\psi_2, \overline{\psi}_2)}. \]

From these it follows that the spinor classes and generalized Kähler class are preserved.
Ricci potential estimates

Using the perturbation theorem we prove for instance the transgression formulas:

\[\rho_I = -\frac{1}{2} dJd\Phi, \quad \rho_J = -\frac{1}{2} dId\Phi, \quad \Phi = -\log \left(\frac{\psi_1, \bar{\psi}_1}{\psi_2, \bar{\psi}_2} \right). \]

From these it follows that the spinor classes and generalized Kähler class are preserved. Furthermore, along a solution to GKRF we set

\[\Box := \frac{\partial}{\partial t} - \Delta_{g_t}. \]
Ricci potential estimates

Using the perturbation theorem we prove for instance the transgression formulas:

\[\rho_I = -\frac{1}{2} d J d \Phi, \quad \rho_J = -\frac{1}{2} d I d \Phi, \quad \Phi = -\log \frac{\psi_1, \overline{\psi}_1}{\psi_2, \overline{\psi}_2}. \]

From these it follows that the spinor classes and generalized Kähler class are preserved. Furthermore, along a solution to GKRF we set

\[\Box := \frac{\partial}{\partial t} - \Delta_{g_t}. \]

Exploiting the perturbation method, one can show the following:

\[\Box \Phi = 0 \]
Ricci potential estimates

Using the perturbation theorem we prove for instance the transgression formulas:

\[\rho_I = -\frac{1}{2} dJ d\Phi, \quad \rho_J = -\frac{1}{2} dld\Phi, \quad \Phi = -\log \left(\frac{\psi_1, \overline{\psi}_1}{\psi_2, \overline{\psi}_2} \right) . \]

From these it follows that the spinor classes and generalized Kähler class are preserved. Furthermore, along a solution to GKRF we set

\[\Box := \frac{\partial}{\partial t} - \Delta_{g_t} . \]

Exploiting the perturbation method, one can show the following:

\[\Box \Phi = 0 \]

\[\Box |\nabla \Phi|^2 = -2 \left| \nabla^2 \Phi \right|^2 - \frac{1}{2} \left< H^2, \nabla \Phi \otimes \nabla \Phi \right> \]
Ricci potential estimates

Using the perturbation theorem we prove for instance the transgression formulas:

\[\rho_I = -\frac{1}{2} dJ d\Phi, \quad \rho_J = -\frac{1}{2} dld\Phi, \quad \Phi = -\log \frac{(\psi_1, \bar{\psi}_1)}{(\psi_2, \bar{\psi}_2)}. \]

From these it follows that the spinor classes and generalized Kähler class are preserved. Furthermore, along a solution to GKRF we set

\[\Box := \frac{\partial}{\partial t} - \Delta_{g_t}. \]

Exploiting the perturbation method, one can show the following:

\[\Box \Phi = 0 \]

\[\Box |\nabla \Phi|^2 = -2 \left| \nabla^2 \Phi \right|^2 - \frac{1}{2} \left< H^2, \nabla \Phi \otimes \nabla \Phi \right> \]

\[\Box \left(t |\nabla \Phi|^2 + \Phi^2 \right) \leq 0 \]
Higher order regularity

A key technical issue to establish smoothness of solutions assuming uniform parabolicity.
Higher order regularity

A key technical issue to establish smoothness of solutions assuming uniform parabolicity. In local coordinates, pluriclosed flow is a quasilinear parabolic system,
Higher order regularity

A key technical issue to establish smoothness of solutions assuming uniform parabolicity. In local coordinates, pluriclosed flow is a quasilinear parabolic system, which moreover has no obvious convexity structure,
A key technical issue is to establish smoothness of solutions assuming uniform parabolicity. In local coordinates, pluriclosed flow is a quasilinear parabolic system, which moreover has no obvious convexity structure, and so the Evans-Krylov/Krylov-Safonov theory does not apply.
Higher order regularity

A key technical issue to to establish smoothness of solutions assuming uniform parabolicity. In local coordinates, pluriclosed flow is a quasilinear parabolic system, which moreover has no obvious convexity structure, and so the Evans-Krylov/Krylov-Safonov theory does not apply.

Theorem
(S, 2014, Jordan, Garcia-Fernandez, S, 2021) Let \((M^{2n}, J)\) be a compact complex manifold. Suppose \((g_t, \beta_t)\) is a solution to the pluriclosed flow on \([0, 1]\) such that

\[
\lambda g_0 \leq g_t \leq \Lambda g_0, \quad |\beta| \leq \Lambda.
\]
Higher order regularity

A key technical issue to establish smoothness of solutions assuming uniform parabolicity. In local coordinates, pluriclosed flow is a quasilinear parabolic system, which moreover has no obvious convexity structure, and so the Evans-Krylov/Krylov-Safonov theory does not apply.

Theorem

(S, 2014, Jordan, Garcia-Fernandez, S, 2021) Let \((M^{2n}, J)\) be a compact complex manifold. Suppose \((g_t, \beta_t)\) is a solution to the pluriclosed flow on \([0, 1]\) such that

\[
\lambda g_0 \leq g_t \leq \Lambda g_0, \quad |\beta| \leq \Lambda.
\]

Given \(k \geq 0\) there exists a constant \(C\) such that

\[
\sup_{M \times \{t\}} t \sum_{j=0}^{k} \left| \nabla^j h \Upsilon (g, h) \right|^{2 (1+j)} \leq C,
\]

where \(h\) is a background metric and \(\Upsilon = \nabla^g - \nabla^h\) is the difference of Chern connections.
Pluriclosed flow and holomorphic Courant algebroids

The proof hinges on a reformulation of pluriclosed flow using holomorphic Courant algebroids, after Bismut.
Pluriclosed flow and holomorphic Courant algebroids

The proof hinges on a reformulation of pluriclosed flow using holomorphic Courant algebroids, after Bismut. Given a pluriclosed metric ω_0, consider

$$Q = T^{1,0} \oplus \Lambda^{1,0}$$

Given now another pluriclosed metric, suppose $\partial \omega - \partial \omega_0 = \partial \beta$, and define $G = (g_{ij} + \beta_{ik} \beta_{jl} g_{lk} - \beta_{jp} g_{pk} g_{lk})$.

