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Nearly Kähler Manifolds

The round S6 ⊂ Im(O) has an orthogonal G2-invariant almost complex
structure J from the octonions

It is not Kähler, what is the underlying geometric structure?

Has special properties: Einstein, the cone has a G2-structure

Gray ’70: An almost Hermitian manifold (M2n, g , J) is called nearly
Kähler if

(∇ξJ)(ξ) = 0
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The nearly Kähler structure on CP3

CP3 also has a nearly Kähler structure:

The twistor fibration

CP3 → HP1 ∼= S4, [Z0,Z1,Z2,Z3] 7→ [Z0 + jZ1,Z2 + jZ3]

has a natural connection TCP3 = H⊕ V coming from CP3 ⊂ Λ2
−(S4). It

is orthogonal w.r.t. the Fubini-Study metric gFS on CP3

H is a holomorphic contact distribution on CP3

Non-integrable almost complex structure J reverses standard complex
structure on V
Define a metric gλ by squashing gFS on V by λ > 0

There is λ such that (CP3, gλ, J) is nearly Kähler

Sp(2) acts via automorphisms on CP3
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Properties of nearly Kähler manifolds

Nearly Kähler manifolds in dimension < 6 are automatically Kähler. A strict
nearly Kähler manifold M in dimension six

admits an SU(3)-structure ω ∈ Ω2(M), ψ ∈ Ω3(M,C) satisfying

dω = 3cRe(ψ)

dIm(ψ) = −2cω ∧ ω

assume c = 1

yields a torsion-free G2-structures

ϕ = r 2dr ∧ ω + r 3Reψ

on the cone C(M) = M × R>0

is Einstein with positive scalar curvature

sine-cone is a nearly parallel G2 structure

SU(3) connection ∇̄ with totally skew symmetric torsion

Acharya-Bryant-Salamon (’20): Description of the SU(3) structure of a circle
quotient of C(CP3)
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Important Results for Nearly Kähler manifolds

Grunewald (’94): Nearly Kähler manifolds are characterised by the
existence of a real Killing spinor

∇ξφ = αξ · φ φ ∈ Γ(X ,S), ξ ∈ TM, α ∈ R

Nagy (’02): Nearly Kähler manifolds are locally a Riemannian product of
homogenous nearly Kähler spaces, twistor spaces over quaternionic Kähler
manifolds and 6-dimensional nearly Kähler manifolds

Butruille (’10), there are exactly four homogeneous nearly Kähler
structures (compact, simply-connected): On

S6 = G2/SU(3),
CP3 = Sp(2)/U(1) × Sp(1),
S3 × S3 = SU(2)3/∆SU(2)
F1,2(C3) = SU(3)/T2

Foscolo-Haskins(’17): Construction of inhomogeneous structures on
S3 × S3 and S6
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Submanifolds of nearly Kähler manifolds

Lagrangian submanifold: L ⊂ M with ω|L ≡ 0.
Our focus is on J-holomorphic curves ϕ : (X , I )→ M with dϕ ◦ I = J ◦ dϕ:

Have isolated singularities: dϕ ∈ Ω1,0(X , ϕ∗TM) is holomorphic

Not calibrated but minimal

Are locally described (up to reparametrisation) by four functions of one
variable: A real-analytic curve can locally uniquely be thickened to a
J-holomorphic curve

Difficulties

There are no J-holomorphic immersions N4 → M6 or submersions
M6 → N4

J is not ’generic’ and not integrable
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J-holomorphic curves from holomorphic data

Bryant ’82: There is a class J-holomorphic curves, called null-torsion
curves, in S6 coming from certain holomorphic curves X 2 → Q ⊂ CP6

Bryant ’82: Parametrisation of J-holomorphic curves in CP3, called
superminimal curves, tangent to H

Θ(f , g) = [1, f − 1

2
g
( df

dg

)
, g ,

1

2

( df

dg

)
]

for f , g : X → CP1 meromorphic

Xu ’10: There is another copy of superminimal curves in CP3: null-torsion
curves
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J holomorphic curves in CP3 and other geometries

Eells-Salamon Correspondence

There is a one-to-one correspondence between (branched) minimal surfaces in
S4 and non-vertical J-holomorphic curves in CP3.

 Minimal tori in S4: Ferus-Pedit-Pinkall-Sterling ’90, ’92
Twistor perspective reduces second order to first order equations but more
complicated ambient space.
Relation to G2 and Spin(7) geometry:

Associatives in the cone and sine-cone of CP3

Karigiannis-Min-Oo ’05: Associatives in Λ2
−(S4) and Cayley submanifolds

in S−(S4) as total spaces of vector bundles over minimal X ⊂ S4

Kawai ’15, Ball-Madnick ’20: Ruled associative submanifolds of nearly
parallel S7

sq and Berger space SO(5)/SO(3)
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Reducing the frame bundle

The splitting TCP3 = H⊕ V is parallel wrt ∇̄,

Hol(∇̄) ⊂ S(U(2)×U(1)) ⊂ U(2)

Up to double covers, Sp(2)→ CP3 is the reduced frame budle with
structure group U(1)× Sp(1)

ΩMC =

(
iρ1 + jω3 − ω1√

2
+ j ω2√

2
ω1√

2
+ j ω2√

2
iρ2 + jτ

)

