Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Noncollapsed degeneration and desingularization of Einstein 4-manifolds

Tristan Ozuch

Massachusetts Institute of Technology

May 27, 2021

Numerical and Geometric Methods for Ricci-flat Metrics and Flows Simons Collaboration on Special Holonomy in Geometry, Analysis, and Physics

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Finstein metrics in dimension 4

An **Einstein** metric satisfies

 $\exists \Lambda \in \mathbb{R}, \operatorname{Ric}(g) = \Lambda g.$

• In dimension 4, when they exist, Einstein metrics minimize

$$g \mapsto \int_{M^4} |\operatorname{Rm}_g|^2 dv_g = \underbrace{8\pi^2 \chi(M^4)}_{topological} + \underbrace{\int_{M^4} |\operatorname{Ric}_g^0|^2 dv_g}_{\geq 0}.$$

Desingularization Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Einstein metrics in dimension 4

An **Einstein** metric satisfies

$$\exists \Lambda \in \mathbb{R}, \ \mathsf{Ric}(g) = \Lambda g.$$

• In dimension 4, when they exist, Einstein metrics minimize

$$g \mapsto \int_{M^4} |\operatorname{Rm}_g|^2 dv_g = \underbrace{8\pi^2 \chi(M^4)}_{topological} + \underbrace{\int_{M^4} |\operatorname{Ric}_g^0|^2 dv_g}_{\geqslant 0}.$$

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Moduli space of Einstein metrics

The Einstein equation is invariant by **reparametrization** and **rescaling**. The **moduli space of Einstein metrics** on *M* is

$$\mathbf{E}(M) := \left\{ (M,g) \mid \exists \Lambda \in \mathbb{R}, \ \mathsf{Ric}(g) = \Lambda g, \ \mathsf{Vol}(M,g) = 1 \right\} / \mathcal{D}(M),$$

The **Gromov-Hausdorff distance** d_{GH} is the natural distance on

Moduli space of Einstein metrics

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

The Einstein equation is invariant by reparametrization and rescaling. The moduli space of Einstein metrics on M is

$$\mathbf{E}(M) := \left\{ (M,g) \mid \exists \Lambda \in \mathbb{R}, \ \mathsf{Ric}(g) = \Lambda g, \ \mathsf{Vol}(M,g) = 1 \right\} / \mathcal{D}(M),$$

where $\mathcal{D}(M)$ is the group of diffeomorphisms from M to M acting on the metric by pull-back.

The **Gromov-Hausdorff distance** d_{GH} is the natural distance on $\mathbf{E}(M)$.

Question

From GH to C^{∞}

Desingularization

What are the global properties of E(M)? Can it be compactified? With some structure?

Conclusion and perspectives

Moduli space of Einstein metrics

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

The Einstein equation is invariant by reparametrization and rescaling. The moduli space of Einstein metrics on M is

$$\mathsf{E}(M) := \left\{ (M,g) \mid \exists \Lambda \in \mathbb{R}, \ \mathsf{Ric}(g) = \Lambda g, \ \mathsf{Vol}(M,g) = 1 \right\} / \mathcal{D}(M),$$

where $\mathcal{D}(M)$ is the group of diffeomorphisms from M to M acting on the metric by pull-back.

The **Gromov-Hausdorff distance** d_{GH} is the natural distance on $\mathbf{E}(M)$.

Question

From GH to C^{∞}

Desingularization

What are the global properties of E(M)? Can it be compactified? With some structure?

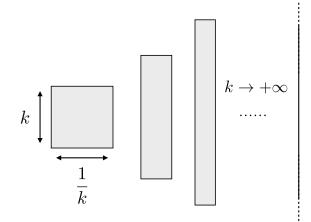
Desingularization 000000

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Degeneration in $E(M^2)$



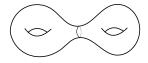
Desingularization 000000

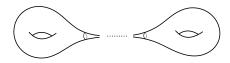
Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Degeneration in $E(M^2)$ _{Cusp formation}





Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Compactification of $\mathbf{E}(M^4)$

Theorem (Anderson ('89,'92), Bando-Kasue-Nakajima ('89), Cheeger-Tian ('06))

Let M^4 be a compact 4-dimensional differentiable manifold. There exists compactification of $(\mathbf{E}(M^4), d_{GH})$, denoted $\mathbf{E}(M^4)_{GH}$.

We have a decomposition

$$\overline{\mathbf{E}(M^4)}_{GH} = \mathbf{E}(M^4) \ \cup \ \partial_{\infty}\mathbf{E}(M^4) \ \cup \ \partial_{o}\mathbf{E}(M^4).$$

- $\partial_{\infty} \mathbf{E}(M^4)$: limits of **collapsing** or formation of **cusps**,
- $\partial_{\alpha} \mathbf{E}(M^4)$: compact **Einstein orbifolds** (the singular Einstein

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Compactification of $\mathbf{E}(M^4)$

Theorem (Anderson ('89,'92), Bando-Kasue-Nakajima ('89), Cheeger-Tian ('06))

Let M^4 be a compact 4-dimensional differentiable manifold. There exists compactification of $(\mathbf{E}(M^4), d_{GH})$, denoted $\mathbf{E}(M^4)_{GH}$.

We have a decomposition

$$\overline{\mathbf{E}(M^4)}_{GH} = \mathbf{E}(M^4) \ \cup \ \partial_{\infty} \mathbf{E}(M^4) \ \cup \ \partial_o \mathbf{E}(M^4).$$

- $\partial_{\infty} \mathbf{E}(M^4)$: limits of **collapsing** or formation of **cusps**.
- $\partial_{\alpha} \mathbf{E}(M^4)$: compact **Einstein orbifolds** (the singular Einstein

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Compactification of $\mathbf{E}(M^4)$

Theorem (Anderson ('89,'92), Bando-Kasue-Nakajima ('89), Cheeger-Tian ('06))

Let M^4 be a compact 4-dimensional differentiable manifold. There exists compactification of $(\mathbf{E}(M^4), d_{GH})$, denoted $\mathbf{E}(M^4)_{GH}$.

We have a decomposition

$$\overline{\mathbf{E}(M^4)}_{GH} = \mathbf{E}(M^4) \ \cup \ \partial_{\infty} \mathbf{E}(M^4) \ \cup \ \partial_o \mathbf{E}(M^4).$$

- $\partial_{\infty} \mathbf{E}(M^4)$: limits of **collapsing** or formation of **cusps**,
- $\partial_{\alpha} \mathbf{E}(M^4)$: compact **Einstein orbifolds** (the singular Einstein

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Compactification of $\mathbf{E}(M^4)$

Theorem (Anderson ('89,'92), Bando-Kasue-Nakajima ('89), Cheeger-Tian ('06))

Let M^4 be a compact 4-dimensional differentiable manifold. There exists compactification of $(\mathbf{E}(M^4), d_{GH})$, denoted $\mathbf{E}(M^4)_{GH}$.

We have a decomposition

$$\overline{\mathbf{E}(M^4)}_{GH} = \mathbf{E}(M^4) \ \cup \ \partial_{\infty} \mathbf{E}(M^4) \ \cup \ \partial_o \mathbf{E}(M^4).$$

- $\partial_{\infty} \mathbf{E}(M^4)$: limits of **collapsing** or formation of **cusps**,
- $\partial_{\alpha} E(M^4)$: compact **Einstein orbifolds** (the singular Einstein metrics).

Here, we will focus on the d_{GH} -completion of $\mathbf{E}(M^4)$ which is

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Compactification of $\mathbf{E}(M^4)$

Theorem (Anderson ('89,'92), Bando-Kasue-Nakajima ('89), Cheeger-Tian ('06))

Let M^4 be a compact 4-dimensional differentiable manifold. There exists compactification of $(\mathbf{E}(M^4), d_{GH})$, denoted $\mathbf{E}(M^4)_{GH}$.

