Transverse J-holomorphic curves in nearly Kähler \mathbb{CP}^3

Benjamin Aslan

University College London

January 2022

Benjamin Aslan Transverse J-holomorphic curves in nearly Kähler \mathbb{CP}^3

 \blacksquare

 \mathbf{y} of \mathbf{B} , \mathbf{y} .

Ξ

高山 299

¹ Background

- ² Angle functions for *J*-holomorphic curves
- **3** Circle invariant examples

 \leftarrow \Box

おす 高下

Þ

ミー 299

- The round $S^6 \subset \mathrm{Im}(\mathbb{O})$ has an orthogonal \mathcal{G}_2 -invariant almost complex structure J from the octonions
- It is not Kähler, what is the underlying geometric structure?
- \bullet Has special properties: Einstein, the cone has a G_2 -structure
- Gray '70: An almost Hermitian manifold (M^{2n}, g, J) is called nearly Kähler if

 $(\nabla_{\xi}J)(\xi)=0$

경기 시청에 있는데.

 \mathbb{CP}^3 also has a nearly Kähler structure:

• The twistor fibration

 $\mathbb{CP}^3 \rightarrow \mathbb{HP}^1 \cong \mathcal{S}^4, \quad [Z_0,Z_1,Z_2,Z_3] \mapsto [Z_0 + j Z_1, Z_2 + j Z_3]$

has a natural connection $\mathcal{T}\mathbb{CP}^3=\mathcal{H}\oplus\mathcal{V}$ coming from $\mathbb{CP}^3\subset\Lambda^2_-(\mathcal{S}^4).$ It is orthogonal w.r.t. the Fubini-Study metric g_{FS} on \mathbb{CP}^3

- \bullet H is a holomorphic contact distribution on \mathbb{CP}^3
- Non-integrable almost complex structure J reverses standard complex structure on V
- Define a metric g_{λ} by squashing g_{FS} on V by $\lambda > 0$

There is λ such that $({\mathbb{CP}}^3,g_\lambda,J)$ is nearly Kähler

• Sp(2) acts via automorphisms on \mathbb{CP}^3

K BIKK BIKK BIKK

 QQ

Nearly Kähler manifolds in dimension $<$ 6 are automatically Kähler. A strict nearly Kähler manifold M in dimension six

admits an $\mathrm{SU}(3)$ -structure $\omega \in \Omega^2(M), \psi \in \Omega^3(M, \mathbb{C})$ satisfying

$$
d\omega = 3cRe(\psi)
$$

$$
dIm(\psi) = -2c\omega \wedge \omega
$$

assume $c = 1$

 \bullet yields a torsion-free G_2 -structures

$$
\varphi = r^2 \mathrm{d}r \wedge \omega + r^3 \mathrm{Re} \psi
$$

on the cone $\mathcal{C}(M)=M\times\mathbb{R}^{>0}$

- is Einstein with positive scalar curvature
- \bullet sine-cone is a nearly parallel G_2 structure
- \bullet SU(3) connection $\overline{\nabla}$ with totally skew symmetric torsion

Acharya-Bryant-Salamon ('20): Description of the SU(3) structure of a circle quotient of $C(\mathbb{CP}^3)$

ヨメ イヨメー

E. Ω • Grunewald ('94): Nearly Kähler manifolds are characterised by the existence of a real Killing spinor

 $\nabla_{\xi} \phi = \alpha \xi \cdot \phi \quad \phi \in \Gamma(X, \mathcal{S}), \xi \in \mathcal{T}M, \alpha \in \mathbb{R}$

- Nagy ('02): Nearly Kähler manifolds are locally a Riemannian product of homogenous nearly Kähler spaces, twistor spaces over quaternionic Kähler manifolds and 6-dimensional nearly Kähler manifolds
- Butruille ('10), there are exactly four homogeneous nearly Kähler structures (compact, simply-connected): On

$$
\bullet \ \ S^6 = G_2 / \mathrm{SU}(3),
$$

$$
\bullet \quad \mathbb{CP}^3 = \text{Sp}(2)/\text{U}(1) \times \text{Sp}(1),
$$

