Moduli Stacks and Categorical Symmetry

Mathew Bullimore

work in progress with L. Bhardwaj, A. Ferrari, S. Schäfer-Nameki

Part I: Introduction

Introduction

Supersymmetric quantum field theories often admit exact moduli spaces of vacua X parametrised by expectation values of *local* operators.

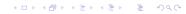
- Supersymmetry implies geometric structures e.g. Kähler, hyper-Kähler.
- Global symmetry groups F act as isometries of X.
- Quantum field theory naturally gives rise to constructions such as equivariant cohomology, K-theory, coherent sheaves.
- Many connections to geometric representation theory and enumerative geometry.

Introduction

Recent developments have lead to a vast generalisation of the notion of symmetry in quantum field theory 1 .

- ightharpoonup Ordinary symmetries F are groups and act on *local* operators.
- ▶ Generalised symmetries can form n-groups \mathcal{F} acting on extended operators of dimension $0, 1, \dots, n-1$.

The symmetries are categorical in nature and natural language is TQFT.



¹Gaiotto-Kapustin-Seiberg-Willett '14

Introduction

In the context of supersymmetric field theories with eight supercharges, I will explain how generalised symmetries act on moduli stacks².

$$\pi: \mathcal{X} \to X$$

- ▶ The base *X* is the underlying moduli space.
- ▶ The fiber $\pi^{-1}(x)$ captures the existence of a TQFT at a point $x \in X$ on the moduli space.
- ightharpoonup Ordinary symmetries F act on X.
- Generalised symmetries \mathcal{F} act on \mathcal{X} .

Part II: Moduli Spaces

Supersymmetry

I will consider supersymmetric quantum field theories eight supercharges.

- ▶ I will focus on three dimensions: 3d $\mathcal{N}=4$.
- ▶ I will assume they flow to a superconformal fixed point.
- ▶ I expect at least some conclusions are applicable (with caveats and appropriate generalisations) to 4d $\mathcal{N}=2$, 5d $\mathcal{N}=1$.

Moduli Spaces

They admit moduli spaces that are conical symplectic singularities X_0 . ³

- ▶ The conical nature reflects the superconformal fixed point.
- ▶ There are sometimes parameters that allow symplectic resolutions

$$p: X \rightarrow X_0$$

Examples are nilpotent orbit closures:

$$T^*\mathbb{CP}^1 \ \to \ \overline{\mathcal{N}_{\min}} \subset \mathfrak{sl}_2(\mathbb{C})$$

How are moduli spaces constructed operationally in quantum field theory?

³Beauville '99, Nakikawa '11 : see Antoine Bourget's talk. ▶ ⟨♂ ▶ ⟨ ≧ ▶ ⟨ ≧ ▶ │ ≧ → ⊘ ९ №

Local operators I

We consider certain classes of BPS local operators.

- ▶ Translations are exact: $\partial_x \mathcal{O}(x) = Q(\cdots)$.
- ▶ Correlation functions $\mathcal{O}_1(x_1)\cdots\mathcal{O}_n(x_n)$ are independent of positions x_1,\cdots,x_2 .
- ▶ This defines a commutative *chiral ring* A_0 .
- ▶ We then define the affine variety $X_0 = \operatorname{Spec} A_0$.

$$\begin{array}{cccc} \bullet & \longrightarrow & \bullet & = & \bullet \\ \mathcal{O}_1 & \mathcal{O}_2 & & & \mathcal{O}_1 \mathcal{O}_2 \end{array}$$

Local operators II

There are additional properties of A_0 :

▶ Poincare supersymmetry implies a Poisson structure ⁴

$$\{\cdot,\cdot\}:\mathcal{A}_0\times\mathcal{A}_0\to\mathcal{A}_0$$

(The ring and Poisson structure come respectively from homology of $\mathsf{Conf}_2(\mathbb{R}^3) \sim S^2$ in degree 0 and 2.)

- ightharpoonup Superconformal symmetry implies \mathbb{Z} -grading with
 - 1. All degrees $r \geq 0$, saturated only by 1.
 - 2. The Poisson structure has degree -2.