We have a decomposition

$$\overline{\mathbf{E}(M^4)}_{GH} = \mathbf{E}(M^4) \ \cup \ \partial_{\infty} \mathbf{E}(M^4) \ \cup \ \partial_o \mathbf{E}(M^4).$$

- $\partial_{\infty} \mathbf{E}(M^4)$: limits of **collapsing** or formation of **cusps**,
- $\partial_{\alpha} \mathbf{E}(M^4)$: compact **Einstein orbifolds** (the singular Einstein metrics).

Here, we will focus on the d_{GH} -completion of $\mathbf{E}(M^4)$ which is $\mathsf{E}(M^4) \cup \partial_{\alpha} \mathsf{E}(M^4).$

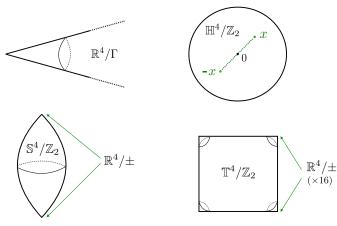
Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Examples of Einstein orbifolds

Einstein orbifolds (with isolated singularities) may have a **finite** number of singularities modelled on \mathbb{R}^4/Γ , for $\Gamma \subset SO(4)$ acting freely on \mathbb{S}^3 .



Desingularization 000000 Higher order obstructions

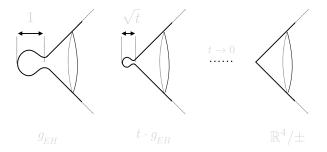
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Rescaling of Ricci-flat ALE manifolds

Orbifold singularity formation

A Ricci-flat **Asymptotically Locally Euclidean (ALE)** satisfies Ric $\equiv 0$ and is asymptotic to a cone \mathbb{R}^4/Γ for $\Gamma \subset SO(4)$ acting freely on \mathbb{S}^3 .

Example : The Eguchi-Hanson metric ('79), g_{EH} , is Ricci-flat, asymptotic to $\mathbb{R}^4/\{\pm Id\}$ and defined on $T^*\mathbb{S}^2$.



Desingularization 000000 Higher order obstructions

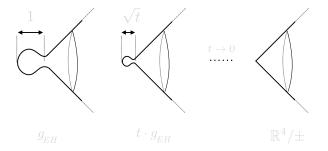
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Rescaling of Ricci-flat ALE manifolds

Orbifold singularity formation

A Ricci-flat **Asymptotically Locally Euclidean (ALE)** satisfies Ric $\equiv 0$ and is asymptotic to a cone \mathbb{R}^4/Γ for $\Gamma \subset SO(4)$ acting freely on \mathbb{S}^3 .

Example : The Eguchi-Hanson metric ('79), g_{EH} , is Ricci-flat, asymptotic to $\mathbb{R}^4/\{\pm Id\}$ and defined on $T^*\mathbb{S}^2$.



Desingularization

Higher order obstructions

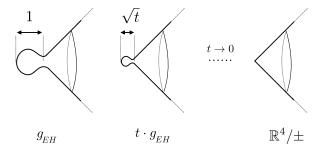
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Rescaling of Ricci-flat ALE manifolds

Orbifold singularity formation

A Ricci-flat **Asymptotically Locally Euclidean (ALE)** satisfies Ric $\equiv 0$ and is asymptotic to a cone \mathbb{R}^4/Γ for $\Gamma \subset SO(4)$ acting freely on \mathbb{S}^3 .

Example : The Eguchi-Hanson metric ('79), g_{EH} , is Ricci-flat, asymptotic to $\mathbb{R}^4/\{\pm Id\}$ and defined on $T^*\mathbb{S}^2$.



Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Tree of singularities

In general : there can be formation of **trees** of Ricci-flat ALE **orbifolds** (Bando '90).



Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Known Ricci-flat ALE orbifolds

The only known examples of Ricci-flat ALE orbifolds in dimension 4 are quotient of **hyperkähler** metrics called **gravitational instantons** (Kronheimer '89).

Question (Bando-Kasue-Nakajima '89)

Is any Ricci-flat ALE metric is locally hyperkähler in dimension 4?

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Known Ricci-flat ALE orbifolds

The only known examples of Ricci-flat ALE orbifolds in dimension 4 are quotient of hyperkähler metrics called gravitational instantons (Kronheimer '89).

Question (Bando-Kasue-Nakajima '89)

Is any Ricci-flat ALE metric is locally hyperkähler in dimension 4?

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Einstein orbifolds

And limits of Finstein metrics

Any d_{GH} -limit of a d_{GH} -bounded sequence of metrics in $\mathbf{E}(M^4)$ is an Einstein orbifold.

Question : Can we *d_{GH}*-desingularize **any** Einstein orbifold by

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Einstein orbifolds

And limits of Finstein metrics

Any d_{GH} -limit of a d_{GH} -bounded sequence of metrics in $\mathbf{E}(M^4)$ is an Einstein orbifold.

Question : Are all Einstein orbifolds d_{GH} -limit of Einstein metrics? **Question** : Can we *d_{GH}*-desingularize **any** Einstein orbifold by

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Einstein orbifolds

And limits of Finstein metrics

Any d_{GH} -limit of a d_{GH} -bounded sequence of metrics in $\mathbf{E}(M^4)$ is an Einstein orbifold.

Question : Are all Einstein orbifolds d_{GH} -limit of Einstein metrics? **Question** : Can we *d_{GH}*-desingularize **any** Einstein orbifold by smooth Einstein metrics?

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Finstein orbifolds

And limits of Finstein metrics

Any d_{GH} -limit of a d_{GH} -bounded sequence of metrics in $\mathbf{E}(M^4)$ is an Einstein orbifold.

Question : Are all Einstein orbifolds d_{GH} -limit of Einstein metrics? **Question** : Can we *d_{GH}*-desingularize **any** Einstein orbifold by smooth Einstein metrics?

O. ('19, '21) : No. The orbifold $\mathbb{S}^4/\mathbb{Z}_2$ is not d_{GH} -limit of smooth Einstein metrics.

 $\mathbb{S}^4/\mathbb{Z}_2$ is Einstein in a synthetic sense (Naber '13) but cannot be approached by smooth Einstein metrics.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

What can we desingularize

by Kronheimer's gravitational instantons and quotients?

Question : What are the possible **compact** limits of sequences of Einstein metrics bubbling out Eguchi-Hanson metrics?

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

What can we desingularize

by Kronheimer's gravitational instantons and quotients?

Question : What are the possible **compact** limits of sequences of Einstein metrics bubbling out Eguchi-Hanson metrics?

Question : Does bubbling out Eguchi-Hanson metrics impose reduced holonomy in the **compact** situation? It is true up to second order (O. '20).

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

What can we desingularize

by Kronheimer's gravitational instantons and quotients?

Question : What are the possible **compact** limits of sequences of Einstein metrics bubbling out Eguchi-Hanson metrics?

Question : Does bubbling out Eguchi-Hanson metrics impose reduced holonomy in the **compact** situation? It is true up to second order (O. '20).

Even in the Kähler-Einstein context, there are many (different) obstructions, see Kollár ('07) and also Odaka-Spotti-Sun ('16).