- $S^3 \times S^3 = SU(2)^3/\Delta SU(2)$
- $\mathbb{F}_{1,2}(\mathbb{C}^3) = \mathrm{SU}(3)/\mathbb{T}^2$
- Foscolo-Haskins('17): Construction of inhomogeneous structures on $\mathcal{S}^3 \times \mathcal{S}^3$ and \mathcal{S}^6

(@) (E) (E) (E) ⊙Q ⊙

Lagrangian submanifold: $L \subset M$ with $\omega|_L \equiv 0$.

Our focus is on J-holomorphic curves $\varphi: (X, I) \to M$ with $d\varphi \circ I = J \circ d\varphi$:

- Have isolated singularities: $\, \mathrm{d} \varphi \in \Omega^{1,0}(X,\varphi^* \, \mathcal{T} M) \,$ is holomorphic
- Not calibrated but minimal
- Are locally described (up to reparametrisation) by four functions of one variable: A real-analytic curve can locally uniquely be thickened to a J-holomorphic curve

Difficulties

- There are no J-holomorphic immersions $\mathcal{N}^4\rightarrow\mathcal{M}^6$ or submersions $M^6 \rightarrow N^4$
- *J* is not 'generic' and not integrable

Barbara

GH. Ω

- Bryant '82: There is a class J-holomorphic curves, called null-torsion **curves**, in S^6 coming from certain holomorphic curves $X^2 \rightarrow Q \subset \mathbb{CP}^6$
- Bryant '82: Parametrisation of J-holomorphic curves in \mathbb{CP}^3 , called superminimal curves, tangent to H

$$
\Theta(f,g) = [1, f - \frac{1}{2}g\left(\frac{\mathrm{d}f}{\mathrm{d}g}\right), g, \frac{1}{2}\left(\frac{\mathrm{d}f}{\mathrm{d}g}\right)]
$$

for $f, g: X \to \mathbb{CP}^1$ meromorphic

 X u '10: There is another copy of superminimal curves in \mathbb{CP}^3 : null-torsion curves

 \Rightarrow Ω

Eells-Salamon Correspondence

There is a one-to-one correspondence between (branched) minimal surfaces in $S⁴$ and non-vertical J-holomorphic curves in \mathbb{CP}^3 .

 \rightsquigarrow Minimal tori in \mathcal{S}^4 : Ferus-Pedit-Pinkall-Sterling '90, '92 Twistor perspective reduces second order to first order equations but more complicated ambient space.

Relation to G_2 and $Spin(7)$ geometry:

- Associatives in the cone and sine-cone of \mathbb{CP}^3
- Karigiannis-Min-Oo '05: Associatives in $\Lambda^2_-(S^4)$ and Cayley submanifolds in $\mathcal{S}_{-}(\mathcal{S}^{4})$ as total spaces of vector bundles over minimal $X\subset\mathcal{S}^{4}$
- Kawai '15, Ball-Madnick '20: Ruled associative submanifolds of nearly parallel $S^7_{\rm sq}$ and Berger space ${\rm SO}(5)/{\rm SO}(3)$

∍

Reducing the frame bundle

• The splitting $T\mathbb{CP}^3 = H \oplus V$ is parallel wrt $\overline{\nabla}$,

$$
\operatorname{Hol}(\bar\nabla)\subset S(\operatorname{U}(2)\times\operatorname{U}(1))\subset\operatorname{U}(2)
$$

Up to double covers, ${\rm Sp}(2)\rightarrow \mathbb{CP}^3$ is the reduced frame budle with structure group $U(1) \times Sp(1)$

$$
\Omega_{MC} = \begin{pmatrix} i\rho_1 + j\overline{\omega_3} & -\frac{\overline{\omega_1}}{\sqrt{2}} + j\frac{\omega_2}{\sqrt{2}} \\ \frac{\omega_1}{\sqrt{2}} + j\frac{\omega_2}{\sqrt{2}} & i\rho_2 + j\tau \end{pmatrix}
$$