This is a Hermitian metric on Q.

Surprisingly, the Bismut curvature of g is naturally identified with the Chern curvature of G.

Moreover, if S_G denotes the Hermitian-Yang-Mills curvature of G, one has $S_G \equiv 0 \iff \rho_B \equiv 0$.
Pluriclosed flow and holomorphic Courant algebroids

The proof hinges on a reformulation of pluriclosed flow using holomorphic Courant algebroids, after Bismut. Given a pluriclosed metric ω_0, consider

$$Q = T^{1,0} \oplus \Lambda^{1,0}$$

with twisted $\overline{\partial}$-operator

$$\overline{\partial}^{\omega_0}(X + \xi) = \overline{\partial}X + \overline{\partial}\xi + \sqrt{-1}iX \partial \omega_0.$$
Pluriclosed flow and holomorphic Courant algebroids

The proof hinges on a reformulation of pluriclosed flow using holomorphic Courant algebroids, after Bismut. Given a pluriclosed metric ω_0, consider

$$Q = T^{1,0} \oplus \Lambda^{1,0}$$

with twisted $\overline{\partial}$-operator

$$\overline{\partial}^0 (X + \xi) = \overline{\partial}X + \overline{\partial}\xi + \sqrt{-1}iX \partial \omega_0.$$

Given now another pluriclosed metric, suppose $\partial \omega - \partial \omega_0 = \overline{\partial} \beta$,

...
Pluriclosed flow and holomorphic Courant algebroids

The proof hinges on a reformulation of pluriclosed flow using holomorphic Courant algebroids, after Bismut. Given a pluriclosed metric ω_0, consider

$$Q = T^{1,0} \oplus \Lambda^{1,0}$$

with twisted overline-∂-operator

$$\overline{\partial}^{\omega_0}(X + \xi) = \overline{\partial}X + \overline{\partial}\xi + \sqrt{-1}iX\overline{\partial}\omega_0.$$

Given now another pluriclosed metric, suppose $\partial\omega - \partial\omega_0 = \overline{\partial}\beta$, and define

$$G = \begin{pmatrix} g_{ij} + \beta_{ik}\overline{\beta}_{jl}g^{\overline{l}k} & \sqrt{-1}\beta_{ip}g^{\overline{l}p} \\ -\sqrt{-1}\beta_{jp}g^{\overline{p}k} & \overline{g}^{\overline{l}k} \end{pmatrix}.$$

This is a Hermitian metric on Q.

Surprisingly, the Bismut curvature of g is naturally identified with the Chern curvature of G. Moreover, if S_G denotes the Hermitian-Yang-Mills curvature of G, one has $S_G \equiv 0 \iff \rho_B \equiv 0$.
Pluriclosed flow and holomorphic Courant algebroids

The proof hinges on a reformulation of pluriclosed flow using holomorphic Courant algebroids, after Bismut. Given a pluriclosed metric ω_0, consider

$$Q = T^{1,0} \oplus \Lambda^{1,0}$$

with twisted $\overline{\partial}$-operator

$$\overline{\partial}^{\omega_0}(X + \xi) = \overline{\partial}X + \overline{\partial}\xi + \sqrt{-1}i_X \partial\omega_0.$$

Given now another pluriclosed metric, suppose $\partial\omega - \partial\omega_0 = \overline{\partial}\beta$, and define

$$G = \begin{pmatrix} g_{ij} + \beta_{ik} \overline{\beta}_{ji} g^{\overline{l}k} & \sqrt{-1} \beta_{ip} g^{\overline{l}p} \\ -\sqrt{-1} \beta_{jp} g^{\overline{p}k} & g^{\overline{l}k} \end{pmatrix}.$$

This is a Hermitian metric on Q. Surprisingly, the Bismut curvature of g is naturally identified with the Chern curvature of G.
Pluriclosed flow and holomorphic Courant algebroids

The proof hinges on a reformulation of pluriclosed flow using holomorphic Courant algebroids, after Bismut. Given a pluriclosed metric ω_0, consider

$$ Q = T^{1,0} \oplus \Lambda^{1,0} $$

with twisted $\overline{\partial}$-operator

$$ \overline{\partial}^{\omega_0}(X + \xi) = \partial X + \overline{\partial} \xi + \sqrt{-1}iX \partial \omega_0. $$

Given now another pluriclosed metric, suppose $\partial \omega - \partial \omega_0 = \overline{\partial} \beta$, and define

$$ G = \begin{pmatrix} g_{ij} + \beta_{ik} \overline{\beta}_{jk} g^{\overline{l}k} & \sqrt{-1} \beta_{ip} g^{\overline{l}p} \\ -\sqrt{-1} \beta_{jp} g^{\overline{p}k} & g^{\overline{l}k} \end{pmatrix}. $$

This is a Hermitian metric on Q. Surprisingly, the Bismut curvature of g is naturally identified with the Chern curvature of G. Moreover, if S^G denotes the Hermitian-Yang-Mills curvature of G, one has

$$ S^G \equiv 0 \quad \longleftrightarrow \quad \rho_B \equiv 0 $$
Pluriclosed flow and holomorphic Courant algebroids

\[Q = T^{1,0} \oplus \Lambda^{1,0}, \quad G = \begin{pmatrix} g_{ij} + \beta_{ik} \bar{\beta}_{ji} g^{\bar{k}i} & \sqrt{-1} \beta_{ip} g^{lp} \\ -\sqrt{-1} \beta_{jp} g^{pk} & g^{\bar{k}i} \end{pmatrix}. \]
Pluriclosed flow and holomorphic Courant algebroids

\[Q = T^{1,0} \oplus \Lambda^{1,0}, \quad G = \begin{pmatrix} g_{i\bar{j}} + \beta_{ik} \bar{\beta}_{\bar{j}i} g^{\bar{l}k} & \sqrt{-1} \beta_{ip} g^{lp} \\ -\sqrt{-1} \beta_{jp} g^{\bar{p}k} & g^{l\bar{k}} \end{pmatrix}. \]