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Structure of the moduli space near its boundary $\partial_o \mathbf{E}(M^4)$

- 0. ('19) :
 - The **convergence** holds in a (weighted) C^{∞} sense including in the bubble and neck regions.
 - Any smooth Einstein metric sufficiently close to $\partial_{\alpha} \mathbf{E}(M)$ is
 - The moduli space is the **zero set** of a C¹-function on a
 - The **dimension** of the moduli space is bounded by a function

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Structure of the moduli space near its boundary $\partial_{\rho} \mathbf{E}(M^4)$

- 0. ('19) :
 - The **convergence** holds in a (weighted) C^{∞} sense including in the bubble and neck regions.
 - Any smooth Einstein metric sufficiently close to ∂_oE(M) is the result of a gluing-perturbation procedure.
 - The moduli space is the **zero set** of a *C*¹-function on a *C*¹-manifold of metrics.
 - The **dimension** of the moduli space is bounded by a function of the diameter and the Euler characteristic (or lower bound on scalar curvature) in dimension 4.

Question (Anderson) : Is the set of singular metrics $\partial_o \mathbf{E}(M)$ of codimension 2 in the moduli space $\mathbf{E}(M) \cup \partial_o \mathbf{E}(M)$? It is true up to second order (O. '20).

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Structure of the moduli space near its boundary $\partial_{\rho} \mathbf{E}(M^4)$

- 0. ('19) :
 - The **convergence** holds in a (weighted) C^{∞} sense including in the bubble and neck regions.
 - Any smooth Einstein metric sufficiently close to ∂_oE(M) is the result of a gluing-perturbation procedure.
 - The moduli space is the **zero set** of a *C*¹-function on a *C*¹-manifold of metrics.
 - The **dimension** of the moduli space is bounded by a function of the diameter and the Euler characteristic (or lower bound on scalar curvature) in dimension 4.

Question (Anderson) : Is the set of singular metrics $\partial_o \mathbf{E}(M)$ of codimension 2 in the moduli space $\mathbf{E}(M) \cup \partial_o \mathbf{E}(M)$? It is true up to second order (O. '20).

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Structure of the moduli space near its boundary $\partial_o \mathbf{E}(M^4)$

- 0. ('19) :
 - The **convergence** holds in a (weighted) C^{∞} sense including in the bubble and neck regions.
 - Any smooth Einstein metric sufficiently close to $\partial_o \mathbf{E}(M)$ is the result of a **gluing-perturbation** procedure.
 - The moduli space is the **zero set** of a C¹-function on a C^1 -manifold of metrics
 - The dimension of the moduli space is bounded by a function of the diameter and the Euler characteristic (or lower bound on scalar curvature) in dimension 4.

Question (Anderson) : Is the set of singular metrics $\partial_{\alpha} \mathbf{E}(M)$ of codimension 2 in the moduli space $\mathbf{E}(M) \cup \partial_{o} \mathbf{E}(M)$? It is true up to second order (O. '20).

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

1 From Gromov-Hausdorff to weighted C^{∞}

- 4 Obstructions to the desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

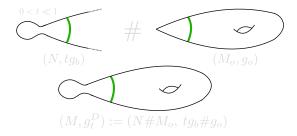
Conclusion and perspectives

Gluing-perturbation

Let

- $(N,g_b) \underset{\infty}{\sim} \mathbb{R}^4 / \Gamma$ with $\operatorname{Ric}(g_b) \equiv 0$,
- $(M_o, g_o) \sim \mathbb{R}^4 / \Gamma$ with $\operatorname{Ric}(g_o) = \Lambda g_o$.

We define the **naïve desingularization** (M, g_t^D) .



Question : Perturbation to an Einstein metric? In which function space?

Desingularization

Higher order obstructions

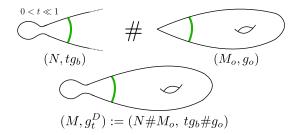
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Gluing-perturbation

Let

- $(N,g_b) \underset{\infty}{\sim} \mathbb{R}^4 / \Gamma$ with $\operatorname{Ric}(g_b) \equiv 0$,
- $(M_o, g_o) \sim \mathbb{R}^4 / \Gamma$ with $\operatorname{Ric}(g_o) = \Lambda g_o$.

We define the **naïve desingularization** (M, g_t^D) .



Question : Perturbation to an Einstein metric? In which function space?

Desingularization

Higher order obstructions

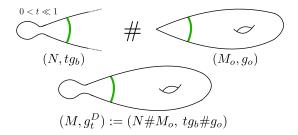
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Gluing-perturbation

Let

- $(N,g_b) \underset{\infty}{\sim} \mathbb{R}^4 / \Gamma$ with $\operatorname{Ric}(g_b) \equiv 0$,
- $(M_o, g_o) \underset{p}{\sim} \mathbb{R}^4 / \Gamma$ with $\operatorname{Ric}(g_o) = \Lambda g_o$.

We define the **naïve desingularization** (M, g_t^D) .



Question : Perturbation to an Einstein metric? In which function space?

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

From d_{GH} to weighted C^{∞}

Theorem (O. '19)

Let $(M_o, g_o) \in \partial_o \mathbf{E}(M)$. $\forall \varepsilon > 0, \exists \delta > 0$ such that if $(M, g) \in \mathbf{E}(M)$ satisfies

 $d_{GH}((M,g),(M_o,g_o)) \leqslant \delta,$

then, there **exists** a naïve desingularization of (M_o, g_o) by Ricci-flat ALE at scales $t = (t_j)_j$ denoted (M, g_t^D) such that we have

$$\|g-g_t^D\|_{\mathcal{C}^{2,\alpha}_{\beta}(g_t^D)}\leqslant \varepsilon.$$

Any Einstein metric d_{GH} -close to an orbifold is a $C_{\beta}^{k,\alpha}$ -perturbation of a naïve gluing.

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

From d_{GH} to weighted C^{∞}

Theorem (O. '19)

Let $(M_o, g_o) \in \partial_o \mathbf{E}(M)$. $\forall \varepsilon > 0, \exists \delta > 0$ such that if $(M, g) \in \mathbf{E}(M)$ satisfies

$d_{GH}((M,g),(M_o,g_o))\leqslant \delta,$

then, there **exists** a naïve desingularization of (M_o, g_o) by Ricci-flat ALE at scales $t = (t_j)_j$ denoted (M, g_t^D) such that we have

$$\|g-g_t^D\|_{\mathcal{C}^{2,\alpha}_{\beta}(g_t^D)}\leqslant \varepsilon.$$

Any Einstein metric d_{GH} -close to an orbifold is a $C_{\beta}^{k,\alpha}$ -perturbation of a naïve gluing.

Desingularization

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

From d_{GH} to weighted C^{∞}

Theorem (O. '19)

Let $(M_o, g_o) \in \partial_o \mathbf{E}(M)$. $\forall \varepsilon > 0, \exists \delta > 0$ such that if $(M, g) \in \mathbf{E}(M)$ satisfies

 $d_{GH}((M,g),(M_o,g_o)) \leqslant \delta,$

then, there **exists** a naïve desingularization of (M_o, g_o) by Ricci-flat ALE at scales $t = (t_j)_j$ denoted (M, g_t^D) such that we have

$$\|g-g_t^D\|_{\mathcal{C}^{2,\alpha}_\beta(g_t^D)}\leqslant \varepsilon.$$

Any Einstein metric d_{GH} -close to an orbifold is a $C_{\beta}^{k,\alpha}$ -perturbation of a naïve gluing.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

From d_{GH} to weighted C^{∞}

Theorem (0. '19)

Let $(M_o, g_o) \in \partial_o \mathbf{E}(M)$. $\forall \varepsilon > 0, \exists \delta > 0$ such that if $(M,g) \in \mathbf{E}(M)$ satisfies

 $d_{GH}((M,g),(M_o,g_o)) \leq \delta$

then, there **exists** a naïve desingularization of (M_o, g_o) by Ricci-flat ALE at scales $t = (t_i)_i$ denoted (M, g_t^D) such that we have

$$\|g-g_t^D\|_{\mathcal{C}^{2,\alpha}_{\beta}(g_t^D)}\leqslant \varepsilon.$$

Any Einstein metric d_{GH} -close to an orbifold is a $C_{\beta}^{k,\alpha}$ -perturbation of a naïve gluing.