This ensures $X_0 = \operatorname{Spec} A_0$ is a conical symplectic singularity.

⁴Ben-Zvi, Beem, MB, Dimofte, Neitzke '18

Resolutions

How can we construct resolutions X?

The idea is to study local operators at the end of a line operator.

- ▶ Choose a BPS line operator *L*.
- ▶ Consider local operators A_n at the end of L^n , $n \ge 0$.
- ▶ Construct graded A_0 -algebra $A := \bigoplus_{n \geq 0} A_n$.
- ▶ Proj construction: X = Proj A

$$egin{array}{ccccc} L^m & L^n & & L^{m+n} \ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & \mathcal{O}_1 & \mathcal{O}_2 & & & \mathcal{O}_1 \mathcal{O}_2 \end{array}$$

With some conditions on L, this is a symplectic resolution $X \to X_0$.

Gauge Theories

Consider a supersymmetric gauge theory labelled by

- A complex reductive group G (complexification of connected compact Lie group G_c).
- ▶ A complex symplectic representation $\rho: G \to \operatorname{Sp}(T^*V)$.

I will assume $\ker \rho$ is at most finite subgroup of Z(G).

Higgs and Coulomb

There is in general an intricate moduli space of vacua. ⁵

There are two components distinguished by which classes of BPS operators we consider:

- 1. Higgs branch.
- 2. Coulomb branch.

Today, I will focus on the Higgs branch.

Please feel free to ask about Coulomb branches at the end!

Local operators

The Higgs branch is constructed as follows:

- ▶ Hypermultiplet scalars are linear functions on T^*V .
- ▶ Local operators are invariant polynomial functions on T^*V subject to complex moment map constraint.
- ▶ In other words

$$\mathcal{A}_0 = \mathbb{C}[\mu^{-1}(0)]^G$$

where $\mu:V\to \mathfrak{g}^*$ is the moment map.

▶ The Higgs branch is the affine GIT quotient

$$X_0 := \operatorname{Spec} A_0 = \mu^{-1}(0) / / G$$

Resolutions

To study resolutions, the relevant line operators are labelled by co-characters θ of the *topological symmetry*:

$$Z(^LG) = \pi_1(G)^{\vee}$$

- ▶ Example: G = GL(N), $\theta \in \mathbb{Z}$.
- ▶ The line operators are Wilson lines W_{θ} in representation $(\det V)^{\theta}$ where V is fundamental of GL(N).
- Local operators ending Wilson lines are not gauge-invariant.
- \mathcal{A}_n consists of semi-invariants $f(g \cdot x) = (\det g)^{n\theta} f(x)$ on $\mu^{-1}(0)$.

The resolution is the GIT quotient $X = \operatorname{Proj} \mathcal{A} = \mu^{-1}(0)^{\chi_{\theta}} /\!/ G$.

Example I

Consider supersymmetric QED: $G = \mathbb{C}^{\times}$, $V = \mathbb{C}^{2}$, weights (1,1).

- ▶ Introduce linear coordinates (X_j, Y_j) on T^*V .
- ▶ Form 2×2 matrix of invariant functions $M_{ij} = X_i Y_j$.
- $lackbox{ Complex moment map } \mu = \sum_j X_i Y_j = 0 \text{ implies}$

$$Tr(M) = 0 \qquad M^2 = 0$$

We recover minimal nilpotent orbit

$$X_0=\overline{\mathcal{N}_{\min}}\subset\mathfrak{sl}(2,\mathbb{C})$$

Example I

Consider supersymmetric QED: $G = \mathbb{C}^{\times}$, $V = \mathbb{C}^{2}$, weights (1,1).

- ▶ Consider the Wilson line W of charge +1.
- ▶ Operators ending on W^n with $n \ge 0$ are

$$\mathcal{A}_n = \mathcal{A}_0 \times \{\text{homogeneous polynomials in } X_j \text{ of degree n}\}$$

We recover the resolution

$$X := \operatorname{\mathsf{Proj}} \mathcal{A} = T^* \mathbb{CP}^1$$
.