Furthermore, if \((\omega_t, \beta_t)\) is a solution of pluriclosed flow, then

\[G^{-1} \frac{\partial}{\partial t} G = - S^G. \]
\[Q = T^{1,0} \oplus \Lambda^{1,0}, \quad G = \begin{pmatrix} g_{ij} + \beta_{ik} \overline{\beta}_{ji} g^{\bar{k}} & \sqrt{-1} \beta_{ip} g^{ip} \\ -\sqrt{-1} \beta_{jp} g^{\bar{p}k} & g^{\bar{k}} \end{pmatrix}. \]

Furthermore, if \((\omega_t, \beta_t)\) is a solution of pluriclosed flow, then
\[G^{-1} \frac{\partial}{\partial t} G = - S^G. \]

It follows that, using uniform ellipticity bounds one can show
\[\square |\uptau(G, G_0)|^2_{g,G} \leq C \left(|\uptau(G, G_0)|^2_{g,G} + 1 \right), \]

a generalization of Yau’s \(C^3\) estimate for the Calabi-Yau Theorem.
Next we establish the uniform parabolicity estimates when the flow is on a Kähler background.
Next we establish the uniform parabolicity estimates when the flow is on a Kähler background. This argument largely ignores the GK condition, working instead with the solution $\omega = \omega_I$ to pluriclosed flow.
Next we establish the uniform parabolicity estimates when the flow is on a Kähler background. This argument largely ignores the GK condition, working instead with the solution $\omega = \omega_I$ to pluriclosed flow. In particular, on a Kähler, Calabi-Yau background we can express

$$\frac{\partial}{\partial t} \omega = - \rho_B^{1,1} = \partial \partial^* \omega + \bar{\partial} \bar{\partial}^* \omega + \sqrt{-1} \bar{\partial} \bar{\partial} \log \frac{\omega^{2n}}{\Omega^{2n}}.$$
Next we establish the uniform parabolicity estimates when the flow is on a Kähler background. This argument largely ignores the GK condition, working instead with the solution $\omega = \omega_I$ to pluriclosed flow. In particular, on a Kähler, Calabi-Yau background we can express

$$\frac{\partial}{\partial t} \omega = - \rho_{B}^{1,1} = \partial \partial^* \omega + \bar{\partial} \bar{\partial}^* \omega + \sqrt{-1} \bar{\partial} \bar{\partial} \log \frac{\omega^{2n}}{\Omega^{2n}}.$$

Thus $\omega_t = \omega_{\alpha_t} := \omega_{\text{CY}} + \bar{\partial} \alpha_t + \partial \bar{\alpha}_t$,
Next we establish the uniform parabolicity estimates when the flow is on a Kähler background. This argument largely ignores the GK condition, working instead with the solution $\omega = \omega_I$ to pluriclosed flow. In particular, on a Kähler, Calabi-Yau background we can express

$$\frac{\partial}{\partial t} \omega = -\rho^{1,1}_B = \bar{\partial}\bar{\partial}^* \omega + \bar{\partial}\bar{\partial}^* \omega + \sqrt{-1} \bar{\partial}\bar{\partial} \log \frac{\omega^{2n}}{\Omega^{2n}}.$$

Thus $\omega_t = \omega_{\alpha_t} := \omega_{\text{CY}} + \bar{\partial}\alpha_t + \partial\bar{\alpha}_t$, where

$$\frac{\partial}{\partial t} \alpha = \bar{\partial}\bar{\partial}^* \omega_{\alpha} + \frac{\sqrt{-1}}{2} \partial \log \frac{\omega_{\alpha}^{2n}}{\Omega^{2n}}.$$
Next we establish the uniform parabolicity estimates when the flow is on a Kähler background. This argument largely ignores the GK condition, working instead with the solution $\omega = \omega_I$ to pluriclosed flow. In particular, on a Kähler, Calabi-Yau background we can express

$$\frac{\partial}{\partial t} \omega = - \rho_B^{1,1} = \partial \partial^* \omega + \bar{\partial} \bar{\partial}^* \omega + \sqrt{-1} \bar{\partial} \bar{\partial} \log \frac{\omega^{2n}}{\Omega^{2n}}.$$

Thus $\omega_t = \omega_{\alpha_t} := \omega_{CY} + \bar{\partial} \alpha_t + \partial \bar{\alpha}_t$, where

$$\frac{\partial}{\partial t} \alpha = \bar{\partial}^* \omega_{\alpha} + \frac{\sqrt{-1}}{2} \partial \log \frac{\omega^{2n}}{\Omega^{2n}}.$$

Note that this PDE has a gauge ambiguity replacing α by $\alpha + \partial \phi$.
Next we establish the uniform parabolicity estimates when the flow is on a Kähler background. This argument largely ignores the GK condition, working instead with the solution $\omega = \omega_I$ to pluriclosed flow. In particular, on a Kähler, Calabi-Yau background we can express

$$\frac{\partial}{\partial t} \omega = - \rho^{1,1}_B = \partial \bar{\partial}^* \omega + \bar{\partial} \partial^* \omega + \sqrt{-1} \partial \bar{\partial} \log \frac{\omega^{2n}}{\Omega^{2n}}.$$

Thus $\omega_t = \omega_{\alpha_t} := \omega_{CY} + \bar{\partial} \alpha_t + \partial \bar{\alpha}_t$, where

$$\frac{\partial}{\partial t} \alpha = \bar{\partial}^* \omega_{\alpha} \alpha + \frac{\sqrt{-1}}{2} \partial \log \frac{\omega^{2n}_{\alpha}}{\Omega^{2n}}.$$