- $\omega_1,\omega_2,\omega_3\in\Omega^1(\mathrm{Sp}(2),\mathbb{C})$ local unitary $(1,0)$ -forms on \mathbb{CP}^3
- Over J-holomorphic curve $\varphi \colon X \to \mathbb{CP}^3$,

$$
\omega_2\equiv 0
$$

reduces $\varphi^*{\rm Sp}(2)$ to an ${\rm U}(1)\times {\rm U}(1)$ and τ becomes a basic form

KERKER E MAG

Angle functions

Equivalently, there is a J-holomorphic lift $\hat{\varphi} \colon X \to \mathcal{F} = \mathrm{Sp}(2)/\mathbb{T}^2$ and

 $T\mathcal{F} = H \oplus V_+ \oplus V_-$

Definition

For $\varphi: X \to \mathbb{CP}^3$ with lift $\hat{\varphi}: X \to \mathcal{F}$ define

$$
\alpha_{\pm}(x) = \frac{\|\xi\|_{V_{\pm}}}{\|\xi\|_{H}}, \quad \text{for } \xi \in T_{x}X \subset \hat{\varphi}^*(T\mathcal{F}).
$$

 φ is superminimal iff $\alpha_-\equiv 0$ and null-torsion iff $\alpha_+\equiv 0$

E. 2990

Some superminimal spheres

Immersion of superminimal spheres with $f(z)=z^k$ and $g(z)=z$, plot of α_+^2 for degree $k = 3, 4, 5, 6$

Zeros of α_+ correspond to totally geodesic points:

$$
r_{\tau}=6(g-1)+2\deg-2r_{\mathcal{H}}
$$

for $g = 0$ and $r_H = 0$

 QQ

∍

Call a J-holomorphic transverse if

 $\alpha_+ \in (0, \infty) \Leftrightarrow \hat{\varphi}$ is nowhere tangent to V_+ or H

• Allows reduction to discrete structure group:

 $\omega_3 = \alpha_-\omega_1$, $\tau = \alpha_+\omega_1$

• Let
$$
\Theta = -\alpha_-^2 \mathrm{Id}_{\mathcal{H}} \oplus \mathrm{Id}_{\mathcal{V}}
$$
 and $\nu_1 = \Theta(TX) \subset \nu$

$$
T \mathbb{CP}^3 = TX \oplus \nu_1 \oplus \nu_2
$$

X is compact ⇒ immersed torus with $\frac{1}{2}$ vol $\mathcal{H} = \text{vol}_{V_{+}} = \text{vol}_{V_{+}}$.

Non-transverse points governed by holomorphic differentials, local behaviour:

$$
\alpha_{\pm}(z)=|z|^k u
$$

with positive smooth $u: X \supset U \to \mathbb{C}$

K個→ K ミ > K ミ → 三 → の Q Q →

Theorem (A. '21)

The induced metric $g_{\mathcal{H}}$ on X is conformally flat with factor $\gamma = (\alpha_-\alpha_+)^{-1/2}$ with Gauß curvature 2 $(1-\alpha_-^2-\alpha_+^2)$ and α_\pm satisfy

$$
\Delta_0 \log(\alpha_-^2) = -4(3\alpha_-^2 + \alpha_+^2 - 2)\gamma
$$

\n
$$
\Delta_0 \log(\alpha_+^2) = -4(3\alpha_+^2 + \alpha_-^2 - 2)\gamma.
$$

The second fundamental form $\mathbb{I} \in \Omega^1(X, TX^\vee \otimes \nu)$ is

$$
II=-\frac{2}{\alpha_-^2+1}\mathrm{d}^{1,0}\alpha_-\otimes f_2\otimes f^1+\frac{\alpha_+\omega_1}{\sqrt{\alpha_-^2+1}}\otimes f_3\otimes f^1
$$

Example: Unique flat curve $\alpha_-=\alpha_+=\frac{1}{\sqrt{2}}$, lift of Clifford torus