Desingularization 000000 Higher order obstructions

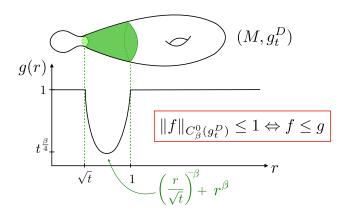
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Weighted norm
$$C^{2,\alpha}_{\beta}$$

For any tensor s on M, one defines

$$\|s\|_{C^k_{\beta}(g^D_t)} = \sup_M g(r)^{-1} \Big(\sum_{i=0}^k r^i |\nabla^i_{g^D_t} s|_{g^D_t} \Big).$$



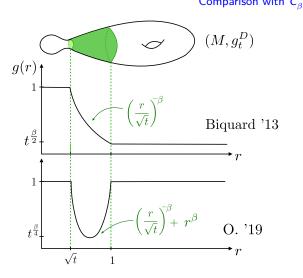
Desingularization 000000

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Weighted norm
$$C_{\beta}^{2,\alpha}$$



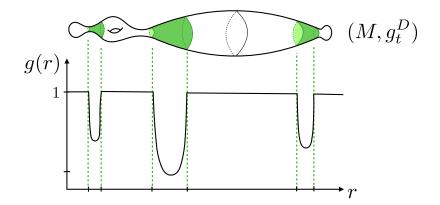
Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Weighted norm $C^{2,\alpha}_{\beta}$

on a tree of singularities



Desingularization

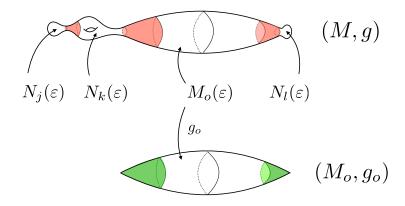
Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

ε -regularity

$(M,g)\in \mathbf{E}(M)$ and $d_{GH}((M,g),(M_o,g_o))\ll 1.$

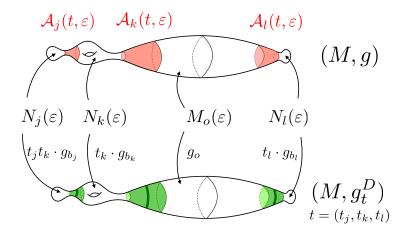


Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Neck regions, $\mathcal{A}_k(t,\varepsilon)$ $(M,g) \in \mathbf{E}(M)$ and $d_{GH}((M,g), (M_o,g_o)) \ll 1$.



Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Coordinates in the neck regions

Difficulty : $A_k(t, \varepsilon) \sim \{\sqrt{t_k} < r < 1\}$. Usual ε -regularity theorems (Gao ('90), Anderson, Bando-Kasue-Nakajima ('89), etc) give an error in $-\log(t_k) \xrightarrow[t_{\iota} \to 0]{} +\infty$.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Coordinates in the neck regions

Difficulty : $A_k(t, \varepsilon) \sim \{\sqrt{t_k} < r < 1\}$. Usual ε -regularity theorems (Gao ('90), Anderson, Bando-Kasue-Nakajima ('89), etc) give an error in $-\log(t_k) \xrightarrow[t_{\iota} \to 0]{} +\infty$.

Proposition (O. '19)

There exists a foliation of $A_k(t,\varepsilon)$ by constant mean curvature (CMC) hypersurfaces. They are controlled by the ambient

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Coordinates in the neck regions

Difficulty : $A_k(t, \varepsilon) \sim \{\sqrt{t_k} < r < 1\}$. Usual ε -regularity theorems (Gao ('90), Anderson, Bando-Kasue-Nakajima ('89), etc) give an error in $-\log(t_k) \xrightarrow[t_{\iota} \to 0]{} +\infty$.

Proposition (O. '19)

There exists a foliation of $A_k(t,\varepsilon)$ by constant mean curvature (CMC) hypersurfaces. They are controlled by the ambient curvature alone.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Coordinates in the neck regions

Difficulty : $A_k(t, \varepsilon) \sim \{\sqrt{t_k} < r < 1\}$. Usual ε -regularity theorems (Gao ('90), Anderson, Bando-Kasue-Nakajima ('89), etc) give an error in $-\log(t_k) \xrightarrow[t_{\iota} \to 0]{} +\infty$.

Proposition (O. '19)

There exists a foliation of $A_k(t,\varepsilon)$ by constant mean curvature (CMC) hypersurfaces. They are controlled by the ambient curvature alone.

This foliation is **geometric** and does not depend on the coordinates.

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

The **ambient curvature** is controlled (Bando '90), it is in $r^{-2}\left(r^{\beta} + \left(\frac{r}{\sqrt{t}}\right)^{-\beta}\right)$ in the neck regions $\mathcal{A}_{k}(t,\varepsilon)$ for $\beta > 0$.

Corollary (O. '19)

There exist **optimal** coordinates in the neck regions $\mathcal{A}_k(t,\varepsilon)$. They give a control of the metric in $r^{\beta} + \left(\frac{r}{\sqrt{t}}\right)^{-\beta}$.

The "**spheres**" of this coordinate system are the CMC hypersurfaces.

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

The **ambient curvature** is controlled (Bando '90), it is in $r^{-2}\left(r^{\beta}+\left(\frac{r}{\sqrt{t}}\right)^{-\beta}\right)$ in the neck regions $\mathcal{A}_{k}(t,\varepsilon)$ for $\beta>0$.

Corollary (O. '19)

There exist **optimal** coordinates in the neck regions $\mathcal{A}_k(t,\varepsilon)$. They give a control of the metric in $r^{\beta} + \left(\frac{r}{\sqrt{t}}\right)^{-\beta}$.

The "**spheres**" of this coordinate system are the CMC hypersurfaces.

Desingularization 00000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

1 From Gromov-Hausdorff to weighted C^{∞}

2 Desingularization of Einstein metrics

4 Obstructions to the desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Desingularization 00000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

General gluing-perturbation procedure

Theorem (Partial converse, 0.'19)

For any naïve desingularization (M, g_t^D) with $t \ll 1$, there exists an (unique if a gauge is fixed) Einstein modulo obstructions metric \hat{g}_t with :

$$(\operatorname{\mathsf{Ric}} - \Lambda)(\hat{g}_t) = \hat{\mathbf{o}}_t \in \{\operatorname{\mathsf{Obstructions}}\} \approx \text{``coker''}(P_{g_t^D}),$$

with $P_{g^D_{t}}$ the linearization of $g \mapsto (\operatorname{Ric} - \Lambda)(g)$ at g^D_t . We have

 $\mathbf{E}(M^4) \cap B_{GH}((M_o, g_o), \varepsilon) = \{ \hat{g}_t \mid \hat{\mathbf{o}}_t = 0, \text{ gauge choice} \}.$

Desingularization 00000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

General gluing-perturbation procedure

Theorem (Partial converse, 0.'19)

For any naïve desingularization (M, g_t^D) with $t \ll 1$, there exists an (unique if a gauge is fixed) Einstein modulo obstructions metric \hat{g}_t with :

$$(\operatorname{\mathsf{Ric}} - \Lambda)(\hat{g}_t) = \hat{\mathbf{o}}_t \in \{\operatorname{\mathsf{Obstructions}}\} \approx \text{``coker''}(P_{g_t^D}),$$

with $P_{g^D_{t}}$ the linearization of $g \mapsto (\operatorname{Ric} - \Lambda)(g)$ at g^D_t . We have