Note that this PDE has a gauge ambiguity replacing α by $\alpha + \partial \phi$. To resolve this gauge ambiguity we explicitly define a new system:

$$\Box \eta = - T \circ \bar{\partial} \eta,$$

$$\Box f = \text{tr}_{\omega_t} \omega_{CY} + \log \frac{\det \omega_t}{\det \omega_{CY}}.$$

and define $\alpha = \eta - \sqrt{-1} \partial f$.

\[C^0\text{ metric estimates}\]
Lemma
One has

\[\Box \frac{\partial f}{\partial t} = \langle \frac{\partial g}{\partial t}, \overline{\partial \eta} + \partial \overline{\eta} \rangle,\]

\[\Box |\eta|^2 = -|\nabla \eta|^2 - |\nabla \overline{\eta}|^2 - \langle Q, \eta \otimes \overline{\eta} \rangle + 2\Re \langle \eta, T \circ \overline{\partial \eta} \rangle \leq 0,\]

\[\Box |\partial \eta|^2 = -|\nabla \partial \eta|^2 - |T|^2 - 2 \langle Q, \partial \eta \otimes \overline{\partial \eta} \rangle \leq 0.\]

where

\[Q_{ij} = g^{ik} g^{\bar{q}p} T_{ik\overline{q}} T_{\overline{jl}p}.\]
C⁰ metric estimates

Lemma
One has

\[\Box \frac{\partial f}{\partial t} = \langle \frac{\partial g}{\partial t}, \bar{\partial} \eta + \partial \bar{\eta} \rangle,\]

\[\Box |\eta|^2 = -|\nabla \eta|^2 - |\nabla \eta|^2 - \langle Q, \eta \otimes \bar{\eta} \rangle + 2 \Re \langle \eta, T \circ \bar{\eta} \rangle \leq 0,\]

\[\Box |\partial \eta|^2 = -|\nabla \partial \eta|^2 - |T|^2 - 2 \langle Q, \partial \eta \otimes \bar{\partial} \eta \rangle \leq 0.\]

where

\[Q_{ij} = g^{ik} g^{jq} T_{ikq} T_{jlp}.\]

Maximum principle: a priori upper bound for \(\eta\) and \(\partial \eta\).
C^0 metric estimates

Lemma

One has

\[\square \frac{\partial f}{\partial t} = \langle \frac{\partial g}{\partial t}, \overline{\partial \eta} + \partial \overline{\eta} \rangle, \]
\[\square |\eta|^2 = -|\nabla \eta|^2 - |\nabla \overline{\eta}|^2 - \langle Q, \eta \otimes \overline{\eta} \rangle + 2\Re \langle \eta, T \circ \overline{\partial \eta} \rangle \leq 0, \]
\[\square |\partial \eta|^2 = -|\nabla \partial \eta|^2 - |T|^2 - 2 \langle Q, \partial \eta \otimes \overline{\partial \eta} \rangle \leq 0. \]

where

\[Q_{ij} = g^{\overline{j}k} g^{\overline{q}p} T_{ik\overline{q}} T_{\overline{j}l\overline{p}}. \]

Maximum principle: a priori upper bound for η and $\partial \eta$.

Lemma

One has

\[\square \log \frac{\omega_t^n}{\omega_{CY}^n} = |T|^2 \]
\[\square \log \text{tr}_{\omega_{CY}} \omega_t \leq |T|^2 + C \text{tr}_{\omega_t} \omega_{CY}. \]
The C^0 estimates then follow from a long series of maximum principles:

1. $\log_2 \omega_n t \omega_n CY = |T|_2 \rightarrow \omega_n \geq C^{-1} \omega_n CY$.
2. $\log tr CY \omega_t + |\partial \eta|_2 \leq 0 \rightarrow tr \omega CY \omega_t \leq C e^{-C (f + t)}$.

Together these yield a priori estimates for the metric in terms of an upper bound for f. Recall $\partial f \partial t = \langle \partial g \partial t, \partial \eta + \partial \eta \rangle$. Here we use the favorable evolution equation for $|\nabla \Phi|^2$, and the fact that $\partial g \partial t = dJ d \Phi \sim \nabla^2 \Phi + T \ast \nabla \Phi$, to obtain $\square (\partial f \partial t + |\eta|^2 + A_1 |\partial \eta|^2 + A_2 |\nabla \Phi|^2) \leq 0$.

The C^0 metric estimates
C^0 metric estimates

The C^0 estimates then follow from a long series of maximum principles:

1. $\Box \log \frac{\omega^n}{\omega^n_{CY}} = |T|^2 \geq 0 \rightarrow \omega^n \geq C^{-1} \omega^n_{CY}$.
C^0 metric estimates

The C^0 estimates then follow from a long series of maximum principles:

1. \(\square \log \frac{\omega^n_t}{\omega^n_{\text{CY}}} = |T|^2 \geq 0 \rightarrow \omega^n \geq C^{-1} \omega^n_{\text{CY}}. \)

2. \(\square \log \frac{\omega^n_t}{\omega^n_{\text{CY}}} + |\partial \eta|^2 \leq 0 \rightarrow \omega^n \leq C \omega^n_{\text{CY}}. \)
The C^0 estimates then follow from a long series of maximum principles:

1. $\Box \log \frac{\omega^n_t}{\omega^n_{CY}} = |T|^2 \geq 0 \longrightarrow \omega^n \geq C^{-1}\omega^n_{CY}$.

2. $\Box \log \frac{\omega^n_t}{\omega^n_{CY}} + |\partial \eta|^2 \leq 0 \longrightarrow \omega^n \leq C\omega^n_{CY}$.

3. $\Box \log \text{tr}_{\omega_{CY}} \omega_t + |\partial \eta|^2 - Cf \leq C \longrightarrow \text{tr}_{\omega_{CY}} \omega_t \leq Ce^{C(f+t)}$.

C^0 metric estimates

The C^0 estimates then follow from a long series of maximum principles:

1. $\Box \log \frac{\omega^n}{\omega_{CY}^n} = |T|^2 \geq 0 \rightarrow \omega^n \geq C^{-1} \omega_{CY}^n$.

2. $\Box \log \frac{\omega^n}{\omega_{CY}^n} + |\partial \eta|^2 \leq 0 \rightarrow \omega^n \leq C \omega_{CY}^n$.