Part III: Moduli Stacks

Motivation

This construction of X does not capture the presence of topological sectors e.g. discrete gauge theory.

- ▶ Promoted moduli spaces to moduli stacks \mathcal{X} , \mathcal{X}_0 .
- ▶ The Higgs stack of a supersymmetric gauge theory:

$$\mathcal{X}_0 = [\mu^{-1}(0)/G]$$
 $\mathcal{X} = [\mu^{-1}(0)^{\chi_\theta}/G]$

Expected structure under my assumptions:

- 1. \mathcal{X}_0 is an algebraic stack whose generic point has finite automorphisms.
- 2. With appropriate θ , \mathcal{X} is a Deligne-Mumford stack.

I will focus on the latter!

Heuristic Picture

The moduli stack can be understood heuristically as a fibration

$$\pi: \mathcal{X} \to X$$

- ▶ The base *X* is the underlying coarse moduli space.
- ▶ The fibres are classifying stacks $\pi^{-1}(x) = BA_x = [pt/A_x]$
- ▶ The automorphism group $A_x \subset G$ is the discrete unbroken gauge symmetry at $x \in X$.

How to see this structure?

Lines Again

Discrete automorphism groups are detected by Wilson lines that *cannot* end on local operators.

► Consider the finite abelian group

$$\hat{A}_x = \{ \text{Wilson lines} \} / \sim$$

where $W_1 \sim W_2$ if there exists a non-trivial operator at their junction that does not vanish at x.

- ▶ This enumerates line operators that cannot end.
- ▶ Then the automorphism group / unbroken gauge symmetry is

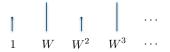
$$A_x = \operatorname{Hom}(\hat{A}_x, U(1)) \,.$$

Example I

Consider Supersymmetric QED: G = U(1), $V = \mathbb{C}^2$, weights (2,2).

▶ The operators ending on Wilson lines are

$$\mathcal{A} = \begin{cases} \mathcal{A}_0 \times \{\text{homog. poly. in } X_1, X_2 \text{ degree } \frac{n}{2} \ \} & n \text{ ever} \\ 0 & n \text{ odd} \end{cases}$$



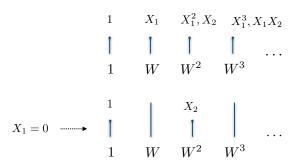
- ▶ The coarse moduli space is $X = T^*\mathbb{CP}^1$.
- ▶ Since $W^2 \sim 1$, there are automorphisms $A_x = \mathbb{Z}_2$ for all $x \in X$.
- $ightharpoonup \mathcal{X}$ is the total space of a \mathbb{Z}_2 -gerbe on $T^*\mathbb{CP}^1$.

This captures a discrete \mathbb{Z}_2 gauge theory everywhere on X.

Example II

Consider Supersymmetric QED: G = U(1), $V = \mathbb{C}^2$, weights (1,2).

► Consider operators ending on Wilson lines:



- \triangleright \mathcal{X} is a a hyper-toric stack. ⁶
- $\{X_1 = 0\}$ is a stacky locus with \mathbb{Z}_2 automorphism.

⁶Jiang-Tseng '08

Part IV : Symmetries

2-group Global Symmetry

The global symmetries acting on configurations of local operators and line operators may form a 2-group \mathcal{F} .

In the present setup, this boils down to the following data:

- ▶ A compact connected Lie group F_c .
- ▶ A discrete abelian group *A*.
- ▶ A class in $H^3(BF_c, A)$

The proposal is that this captures automorphisms of the stack $\mathcal{X}.$

0-form Symmetry I

The compact connected Lie group F_c is the *0-form symmetry*.

- lacktriangle Genuine local operators transform in faithful representation of F_c .
- Local operators at the end of line operators may transform in representations of a central extension \widetilde{F}_c .
- ightharpoonup The corresponding complex reductive F acts on X.