ω1, ω2, ω3 ∈ Ω1(Sp(2),C) local unitary (1, 0)-forms on CP3

Over J-holomorphic curve ϕ : X → CP3,

ω2 ≡ 0

reduces ϕ∗Sp(2) to an U(1)×U(1) and τ becomes a basic form
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Angle functions

Equivalently, there is a J-holomorphic lift ϕ̂ : X → F = Sp(2)/T2 and

TF = H⊕ V+ ⊕ V−

F = Sp(2)/(U(1)×U(1))

X CP3
− = Sp(2)/(U(1)× Sp(1)) CP3

+ = Sp(2)/(Sp(1)×U(1))

S4 = Sp(2)/Sp(1)× Sp(1))

ϕ

ϕ̂

Definition

For ϕ : X → CP3 with lift ϕ̂ : X → F define

α±(x) =
‖ξ‖V±

‖ξ‖H
, for ξ ∈ TxX ⊂ ϕ̂∗(TF).

ϕ is superminimal iff α− ≡ 0 and null-torsion iff α+ ≡ 0
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Some superminimal spheres

Immersion of superminimal spheres with f (z) = zk and g(z) = z , plot of α2
+

for degree k = 3, 4, 5, 6

Zeros of α+ correspond to totally geodesic points:

rτ = 6(g − 1) + 2 deg−2rH

for g = 0 and rH = 0
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Transverse J-holomorphic curve

Call a J-holomorphic transverse if

α± ∈ (0,∞)⇔ ϕ̂ is nowhere tangent to V± or H

Allows reduction to discrete structure group:

ω3 = α−ω1, τ = α+ω1

Let Θ = −α2
−IdH ⊕ IdV and ν1 = Θ(TX ) ⊂ ν

TCP3 = TX ⊕ ν1 ⊕ ν2

X is compact ⇒ immersed torus with 1
2
volH = volV− = volV+ .

Non-transverse points governed by holomorphic differentials, local
behaviour:

α±(z) = |z |ku

with positive smooth u : X ⊃ U → C

Benjamin Aslan Transverse J-holomorphic curves in nearly Kähler CP3



Toda Lattice Equations

Theorem (A. ’21)

The induced metric gH on X is conformally flat with factor γ = (α−α+)−1/2

with Gauß curvature 2(1− α2
− − α2

+) and α± satisfy

∆0log(α2
−) = −4(3α2

− + α2
+ − 2)γ

∆0log(α2
+) = −4(3α2

+ + α2
− − 2)γ.

The second fundamental form II ∈ Ω1(X ,TX∨ ⊗ ν) is

II = − 2

α2
− + 1

d1,0α− ⊗ f2 ⊗ f 1 +
α+ω1√
α2
− + 1

⊗ f3 ⊗ f 1

Example: Unique flat curve α− = α+ = 1√
2
, lift of Clifford torus
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Properties of the Angle Functions

Solutions depend on four functions of one variable

Negative result: Every J-holomorphic curve with holomorphic second
fundamental form is superminimal or has zero-torsion

Bolton-Pedit-Woodward ’95: Solutions are integral surfaces of
Hamiltonian distribution on finite-dim vector space

α± locally determine the J-holomorphic curve (up to constants)

Minimal surface lies in S3 ⊂ S4 iff α− ≡ α+

 Sinh-Gordon equation ∆0(u) = −λ sinh(u)

Lawson-torus:

{(z ,w) ∈ S3 ⊂ C2 | Im(zmw̄ k) = 0},

α−(x) = α+(x) = Ck,m(m2 cos(x)2 + k2 sin(x)2)
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Imposing U(1)-symmetry

Fix U(1)k,m subgroup of T2 ⊂ Sp(2) by choosing ξ = diag(ik, im) ∈ sp(2)
with fundamental vector field K ξ and k ≥ m

U(1)-invariant J-holomorphic curves are integral surfaces of the
distribution spanned by K ξ and JK ξ

 Integrate JK ξ

For general k,m ∈ Z the action commutes with T2 ⊂ Sp(2)

Toric multi-moment-map Russo-Swann ’19

ν = ω(K ξ
1 ,K

ξ
2 ) = 12|Z |−4Im(Z0Z1Z2Z3)

preserved for JK ξ.
Are there more preserved quantities?
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Parametrising the orbit space

The functions

ζ = (v−, v+, r−, r+) : CP3 → D ⊂ R4

v± = ‖K ξ‖2
V± , r± =

1

2
JK ξ log(v±)

parametrise CP3/T2, up to a singular set and Z2-action of complex conjugation.
The branch locus in CP3/T2 is

RP3/Z2 = ν−1(0)/T2.

On D, the flow equation of JK ξ is Hamiltonian and has a Lax representation.
 two preserved quantities in involution
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Twistor moment maps

Liouville-Arnold: The fibres of D →R ⊂ R2 are two-tori and the flow equation
admits action-angle coordinates

ξ corresponds to Q = kZ0Z1 + mZ2Z3 under sp(2)C ∼= S2(C4) and v− = 4|Q|2.
The quadric {Q = 0} is traced out by U(1)-invariant superminimal curves.
The rectangle degenerates to the top left line if k = m and top to right line if
m = 0.
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Further Directions

Treat degenerate case k = m with U(2)-moment maps

M → R3 ⊕ R3 ⊕ R3 ⊕ R

Can U(1)-invariant picture be generalised to τ -primitive maps in general
flag manifolds?

Is there a class of (special) Lagrangians in CP3 ruled over transverse
J-holomorphic curves?
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