3. $\Box \log \text{tr}_{\omega_{CY}} \omega_t + |\partial \eta|^2 - Cf \leq C \rightarrow \text{tr}_{\omega_{CY}} \omega_t \leq Ce^{C(f+t)}$.

Together these yield a priori estimates for the metric in terms of an upper bound for f.
The C^0 estimates then follow from a long series of maximum principles:

1. $\square \log \frac{\omega^n_t}{\omega^n_{CY}} = |T|^2 \geq 0 \rightarrow \omega^n \geq C^{-1} \omega^n_{CY}$.

2. $\square \log \frac{\omega^n_t}{\omega^n_{CY}} + |\partial \eta|^2 \leq 0 \rightarrow \omega^n \leq C \omega^n_{CY}$.

3. $\square \log tr_{\omega_{CY}} \omega_t + |\partial \eta|^2 - Cf \leq C \rightarrow tr_{\omega_{CY}} \omega_t \leq Ce^{C(f+t)}$.

Together these yield a priori estimates for the metric in terms of an upper bound for f. Recall

$$\square \frac{\partial f}{\partial t} = \left\langle \frac{\partial g}{\partial t}, \partial \eta + \partial \bar{\eta} \right\rangle.$$
C⁰ metric estimates

The C⁰ estimates then follow from a long series of maximum principles:

1. \(\Box \log \frac{\omega^n_t}{\omega^n_{CY}} = |T|^2 \geq 0 \rightarrow \omega^n \geq C^{-1}\omega^n_{CY}. \)

2. \(\Box \log \frac{\omega^n_t}{\omega^n_{CY}} + |\partial \eta|^2 \leq 0 \rightarrow \omega^n \leq C\omega^n_{CY}. \)

3. \(\Box \log \text{tr}_{\omega_{CY}} \omega_t + |\partial \eta|^2 - Cf \leq C \rightarrow \text{tr}_{\omega_{CY}} \omega_t \leq Ce^{C(f+t)}. \)

Together these yield a priori estimates for the metric in terms of an upper bound for f. Recall

\[\Box \frac{\partial f}{\partial t} = \langle \frac{\partial g}{\partial t}, \bar{\partial} \eta + \partial \bar{\eta} \rangle. \]

Here we use the favorable evolution equation for \(|\nabla \Phi|^2, \)
C^0 metric estimates

The C^0 estimates then follow from a long series of maximum principles:

1. □ \log \frac{\omega^n_t}{\omega^n_{CY}} = |T|^2 \geq 0 \longrightarrow \omega^n \geq C^{-1}\omega^n_{CY}.

2. □ \log \frac{\omega^n_t}{\omega^n_{CY}} + |\partial \eta|^2 \leq 0 \longrightarrow \omega^n \leq C\omega^n_{CY}.

3. □ \log tr_{\omega_{CY}} \omega_t + |\partial \eta|^2 - Cf \leq C \longrightarrow tr_{\omega_{CY}} \omega_t \leq Ce^{C(f+t)}.

Together these yield a priori estimates for the metric in terms of an upper bound for f. Recall

□ \frac{\partial f}{\partial t} = \left\langle \frac{\partial g}{\partial t}, \partial \overline{\eta} + \partial \overline{\eta} \right\rangle.

Here we use the favorable evolution equation for |\nabla \Phi|^2, and the fact that \frac{\partial g}{\partial t} = dJd\Phi \sim \nabla^2 \Phi + T \ast \nabla \Phi,
The C^0 estimates then follow from a long series of maximum principles:

1. $\Box \log \frac{\omega^n_T}{\omega^n_{CY}} = |T|^2 \geq 0 \rightarrow \omega^n \geq C^{-1} \omega^n_{CY}$.

2. $\Box \log \frac{\omega^n_T}{\omega^n_{CY}} + |\partial \eta|^2 \leq 0 \rightarrow \omega^n \leq C \omega^n_{CY}$.

3. $\Box \log \text{tr}_{\omega_{CY}} \omega_t + |\partial \eta|^2 - Cf \leq C \rightarrow \text{tr}_{\omega_{CY}} \omega_t \leq Ce^{C(f+t)}$.

Together these yield a priori estimates for the metric in terms of an upper bound for f. Recall

$$\Box \frac{\partial f}{\partial t} = \left\langle \frac{\partial g}{\partial t}, \partial \eta + \partial \bar{\eta} \right\rangle.$$

Here we use the favorable evolution equation for $|\nabla \Phi|^2$, and the fact that $\frac{\partial g}{\partial t} = dJd\Phi \sim \nabla^2 \Phi + T \ast \nabla \Phi$, to obtain

$$\Box \left(\frac{\partial f}{\partial t} + |\eta|^2 + A_1 |\partial \eta|^2 + A_2 |\nabla \Phi|^2 \right) \leq 0.$$
We establish convergence with initial data \((g, b, I, J)\) under the assumption that \textbf{there exists a gCY structure in its GK class.}
We establish convergence with initial data \((g, b, I, J)\) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path \((g_s, b_s, I_s, J_s)\) such that \((g_0, b_0, I, J_0)\) is Kähler, Calabi-Yau.
Convergence

We establish convergence with initial data \((g, b, I, J)\) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path \((g_s, b_s, I, J_s)\) such that \((g_0, b_0, I, J_0)\) is Kähler, Calabi-Yau. Let

\[\mathcal{I} = \{ s \in [0, 1] \mid \text{GKRF starting at } (g_s, b_s, I, J_s) \text{ converges to } (g_0, b_0, I, J_0) \}. \]
Convergence

We establish convergence with initial data \((g, b, \ell, J)\) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path \((g_s, b_s, \ell, J_s)\) such that \((g_0, b_0, \ell, J_0)\) is Kähler, Calabi-Yau. Let

\[I = \{ s \in [0, 1] \mid \text{GKRF starting at } (g_s, b_s, \ell, J_s) \text{ converges to } (g_0, b_0, \ell, J_0) \}. \]

1. \(I \neq \emptyset\): It is trivial that 0 \(\in I\).
We establish convergence with initial data \((g, b, I, J)\) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path \((g_s, b_s, I_s, J_s)\) such that \((g_0, b_0, I_0, J_0)\) is Kähler, Calabi-Yau. Let

\[
\mathcal{I} = \{ s \in [0, 1] \mid \text{GKRF starting at } (g_s, b_s, I, J_s) \text{ converges to } (g_0, b_0, I, J_0) \}.
\]

1. \(\mathcal{I} \neq \emptyset\): It is trivial that \(0 \in \mathcal{I}\).