0-form Symmetry II

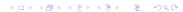
In a supersymmetric gauge theory $\rho: G \to \operatorname{Sp}(T^*V)$:

▶ The global symmetry acting on Higgs branch operators is

$$F = N_{\mathsf{Sp}(T^*V)}(G)/G$$

- ▶ This acts on the symplectic GIT quotient $X = \mu^{-1}(0)^{\chi_{\theta}} /\!/ G$.
- ▶ Example: in supersymmetric QED with $G = \mathbb{C}^{\times}$, $V = \mathbb{C}^2$ weights (1,1) we have

$$X = T^* \mathbb{CP}^1 \qquad F = PGL(2)$$



1-form Symmetry I

The discrete abelian group A is the 1-form symmetry.

This arises when there is a common subgroup $A \subset A_x$ of automorphisms at all points $x \in X$.

Consider the finite abelian group

$$\hat{A} = \{ \text{Wilson lines} \} / \sim$$

where $W_1 \sim W_2$ if there are any non-trivial junction operators.

- ▶ They correspond to line operators that cannot end.
- ▶ Then $A = \text{Hom}(\hat{A}, U(1))$.
- ▶ BA acts on the fibers of $\pi: \mathcal{X} \to X$.

1-form Symmetry II

In a supersymmetric gauge theory $\rho:G\to\operatorname{Sp}(T^*V)$,

$$A = \ker \rho \subset Z(G)$$

In the examples considered earlier:

- ▶ Supersymmetric QED with weights (1,1): $A = \emptyset$
- ▶ Supersymmetric QED with weights (2,2): $A = \mathbb{Z}_2$
- ▶ Supersymmetric QED with weights (1,2): $A = \emptyset$.

More generally in supersymmetric QED with charges Q_1,\ldots,Q_N ,

$$A = \mathbb{Z}_{\gcd(Q_1, \dots, Q_N)}$$

Postnikov Class I

The interaction between F, A is controlled by the Postnikov class

$$\Theta \in H^3(BF_c, A)$$

I will not explain how to construct it it general ⁷ but

- ▶ Suppose $\hat{A} \cong \mathbb{Z}_k$ is generated by a line operator $L^k \sim 1$.
- ▶ If L^k ends on local operators transforming in a central extension of F_c it is possible that $\Theta \neq 0$.

Here is an example...

⁷See Bhardwaj '21, Lee-Ohmori-Tachikawa '21

Example

Consider Supersymmetric QED: G = U(1), $V = \mathbb{C}^2$, weights (2,2).

- ▶ Recall that \mathcal{X} is a \mathbb{Z}_2 gerbe over $T^*\mathbb{CP}^1$.
- $F_c = SO(3)$ acts on $T^*\mathbb{CP}^1$.
- ▶ $BA = B\mathbb{Z}_2$ acts in the $B\mathbb{Z}_2$ fibers.
- ▶ The Wilson line $W^2 \sim 1$ ends on local operators X_1 , X_2 transforming in fundamental of SU(2); an extension of SO(3).

$$W^2 \longrightarrow X_1, X_2$$

▶ Postnikov class $\Theta \in H^3(BSO(3), \mathbb{Z}_2) \cong \mathbb{Z}_2$ is non-trivial.

Part V : Final Thoughts

Mirror Symmetry

In a 3d $\mathcal{N}=4$ theory there are two potential 2-group symmetries:

- \mathcal{F}_A acting on the Coulomb branch stack \mathcal{X}_A .
- $ightharpoonup \mathcal{F}_B$ acting on the Higgs branch stack \mathcal{X}_B .
- ▶ They have mixed 't Hooft anomalies!

Matching these structures provides new tests of mirror symmetry.

▶ An example is supersymmetric QED with charges (2, 2):

$$\mathcal{X}_A = T^*\mathbb{CP}^1/\mathbb{Z}_2$$
 $\mathcal{X}_B = \mathbb{Z}_2 ext{-gerbe over } T^*\mathbb{CP}^1.$

Ask me about the mirror afterwards!