Theorem

This reaches **every** Einstein d_{GH}-desingularization. For any (M_o, g_o) , there exists $\varepsilon > 0$ such that

 $\mathbf{E}(M^4) \cap B_{GH}((M_o, g_o), \varepsilon) = \{ \hat{g}_t \mid \hat{\mathbf{o}}_t = 0, \text{gauge choice} \}.$

Desingularization 00000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

General gluing-perturbation procedure

Theorem (Partial converse, 0.'19)

For any naïve desingularization (M, g_t^D) with $t \ll 1$, there exists an (unique if a gauge is fixed) Einstein modulo obstructions metric \hat{g}_t with :

$$(\operatorname{\mathsf{Ric}} - \Lambda)(\hat{g}_t) = \hat{\mathbf{o}}_t \in \{\operatorname{\mathsf{Obstructions}}\} \approx \text{``coker''}(P_{g_t^D}),$$

with $P_{g_t^D}$ the linearization of $g \mapsto (\operatorname{Ric} - \Lambda)(g)$ at g_t^D . We have dim{Obstructions} < ∞ .

Theorem

This reaches **every** Einstein d_{GH}-desingularization. For any (M_o, g_o) , there exists $\varepsilon > 0$ such that

 $\mathbf{E}(M^4) \cap B_{GH}((M_o, g_o), \varepsilon) = \{ \hat{g}_t \mid \hat{\mathbf{o}}_t = 0, \text{gauge choice} \}.$

Desingularization 000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Obstruction

Let (M_o, g_o) be a compact Einstein 4-orbifold.

Theorem (0.'19)

If $(M, g_n) \xrightarrow[CH]{} (M_o, g_o)$ with g_n Einstein and M has the topology of M_o desingularized by gravitational instantons, then

Note : Already identified by Biquard ('13) under technical

Remark : Not satisfied by the orbifolds $\mathbb{S}^4/\mathbb{Z}_2$ or $\mathbb{H}^4/\mathbb{Z}_2$.

Desingularization 000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Obstruction

Let (M_o, g_o) be a compact Einstein 4-orbifold.

Theorem (0.'19)

If $(M, g_n) \xrightarrow{H} (M_o, g_o)$ with g_n Einstein and M has the topology of M_o desingularized by **gravitational instantons**, then

det $\mathbf{R}^+_{\sigma_{\alpha}}(p) = 0$, *i.e.* dim ker $\mathbf{R}^+_{\sigma_{\alpha}}(p) \ge 1$ at p singular.

Note : Already identified by Biquard ('13) under technical

Remark : Not satisfied by the orbifolds $\mathbb{S}^4/\mathbb{Z}_2$ or $\mathbb{H}^4/\mathbb{Z}_2$.

Desingularization 000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Obstruction

Let (M_o, g_o) be a compact Einstein 4-orbifold.

Theorem (0.'19)

If $(M, g_n) \xrightarrow{H} (M_o, g_o)$ with g_n Einstein and M has the topology of M_o desingularized by **gravitational instantons**, then

det $\mathbf{R}^+_{\sigma_{\alpha}}(p) = 0$, *i.e.* dim ker $\mathbf{R}^+_{\sigma_{\alpha}}(p) \ge 1$ at p singular.

Note : Already identified by Biquard ('13) under technical assumptions on (M_o, g_o) and assuming a convergence in weighted **Remark :** Not satisfied by the orbifolds $\mathbb{S}^4/\mathbb{Z}_2$ or $\mathbb{H}^4/\mathbb{Z}_2$.

Desingularization 000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Obstruction

Let (M_0, g_0) be a compact Einstein 4-orbifold.

Theorem (0.'19)

If $(M, g_n) \xrightarrow{H} (M_o, g_o)$ with g_n Einstein and M has the topology of M_o desingularized by **gravitational instantons**, then

det $\mathbf{R}^+_{\sigma_{\alpha}}(p) = 0$, *i.e.* dim ker $\mathbf{R}^+_{\sigma_{\alpha}}(p) \ge 1$ at p singular.

Note : Already identified by Biquard ('13) under technical assumptions on (M_o, g_o) and assuming a convergence in weighted Hölder spaces (which is not generally satisfied) instead of d_{GH} .

Remark : Not satisfied by the orbifolds $\mathbb{S}^4/\mathbb{Z}_2$ or $\mathbb{H}^4/\mathbb{Z}_2$.

Desingularization 000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Obstruction

Let (M_0, g_0) be a compact Einstein 4-orbifold.

Theorem (0.'19)

If $(M, g_n) \xrightarrow{H} (M_o, g_o)$ with g_n Einstein and M has the topology of M_o desingularized by **gravitational instantons**, then

det $\mathbf{R}^+_{\sigma_{\alpha}}(p) = 0$, *i.e.* dim ker $\mathbf{R}^+_{\sigma_{\alpha}}(p) \ge 1$ at p singular.

Note : Already identified by Biquard ('13) under technical assumptions on (M_o, g_o) and assuming a convergence in weighted Hölder spaces (which is not generally satisfied) instead of d_{GH} .

Remark : Not satisfied by the orbifolds $\mathbb{S}^4/\mathbb{Z}_2$ or $\mathbb{H}^4/\mathbb{Z}_2$.

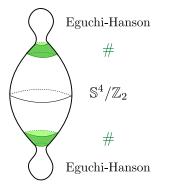
Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Example O. ('19)

The orbifold orbifold $\mathbb{S}^4/\mathbb{Z}_2$ cannot be desingularized with topology $M = T^* \mathbb{S}^2 \# \mathbb{S}^4/\mathbb{Z}_2 \# T^* \mathbb{S}^2 = \mathbb{S}^2 \times \mathbb{S}^2$. The naïve gluing (M, g_t^D)



- **cannot** be perturbed to g_t with $Ric(g_t) = 3g_t$,
- for $1 \leq p < +\infty$, it **can** be perturbed into a metric g_t with $\|\operatorname{Ric}(g_t) - 3g_t\|_{L^p(g_t)} \xrightarrow[t \to 0]{} 0$ and $\operatorname{Ric}(g_t) \geq 3g_t$.
- **Open question :** With $\|\operatorname{Ric}(g_t) 3g_t\|_{L^{\infty}(g_t)} \to 0$?

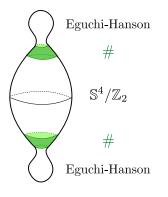
Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Example O. ('19)

The orbifold orbifold $\mathbb{S}^4/\mathbb{Z}_2$ cannot be desingularized with topology $M = T^* \mathbb{S}^2 \# \mathbb{S}^4/\mathbb{Z}_2 \# T^* \mathbb{S}^2 = \mathbb{S}^2 \times \mathbb{S}^2$. The naïve gluing (M, g_t^D)



- **cannot** be perturbed to g_t with $Ric(g_t) = 3g_t$,
- for $1 \le p < +\infty$, it **can** be perturbed into a metric g_t with $\|\operatorname{Ric}(g_t) - 3g_t\|_{L^p(g_t)} \xrightarrow[t \to 0]{} 0$ and $\operatorname{Ric}(g_t) \ge 3g_t$.
- **Open question :** With $\|\operatorname{Ric}(g_t) 3g_t\|_{L^{\infty}(g_t)} \to 0$?