2. \(\mathcal{I}\) is open:
Convergence

We establish convergence with initial data \((g, b, I, J)\) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path \((g_s, b_s, I, J_s)\) such that \((g_0, b_0, I, J_0)\) is Kähler, Calabi-Yau. Let

\[I = \{s \in [0, 1] \mid \text{GKRF starting at } (g_s, b_s, I, J_s) \text{ converges to } (g_0, b_0, I, J_0)\}\]

1. \(I \neq \emptyset\): It is trivial that \(0 \in I\).

2. \(I\) is open: By smooth dependence of the flow on the initial data, this follows from the general stability of pluriclosed flow near Calabi-Yau metrics (S.-Tian 2010)
We establish convergence with initial data \((g, b, l, J)\) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path \((g_s, b_s, l, J_s)\) such that \((g_0, b_0, l, J_0)\) is Kähler, Calabi-Yau. Let

\[
\mathcal{I} = \{ s \in [0, 1] \mid \text{GKRF starting at } (g_s, b_s, l, J_s) \text{ converges to } (g_0, b_0, l, J_0) \}.
\]

1. \(\mathcal{I} \neq \emptyset\): It is trivial that \(0 \in \mathcal{I}\).

2. \(\mathcal{I}\) is open: By smooth dependence of the flow on the initial data, this follows from the general stability of pluriclosed flow near Calabi-Yau metrics (S.-Tian 2010)

3. \(\mathcal{I}\) is closed:
We establish convergence with initial data \((g, b, I, J)\) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path \((g_s, b_s, I, J_s)\) such that \((g_0, b_0, I, J_0)\) is Kähler, Calabi-Yau. Let

\[\mathcal{I} = \{ s \in [0, 1] \mid \text{GKRF starting at } (g_s, b_s, I, J_s) \text{ converges to } (g_0, b_0, I, J_0) \}. \]

1. \(\mathcal{I} \neq \emptyset \): It is trivial that \(0 \in \mathcal{I} \).

2. \(\mathcal{I} \) is open: By smooth dependence of the flow on the initial data, this follows from the general stability of pluriclosed flow near Calabi-Yau metrics (S.-Tian 2010)

3. \(\mathcal{I} \) is closed: Choose a sequence \(s_i \in \mathcal{I}, \lim_{i \to \infty} s_i = s \).
Convergence

We establish convergence with initial data (g, b, I, J) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path (g_s, b_s, I, J_s) such that (g_0, b_0, I, J_0) is Kähler, Calabi-Yau. Let

$$\mathcal{I} = \{ s \in [0, 1] \mid \text{GKRF starting at } (g_s, b_s, I, J_s) \text{ converges to } (g_0, b_0, I, J_0) \}.$$

1. $\mathcal{I} \neq \emptyset$: It is trivial that $0 \in \mathcal{I}$.

2. \mathcal{I} is open: By smooth dependence of the flow on the initial data, this follows from the general stability of pluriclosed flow near Calabi-Yau metrics (S.-Tian 2010)

3. \mathcal{I} is closed: Choose a sequence $s_i \in \mathcal{I}$, $\lim_{i \to \infty} s_i = s$. Fix a regularity class $C^{k, \alpha}$, $k \geq 10$, a small $\epsilon > 0$,
Convergence

We establish convergence with initial data \((g, b, I, J)\) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path \((g_s, b_s, I, J_s)\) such that \((g_0, b_0, I, J_0)\) is Kähler, Calabi-Yau. Let

\[
\mathcal{I} = \{ s \in [0, 1] \mid \text{GKRF starting at } (g_s, b_s, I, J_s) \text{ converges to } (g_0, b_0, I, J_0) \}.
\]

1. \(\mathcal{I} \neq \emptyset\): It is trivial that \(0 \in \mathcal{I}\).

2. \(\mathcal{I}\) is open: By smooth dependence of the flow on the initial data, this follows from the general stability of pluriclosed flow near Calabi-Yau metrics (S.-Tian 2010)

3. \(\mathcal{I}\) is closed: Choose a sequence \(s_i \in \mathcal{I}\), \(\lim_{i \to \infty} s_i = s\). Fix a regularity class \(C^{k, \alpha}\), \(k \geq 10\), a small \(\epsilon > 0\), and let \(T_i\) denote the first time the flow with initial data \(g_{s_i}\) intersects the closed \(\epsilon\)-ball around \(g_0\) in the \(C^{k, \alpha}\) topology.
Convergence

We establish convergence with initial data \((g, b, l, J) \) under the assumption that there exists a gCY structure in its GK class. In particular fix a smooth path \((g_s, b_s, l, J_s) \) such that \((g_0, b_0, l, J_0) \) is Kähler, Calabi-Yau. Let

\[
\mathcal{I} = \{s \in [0, 1] \mid \text{GKRF starting at } (g_s, b_s, l, J_s) \text{ converges to } (g_0, b_0, l, J_0)\}.
\]

1. \(\mathcal{I} \neq \emptyset \): It is trivial that 0 \(\in \mathcal{I} \).