네 로 ▶ 네 로 ▶ - 로 - YO Q @

Properties of the Angle Functions

- Solutions depend on four functions of one variable
- Negative result: Every J-holomorphic curve with holomorphic second fundamental form is superminimal or has zero-torsion
- Bolton-Pedit-Woodward '95: Solutions are integral surfaces of Hamiltonian distribution on finite-dim vector space
- \bullet α_{+} locally determine the J-holomorphic curve (up to constants)
- Minimal surface lies in $\mathcal{S}^3 \subset \mathcal{S}^4$ iff $\alpha_-\equiv \alpha_+$
	- \rightarrow Sinh-Gordon equation $\Delta_0(u) = -\lambda \sinh(u)$
- Lawson-torus:

$$
\{ (z, w) \in S^3 \subset \mathbb{C}^2 \mid \text{Im}(z^m \bar{w}^k) = 0 \},\
$$

$$
\alpha_{-}(x) = \alpha_{+}(x) = C_{k,m}(m^2 \cos(x)^2 + k^2 \sin(x)^2)
$$

ヨメ イヨメー

(手) - Ω

Imposing $U(1)$ -symmetry

- Fix $U(1)_{k,m}$ subgroup of $\mathbb{T}^2 \subset \text{Sp}(2)$ by choosing $\xi = \text{diag}(ik, im) \in \mathfrak{sp}(2)$ with fundamental vector field K^ξ and $k\geq m$
- \bullet U(1)-invariant *J*-holomorphic curves are integral surfaces of the distribution spanned by \mathcal{K}^ξ and \mathcal{JK}^ξ \rightsquigarrow Integrate JK^{ξ}
- For general $k, m \in \mathbb{Z}$ the action commutes with $\mathbb{T}^2 \subset \mathrm{Sp}(2)$
- **Toric multi-moment-map Russo-Swann '19**

$$
\nu=\omega(K_1^{\xi},K_2^{\xi})=12|Z|^{-4}\mathrm{Im}(Z_0Z_1\overline{Z_2Z_3})
$$

preserved for JK^{ξ} .

Are there more preserved quantities?

E. Ω The functions

$$
\zeta = (\nu_-, \nu_+, r_-, r_+) : \mathbb{CP}^3 \to D \subset \mathbb{R}^4
$$

$$
\nu_{\pm} = ||K^{\xi}||_{V_{\pm}}^2, \quad r_{\pm} = \frac{1}{2} J K^{\xi} \log(\nu_{\pm})
$$

parametrise $\mathbb{CP}^3/\mathbb{T}^2$, up to a singular set and \mathbb{Z}_2 -action of complex conjugation. The branch locus in $\mathbb{CP}^3/\mathbb{T}^2$ is

$$
\mathbb{RP}^3/\mathbb{Z}_2=\nu^{-1}(0)/\mathbb{T}^2.
$$

On D, the flow equation of JK^{ξ} is Hamiltonian and has a Lax representation. \rightsquigarrow two preserved quantities in involution

편 > 제 편 > 이 편 >

Twistor moment maps

Liouville-Arnold: The fibres of $D\to \mathcal R\subset \mathbb R^2$ are two-tori and the flow equation admits action-angle coordinates

 ξ corresponds to $Q = k Z_0 Z_1 + m Z_2 Z_3$ under $\mathfrak{sp}(2)_{\mathbb C} \cong S^2({\mathbb C}^4)$ and $v_- = 4|Q|^2.$ The quadric ${Q = 0}$ is traced out by U(1)-invariant superminimal curves. The rectangle degenerates to the top left line if $k = m$ and top to right line if $m = 0$. E N 重

• Treat degenerate case $k = m$ with U(2)-moment maps

$$
\textit{M}\rightarrow \mathbb{R}^3\oplus\mathbb{R}^3\oplus\mathbb{R}^3\oplus\mathbb{R}
$$

- Can U(1)-invariant picture be generalised to τ -primitive maps in general flag manifolds?
- Is there a class of (special) Lagrangians in \mathbb{CP}^3 ruled over transverse J-holomorphic curves?

ミト (ミト) 등 10000