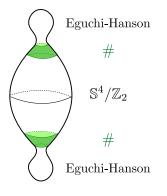
Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Example O. ('19)

The orbifold orbifold $\mathbb{S}^4/\mathbb{Z}_2$ cannot be desingularized with topology $M = T^* \mathbb{S}^2 \# \mathbb{S}^4/\mathbb{Z}_2 \# T^* \mathbb{S}^2 = \mathbb{S}^2 \times \mathbb{S}^2$. The naïve gluing (M, g_t^D)



- **cannot** be perturbed to g_t with $Ric(g_t) = 3g_t$,
- for $1 \leq p < +\infty$, it **can** be perturbed into a metric g_t with $\|\operatorname{Ric}(g_t) - 3g_t\|_{L^p(g_t)} \xrightarrow[t \to 0]{} 0$ and $\operatorname{Ric}(g_t) \geq 3g_t$.
- Open question : With $\|\operatorname{Ric}(g_t) 3g_t\|_{L^{\infty}(g_t)} \to 0$?

Desingularization 000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Obstruction for spin manifolds

In dimension 4, a manifold is **spin** if its intersection pairing is even.

Corollary (O. ('19))

Assume that M^4 is spin. If $\forall n, g_n \in \mathbf{E}(M^4)$ and $(M^4, g_n) \xrightarrow[n \to \infty]{GH} (M_o, g_o)$ then, for any $p \in M_o$ with singularity \mathbb{R}^4/Γ for $\Gamma \subset SU(2)$, we have

det
$$\mathsf{R}^+_{g_o}(p)=0$$
 i.e. dim ker $\mathsf{R}^+_{g_o}(p) \geqslant 1.$

Desingularization 00000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

General obstruction

without any assumption on the bubbles

Theorem (O. ('21))

Let (M_o, g_o) be a compact **spherical** or **hyperbolic** orbifold with at least one singularity $\mathbb{R}^4/\mathbb{Z}_2$ (for instance $\mathbb{S}^4/\mathbb{Z}_2$). Then it cannot be d_{GH}-desingularized by smooth Einstein 4-manifold.

- Analogy with obstructions to the integrability of infinitesimal Einstein deformations (inspired by Taub's preserved quantities in general relativity, Arms-Fischer-Marsden-Moncrief '80-'82).
- Study of the **obstruction** $\text{Hess}_0 u \in \text{``coker''}(\text{Ric'})$ of Ricci-flat ALE spaces (with $\Delta u = 8$, $u \sim r^2$) as in Biguard-Hein ('19) and some variations of Schoen's Pohozaev identity ('88).
- Crucially uses the notion of renormalized volume and the coordinates of Biguard-Hein ('19).

Desingularization

0000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

1 From Gromov-Hausdorff to weighted C^{∞}

- **3** Higher order obstructions to the desingularization

4 Obstructions to the desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Second order obstruction

Assumptions of Biquard ('13), only assuming a d_{GH} -convergence.

Theorem (O', ('20))

Consider an Einstein orbifold (M_o^4, g_o) which

- is **compact** with $\operatorname{Ric}(g_o) = \Lambda g_o$ for $\Lambda \in \mathbb{R}$,
- is **rigid**, that is with ker $P_{g_o} = \{0\}$, for $P_{g_o} = d_{g_o}(\operatorname{Ric} \Lambda)$ and
- only has **one** singularity \mathbb{R}^4/\pm at p,

$$\mathbf{R}_{g_o}^+(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Lambda \end{bmatrix}$$

at p singular, hence dim ker
$$\mathbf{R}^+_{g_o}(p) \ge 2$$
.

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Second order obstruction

Assumptions of Biquard ('13), only assuming a d_{GH} -convergence.

Theorem (O', ('20))

Consider an Einstein orbifold (M_o^4, g_o) which

- is **compact** with $\operatorname{Ric}(g_o) = \Lambda g_o$ for $\Lambda \in \mathbb{R}$,
- is **rigid**, that is with ker $P_{g_o} = \{0\}$, for $P_{g_o} = d_{g_o}(\operatorname{Ric} \Lambda)$ and
- only has **one** singularity \mathbb{R}^4/\pm at p,

$$\mathbf{R}_{g_o}^+(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Lambda \end{bmatrix}$$

at p singular, hence dim ker
$$\mathbf{R}^+_{g_o}(p) \ge 2$$
.

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Second order obstruction

Assumptions of Biquard ('13), only assuming a d_{GH} -convergence.

Theorem (O', ('20))

Consider an Einstein orbifold (M_o^4, g_o) which

- is **compact** with $\operatorname{Ric}(g_o) = \Lambda g_o$ for $\Lambda \in \mathbb{R}$,
- is **rigid**, that is with ker $P_{g_o} = \{0\}$, for $P_{g_o} = d_{g_o}(\operatorname{Ric} \Lambda)$ and

• only has **one** singularity \mathbb{R}^4/\pm at p,

$$\mathbf{R}_{g_o}^+(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Lambda \end{bmatrix}$$

at p singular, hence dim ker
$$\mathbf{R}^+_{g_o}(p) \ge 2$$
.

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Second order obstruction

Assumptions of Biquard ('13), only assuming a d_{GH} -convergence.

Theorem (O', ('20))

Consider an Einstein orbifold (M_o^4, g_o) which

- is compact with $\operatorname{Ric}(g_o) = \Lambda g_o$ for $\Lambda \in \mathbb{R}$,
- is **rigid**, that is with ker $P_{g_o} = \{0\}$, for $P_{g_o} = d_{g_o}(\operatorname{Ric} \Lambda)$ and
- only has **one** singularity \mathbb{R}^4/\pm at p,

$$\mathbf{R}^{+}_{g_{o}}(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Lambda \end{bmatrix}$$

at p singular, hence dim ker
$$\mathbf{R}^+_{g_o}(p) \ge 2$$
.

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Second order obstruction

Assumptions of Biquard ('13), only assuming a d_{GH} -convergence.

Theorem (O', ('20))

Consider an Einstein orbifold (M_o^4, g_o) which

- is compact with $\operatorname{Ric}(g_o) = \Lambda g_o$ for $\Lambda \in \mathbb{R}$,
- is **rigid**, that is with ker $P_{g_o} = \{0\}$, for $P_{g_o} = d_{g_o}(\operatorname{Ric} \Lambda)$ and

• only has **one** singularity \mathbb{R}^4/\pm at p, and assume that $(M_o, g_o) \in \mathbf{E}(M)$ for $M = M_o \# T^* \mathbb{S}^2$ (like a desingularization by $(T^* \mathbb{S}^2, g_{EH})$). Then, we have

$$\mathbf{R}_{g_{o}}^{+}(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Lambda \end{bmatrix} \text{ at } p \text{ singular, hence } \dim \ker \mathbf{R}_{g_{o}}^{+}(p) \ge 2.$$

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Second order obstruction

Assumptions of Biquard ('13), only assuming a d_{GH} -convergence.

Theorem (O', ('20))

Consider an Einstein orbifold (M_o^4, g_o) which

- is **compact** with $\operatorname{Ric}(g_o) = \Lambda g_o$ for $\Lambda \in \mathbb{R}$,
- is **rigid**, that is with ker $P_{g_o} = \{0\}$, for $P_{g_o} = d_{g_o}(\operatorname{Ric} \Lambda)$ and

• only has **one** singularity \mathbb{R}^4/\pm at p, and assume that $(M_o, g_o) \in \mathbf{E}(M)$ for $M = M_o \# T^* \mathbb{S}^2$ (like a desingularization by $(T^* \mathbb{S}^2, g_{EH})$). Then, we have

$$\mathbf{R}^+_{g_o}(p) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \Lambda \end{bmatrix} \text{ at } p \text{ singular, hence } \dim \ker \mathbf{R}^+_{g_o}(p) \ge 2.$$

Desingularization

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Second order obstruction Stable Ricci-flat

A Ricci-flat metric g is **stable** if the linearization of Ric_g has nonnegative spectrum on traceless-transverse tensors.