2. \(\mathcal{I} \) is open: By smooth dependence of the flow on the initial data, this follows from the general stability of pluriclosed flow near Calabi-Yau metrics (S.-Tian 2010)

3. \(\mathcal{I} \) is closed: Choose a sequence \(s_i \in \mathcal{I} \), \(\lim_{i \to \infty} s_i = s \). Fix a regularity class \(C^{k,\alpha}, k \geq 10 \), a small \(\epsilon > 0 \), and let \(T_i \) denote the first time the flow with initial data \(g_{s_i} \) intersects the closed \(\epsilon \)-ball around \(g_0 \) in the \(C^{k,\alpha} \) topology. The key point is to show that \(\limsup_{i \to \infty} T_i < \infty \), after which the convergence follows provided \(\epsilon \) is small enough to begin with.
Naive argument for why $\lim_{i \to \infty} T_i < \infty$:
Naive argument for why $\lim_{i \to \infty} T_i < \infty$: If not, the metrics $g_{s_i}^{T_i}$ on the one hand limit to a structure on the boundary of the ϵ-ball around g_0.
Convergence

Naive argument for why \(\lim_{i \to \infty} T_i < \infty \): If not, the metrics \(g_{s_i}^{T_i} \) on the one hand limit to a structure on the boundary of the \(\epsilon \)-ball around \(g_0 \). On the other hand, by the uniform decay estimate

\[
|\nabla \Phi|^2 \leq Ct^{-1},
\]

the limiting structure must be Kähler, Calabi-Yau,
Convergence

Naive argument for why \(\lim_{i \to \infty} T_i < \infty \): If not, the metrics \(g_{s_i}^{T_i} \) on the one hand limit to a structure on the boundary of the \(\epsilon \)-ball around \(g_0 \). On the other hand, by the uniform decay estimate

\[
|\nabla \Phi|^2 \leq Ct^{-1},
\]

the limiting structure must be Kähler, Calabi-Yau, which by uniqueness is already \(g_0 \): contradiction!
Naive argument for why $\lim_{i \to \infty} T_i < \infty$: If not, the metrics $g^{T_i}_{s_i}$ on the one hand limit to a structure on the boundary of the ϵ-ball around g_0. On the other hand, by the uniform decay estimate

$$|\nabla \Phi|^2 \leq Ct^{-1},$$

the limiting structure must be Kähler, Calabi-Yau, which by uniqueness is already g_0: contradiction! The missing piece in this argument is to show that the time T^i structures, which have an a priori $C^{k,\alpha}$ estimate by hypothesis,
Naive argument for why $\lim_{i \to \infty} T_i < \infty$: If not, the metrics $g_{s_i T_i}$ on the one hand limit to a structure on the boundary of the ϵ-ball around g_0. On the other hand, by the uniform decay estimate

$$|\nabla \Phi|^2 \leq Ct^{-1},$$

the limiting structure must be Kähler, Calabi-Yau, which by uniqueness is already g_0: contradiction! The missing piece in this argument is to show that the time T_i structures, which have an a priori $C^{k,\alpha}$ estimate by hypothesis, in fact have higher regularity, so that convergence in $C^{k,\alpha}$ holds.
Convergence

\[r^k(M, g) := \inf_x \min \left\{ r_h(x, g), \left(\sum_{i=0}^{k} |\nabla^i g \text{Rm}|^{\frac{1}{i+2}}(x) \right)^{-1}, \left(\sum_{i=0}^{k} |\nabla^i g H|^{\frac{1}{i+1}}(x) \right)^{-1} \right\}, \]

Proposition

There exists \(\epsilon(n) \) so that if \((M_n, g_t, b_t, I, J_t) \) is a GKRF on \([-4, 0] \), satisfying

1. \(\sup_{M \times [-2, 0]} |\nabla \Phi| \leq \epsilon(n) \),
2. \(r^k(M, g_0) \geq 1 \).

Then for every \(t \in [-1, 0] \), we have \(r^k(M, g_t) > \frac{1}{2} \).

Proof

Argue by contradiction, assuming there exist counterexamples as \(\epsilon_i \to 0 \).

Point picking/blowup argument: produce a new sequence of solutions on \([-1, 0]\) where:

- \(r(g_0) = 1 \),
- \(r(g_\tau) = \frac{1}{2} \),
- \(r(g_t) \geq \frac{1}{4} \), \(t \in [\tau - \frac{1}{4}, 0] \),
- \(|\nabla \Phi| \leq \epsilon_i \).

These solutions have a limit which on the one hand is static since \(\nabla \Phi \equiv 0 \),

but on the other hand must move due to the change in regularity scale.
Convergence

\[
r^k(M, g) := \inf_x \min \left\{ r_h(x, g), \left(\sum_{i=0}^{k} |\nabla_i^g Rm|^{\frac{1}{i+2}}(x) \right)^{-1}, \left(\sum_{i=0}^{k} |\nabla_i^g H|^{\frac{1}{i+1}}(x) \right)^{-1} \right\},
\]

Proposition

There exists \(\epsilon(n) \) so that if \((M^{2^n}, g_t, b_t, I_t, J_t)\) is a GKRF on \([-4, 0]\), satisfying

1. \(\sup_{M \times [-2,0]} |\nabla \Phi| \leq \epsilon(n), \)

Proof

Argue by contradiction, assuming there exist counterexamples as \(\epsilon_i \to 0 \).

Point picking/blowup argument: produce a new sequence of solutions on \([-4, 0]\) where:

\[
r(g_0) = 1, \quad r(g_\tau) = \frac{1}{2}, \quad r(g_t) \geq \frac{1}{4}, \quad t \in [\tau - \frac{1}{4}, 0],
\]

These solutions have a limit which on the one hand is static since \(\nabla \Phi \equiv 0 \), but on the other hand must move due to the change in regularity scale.
Convergence

\[r^k(M, g) := \inf_x \min \left\{ r_h(x, g), \left(\sum_{i=0}^{k} |\nabla^i g Rm|^{\frac{1}{i+2}}(x) \right)^{-1}, \left(\sum_{i=0}^{k} |\nabla^i g H|^{\frac{1}{i+1}}(x) \right)^{-1} \right\}, \]

Proposition

There exists \(\epsilon(n) \) so that if \((M^{2^n}, g_t, b_t, I, J_t)\) is a GKRF on \([-4, 0]\), satisfying

1. \(\sup_{M \times [-2,0]} |\nabla \Phi| \leq \epsilon(n), \)
2. \(r^k(M, g_0) \geq 1. \)
Convergence

\[r^k(M, g) := \inf \min_x \left\{ r_h(x, g), \left(\sum_{i=0}^{k} |\nabla_i Rm|^{\frac{1}{i+2}}(x) \right)^{-1}, \left(\sum_{i=0}^{k} |\nabla_i H|^{\frac{1}{i+1}}(x) \right)^{-1} \right\}, \]

Proposition

There exists \(\epsilon(n) \) so that if \((M^{2n}, g_t, b_t, I, J_t)\) is a GKRF on \([-4, 0]\), satisfying

1. \(\sup_{M \times [-2, 0]} |\nabla \Phi| \leq \epsilon(n) \),
2. \(r^k(M, g_0) \geq 1 \).

Then for every \(t \in [-1, 0] \), we have \(r^k(M, g_t) > \frac{1}{2} \).
Convergence

\[r^k(M, g) := \inf \min_x \left\{ r_h(x, g), \left(\sum_{i=0}^{k} |\nabla^i g Rm|^{\frac{1}{i+2}}(x) \right)^{-1}, \left(\sum_{i=0}^{k} |\nabla^i g H|^{\frac{1}{i+1}}(x) \right)^{-1} \right\}, \]

Proposition

There exists \(\epsilon(n) \) so that if \((M^{2n}, g_t, b_t, l, J_t)\) is a GKRF on \([-4, 0]\), satisfying

1. \(\sup_{M \times [-2, 0]} |\nabla \Phi| \leq \epsilon(n) \),
2. \(r^k(M, g_0) \geq 1 \).

Then for every \(t \in [-1, 0] \), we have \(r^k(M, g_t) > \frac{1}{2} \).

Proof

Argue by contradiction, assuming there exist counterexamples as \(\epsilon_i \to 0 \).
Convergence

\[r^k(M, g) := \inf_x \min \left\{ r_h(x, g), \left(\sum_{i=0}^{k} |\nabla^i g \text{Rm}|^{\frac{1}{i+2}}(x) \right)^{-1}, \left(\sum_{i=0}^{k} |\nabla^i g \text{H}|^{\frac{1}{i+1}}(x) \right)^{-1} \right\}, \]

Proposition

There exists \(\epsilon(n) \) so that if \((M^{2n}, g_t, b_t, l_t, J_t)\) is a GKRF on \([-4, 0]\), satisfying

1. \(\sup_{M \times [-2,0]} |\nabla \Phi| \leq \epsilon(n), \)
2. \(r^k(M, g_0) \geq 1. \)

Then for every \(t \in [-1, 0] \), we have \(r^k(M, g_t) > \frac{1}{2} \).

Proof

Argue by contradiction, assuming there exist counterexamples as \(\epsilon_i \to 0 \). Point picking/blowup argument: produce a new sequence of solutions on \([-1, 0]\) where:

\[r(g_0) = 1, \quad r(g_{\tau}) = \frac{1}{2}, \quad r(g_t) \geq \frac{1}{4}, \quad t \in [\tau - \frac{1}{4}, 0], \quad |\nabla \Phi| \leq \epsilon_i, \]
Convergence

\[r^k(M, g) := \inf \min_x \left\{ r_h(x, g), \left(\sum_{i=0}^{k} |\nabla^i g \text{Rm}|^{\frac{1}{i+2}}(x) \right)^{-1}, \left(\sum_{i=0}^{k} |\nabla^i g H|^\frac{1}{i+1}(x) \right)^{-1} \right\}, \]

Proposition

There exists \(\epsilon(n) \) so that if \((M^{2n}, g_t, b_t, I, J_t)\) is a GKRF on \([-4, 0]\), satisfying

1. \(\sup_{M \times [-2,0]} |\nabla \Phi| \leq \epsilon(n) \),
2. \(r^k(M, g_0) \geq 1 \).

Then for every \(t \in [-1, 0] \), we have \(r^k(M, g_t) > \frac{1}{2} \).

Proof

Argue by contradiction, assuming there exist counterexamples as \(\epsilon_i \to 0 \). Point picking/blowup argument: produce a new sequence of solutions on \([-1, 0]\) where:

\[r(g_0) = 1, \quad r(g_{\tau}) = \frac{1}{2}, \quad r(g_t) \geq \frac{1}{4}, \quad t \in [\tau - \frac{1}{4}, 0], \quad |\nabla \Phi| \leq \epsilon_i \]

These solutions have a limit which on the one hand is static since \(\nabla \Phi \equiv 0 \),
Convergence

\[
r^k(M, g) := \inf_{x} \min \left\{ r_h(x, g), \left(\sum_{i=0}^{k} |\nabla^i g \ Rm|_{\frac{1}{i+2}}(x) \right)^{-1}, \left(\sum_{i=0}^{k} |\nabla^i g \ H|_{\frac{1}{i+1}}(x) \right)^{-1} \right\},
\]

Proposition

There exists \(\epsilon(n) \) so that if \((M^{2n}, g_t, b_t, I, J_t)\) is a GKRF on \([-4, 0]\), satisfying

1. \(\sup_{M \times [-2,0]} |\nabla \Phi| \leq \epsilon(n) \),
2. \(r^k(M, g_0) \geq 1 \).

Then for every \(t \in [-1, 0] \), we have \(r^k(M, g_t) > \frac{1}{2} \).

Proof

Argue by contradiction, assuming there exist counterexamples as \(\epsilon_i \to 0 \). Point picking/blowup argument: produce a new sequence of solutions on \([-1, 0]\) where:

\[
r(g_0) = 1, \quad r(g_\tau) = \frac{1}{2}, \quad r(g_t) \geq \frac{1}{4}, \ t \in [\tau - \frac{1}{4}, 0], \quad |\nabla \Phi| \leq \epsilon_i
\]

These solutions have a limit which on the one hand is static since \(\nabla \Phi \equiv 0 \), but on the other hand must move due to the change in regularity scale.