Theorem (O', ('20))

Consider an Einstein orbifold (M_{o}^{4}, g_{o}) which

- is **compact** with $\operatorname{Ric}(g_0) = 0$.
- for $M = M_0 \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$, $\forall n$ there exists g_n stable

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Second order obstruction Stable Ricci-flat

A Ricci-flat metric g is **stable** if the linearization of Ric_{g} has nonnegative spectrum on traceless-transverse tensors.

Theorem (O', ('20))

Consider an Einstein orbifold (M_{o}^{4}, g_{o}) which

- is **compact** with $\operatorname{Ric}(g_o) = 0$,
- for $M = M_0 \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$, $\forall n$ there exists g_n stable

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Second order obstruction Stable Ricci-flat

A Ricci-flat metric g is **stable** if the linearization of Ric_{g} has nonnegative spectrum on traceless-transverse tensors.

Theorem (O', ('20))

Consider an Einstein orbifold (M_{o}^{4}, g_{o}) which

- is **compact** with $\operatorname{Ric}(g_o) = 0$,
- for $M = M_o \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$, $\forall n$ there exists g_n stable **Ricci-flat** with $(M^4, g_n) \xrightarrow{GH} (M_o, g_o)$.

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

Second order obstruction Stable Ricci-flat

A Ricci-flat metric g is **stable** if the linearization of Ric_{g} has nonnegative spectrum on traceless-transverse tensors.

Theorem (O', ('20))

Consider an Einstein orbifold (M_{o}^{4}, g_{o}) which

- is **compact** with $\operatorname{Ric}(g_o) = 0$,
- for $M = M_o \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$, $\forall n$ there exists g_n stable **Ricci-flat** with $(M^4, g_n) \xrightarrow{GH} (M_o, g_o)$.

Then, we have

$$\mathbf{R}^+_{g_o}(p) = 0$$
 at p singular.

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

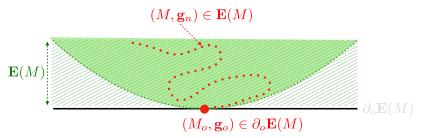
Conclusion and perspectives

Nondegenerate desingularization

In the spirit of Spotti ('14), Biquard-Rollin ('15) The obstruction dim ker $\mathbf{R}_{g_o}^+(p) \ge 2$ also holds under the assumptions :

• the orbifold is **compact**, $M = M_o \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$

 and the Einstein desingularization sequence (M, g_n)_n is nondegenerate and either Λ = 0 or there is only one singularity.



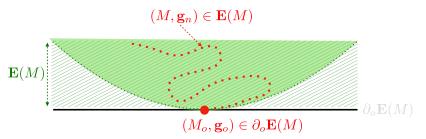
Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Nondegenerate desingularization

In the spirit of Spotti ('14), Biquard-Rollin ('15) The obstruction dim ker $\mathbf{R}_{g_o}^+(p) \ge 2$ also holds under the assumptions :

- the orbifold is **compact**, $M = M_o \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$
- and the Einstein desingularization sequence (M, g_n)_n is nondegenerate and either Λ = 0 or there is only one singularity.



Desingularization

Higher order obstructions

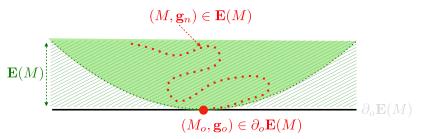
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Nondegenerate desingularization

In the spirit of Spotti ('14), Biquard-Rollin ('15)

The obstruction dim ker $\mathbf{R}_{g_o}^+(p) \ge 2$ also holds under the assumptions :

- the orbifold is **compact**, $M = M_o \# T^* \mathbb{S}^2 # ... \# T^* \mathbb{S}^2$
- and the Einstein desingularization sequence (M, g_n)_n is nondegenerate and either Λ = 0 or there is only one singularity.



Desingularization 000000 Higher order obstructions

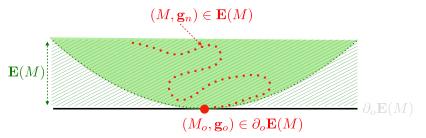
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Nondegenerate desingularization

In the spirit of Spotti ('14), Biquard-Rollin ('15)

The obstruction dim ker $\mathbf{R}_{g_o}^+(p) \ge 2$ also holds under the assumptions :

- the orbifold is **compact**, $M = M_o \# T^* \mathbb{S}^2 # ... \# T^* \mathbb{S}^2$
- and the Einstein desingularization sequence (M, g_n)_n is nondegenerate and either Λ = 0 or there is only one singularity.



Desingularization 000000 Higher order obstructions

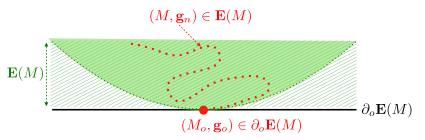
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Nondegenerate desingularization

In the spirit of Spotti ('14), Biquard-Rollin ('15)

The obstruction dim ker $\mathbf{R}_{g_o}^+(p) \ge 2$ also holds under the assumptions :

- the orbifold is **compact**, $M = M_o \# T^* \mathbb{S}^2 # ... \# T^* \mathbb{S}^2$
- and the Einstein desingularization sequence (M, g_n)_n is nondegenerate and either Λ = 0 or there is only one singularity.



Desingularization 000000 Higher order obstructions

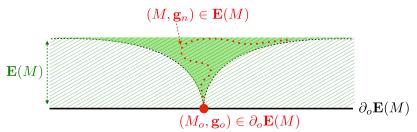
Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Transverse desingularization

The obstruction dim ker $\mathbf{R}^+_{g_o}(p) \ge 2$ also holds under the assumptions :

• the orbifold is **compact**, $M = M_o \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$

 and the Einstein desingularization sequence (M, g_n)_n is transverse.



Transverse desingularization

Most gluing-perturbation procedures yield transverse desingularizations. Biquard ('13) is a notable exception.

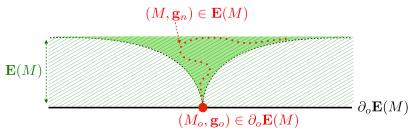
Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Transverse desingularization

The obstruction dim $\ker \mathbf{R}^+_{g_o}(p) \geqslant 2$ also holds under the assumptions :

- the orbifold is **compact**, $M = M_o \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$
- and the Einstein desingularization sequence (M, g_n)_n is transverse.



Transverse desingularization

Most gluing-perturbation procedures yield transverse desingularizations. Biquard ('13) is a notable exception.

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Transverse desingularization

The obstruction dim $\ker \mathbf{R}^+_{g_o}(p) \geqslant 2$ also holds under the assumptions :

- the orbifold is **compact**, $M = M_o \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$
- and the Einstein desingularization sequence $(M, g_n)_n$ is **transverse**.



Transverse desingularization

Most gluing-perturbation procedures yield transverse desingularizations. Biquard ('13) is a notable exception.

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

An AH counterexample

Page-Pope ('87) : The AdS Taub-Bolt metrics on T^*S^2 are Asymptotically Hyperbolic (AH) Einstein metrics degenerating to an AH Einstein orbifold bubbling out **one** Eguchi-Hanson metric. This orbifold has only **one** singularity \mathbb{R}^4/\pm at which, we have

$$\mathbf{R}^{+} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\frac{3}{2} & 0 \\ 0 & 0 & -\frac{3}{2} \end{bmatrix} \text{ and } \mathbf{R}^{-} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

The obstruction dim ker ${f R}^+ \geqslant 2$ is not local like dim ker ${f R}^+ \geqslant 1.$

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

An AH counterexample

Page-Pope ('87) : The AdS Taub-Bolt metrics on $T^*\mathbb{S}^2$ are Asymptotically Hyperbolic (AH) Einstein metrics degenerating to an AH Einstein orbifold bubbling out **one** Eguchi-Hanson metric. This orbifold has only **one** singularity \mathbb{R}^4/\pm at which, we have

$$\mathbf{R}^{+} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\frac{3}{2} & 0 \\ 0 & 0 & -\frac{3}{2} \end{bmatrix} \text{ and } \mathbf{R}^{-} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

The obstruction dim ker ${f R}^+ \geqslant 2$ is not local like dim ker ${f R}^+ \geqslant 1.$

Desingularization

Higher order obstructions 00000000

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

An AH counterexample

Page-Pope ('87) : The AdS Taub-Bolt metrics on T^*S^2 are Asymptotically Hyperbolic (AH) Einstein metrics degenerating to an AH Einstein orbifold bubbling out one Eguchi-Hanson metric. This orbifold has only **one** singularity \mathbb{R}^4/\pm at which, we have

$$\mathbf{R}^{+} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\frac{3}{2} & 0 \\ 0 & 0 & -\frac{3}{2} \end{bmatrix} \text{ and } \mathbf{R}^{-} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

The obstruction dim ker $\mathbf{R}^+ \ge 2$ is not **local** like dim ker $\mathbf{R}^+ \ge 1$.

Desingularization

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

A question/conjecture about the orbifolds in $\partial_{o} \mathbf{E}(M^{4})$

- First two obstructions : $\mathbf{R}_{\sigma_{\alpha}}^{+} = 0$ at the singular points.
- Higher order obstructions (infinite list) : restrictions on the **higher derivatives** of $\mathbf{R}_{\sigma_{\alpha}}^{+}$ at the singular point. Do they

Desingularization

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

A question/conjecture about the orbifolds in $\partial_{o} \mathbf{E}(M^{4})$

- First two obstructions : $\mathbf{R}_{g_o}^+ = 0$ at the singular points.
- Higher order obstructions (infinite list) : restrictions on the **higher derivatives** of $\mathbf{R}_{\sigma_{\alpha}}^{+}$ at the singular point. Do they

Desingularization

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

A question/conjecture about the orbifolds in $\partial_{o} \mathbf{E}(M^{4})$

- First two obstructions : $\mathbf{R}_{g_o}^+ = 0$ at the singular points.
- Higher order obstructions (infinite list) : restrictions on the **higher derivatives** of $\mathbf{R}_{\sigma_{\alpha}}^{+}$ at the singular point. Do they imply $\mathbf{R}_{\sigma_{\alpha}}^{+} \equiv 0$ (anti-selfduality) on the whole orbifold?

Desingularization

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

A question/conjecture about the orbifolds in $\partial_{o} \mathbf{E}(M^{4})$

- First two obstructions : $\mathbf{R}_{g_o}^+ = 0$ at the singular points.
- Higher order obstructions (infinite list) : restrictions on the **higher derivatives** of $\mathbf{R}_{\sigma_{\alpha}}^{+}$ at the singular point. Do they imply $\mathbf{R}_{g_0}^+ \equiv 0$ (anti-selfduality) on the whole orbifold?

Desingularization

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4 / \mathbb{Z}_2$

Conclusion and perspectives

A question/conjecture about the orbifolds in $\partial_{o} \mathbf{E}(M^{4})$

Let (M_o, g_o) be a singular **Ricci-flat** orbifold and consider $M = M_0 \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2$.

- First two obstructions : $\mathbf{R}_{g_o}^+ = 0$ at the singular points.
- Higher order obstructions (infinite list) : restrictions on the **higher derivatives** of $\mathbf{R}_{\sigma_{\alpha}}^{+}$ at the singular point. Do they imply $\mathbf{R}_{\sigma_{\alpha}}^{+} \equiv 0$ (anti-selfduality) on the whole orbifold?

Question

Do all $(M_o, g_o) \in \partial_o \mathbf{E}(M)$ satisfy $\mathbf{R}^+_{g_o} \equiv 0$, and are therefore

Desingularization

00000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

A question/conjecture about the orbifolds in $\partial_{o} \mathbf{E}(M^{4})$

Let (M_o, g_o) be a singular **Ricci-flat** orbifold and consider $M = M_0 \# T^* \mathbb{S}^2 \# ... \# T^* \mathbb{S}^2.$

- First two obstructions : $\mathbf{R}_{g_o}^+ = 0$ at the singular points.
- Higher order obstructions (infinite list) : restrictions on the **higher derivatives** of $\mathbf{R}_{\sigma_{\alpha}}^{+}$ at the singular point. Do they imply $\mathbf{R}_{\sigma_{\alpha}}^{+} \equiv 0$ (anti-selfduality) on the whole orbifold?

Question

Do all $(M_o, g_o) \in \partial_o \mathbf{E}(M)$ satisfy $\mathbf{R}_{g_o}^+ \equiv 0$, and are therefore locally hyperkähler?

Desingularization

0000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Is $\partial_o \mathbf{E}(M^4)$ a boundary or a filling?

Conjecture (Anderson – "It is a filling")

The subspace $\partial_{o} \mathbf{E}(M^{4})$ is of codimension 2 in $\overline{\mathbf{E}(M^{4})}_{GH}$.

Remark : false in the AH setting.

O. ('20) : The obstruction dim ker $\mathbf{R}_{\sigma_{\alpha}}^+ \ge 2$ is a second order

Desingularization

0000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Is $\partial_o \mathbf{E}(M^4)$ a boundary or a filling?

Conjecture (Anderson – "It is a filling")

The subspace $\partial_{o} \mathbf{E}(M^{4})$ is of codimension 2 in $\overline{\mathbf{E}(M^{4})}_{GH}$.

Remark : false in the AH setting.

Conjecture (With our vocabulary)

For any metric $(M_o, g_o) \in \partial_o \mathbf{E}(M^4)$ there is a 2-dimensional set of Einstein desingularizations **transverse** to $\partial_{\alpha} \mathbf{E}(M^4)$.

O. ('20) : The obstruction dim ker $\mathbf{R}_{\sigma_{\alpha}}^+ \ge 2$ is a second order

Desingularization

0000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Is $\partial_{o} \mathbf{E}(M^{4})$ a boundary or a filling?

Conjecture (Anderson – "It is a filling")

The subspace $\partial_{o} \mathbf{E}(M^{4})$ is of codimension 2 in $\overline{\mathbf{E}(M^{4})}_{GH}$.

Remark : false in the AH setting.

Conjecture (With our vocabulary)

For any metric $(M_o, g_o) \in \partial_o \mathbf{E}(M^4)$ there is a 2-dimensional set of Einstein desingularizations **transverse** to $\partial_{\alpha} \mathbf{E}(M^4)$.

O. ('20) : The obstruction dim ker $\mathbf{R}_{\sigma_{\alpha}}^+ \ge 2$ is a second order version of Anderson's conjecture :

Desingularization

0000000

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives

Is $\partial_{o} \mathbf{E}(M^{4})$ a boundary or a filling?

Conjecture (Anderson – "It is a filling")

The subspace $\partial_{o} \mathbf{E}(M^{4})$ is of codimension 2 in $\overline{\mathbf{E}(M^{4})}_{GH}$.

Remark : false in the AH setting.

Conjecture (With our vocabulary)

For any metric $(M_o, g_o) \in \partial_o \mathbf{E}(M^4)$ there is a 2-dimensional set of Einstein desingularizations **transverse** to $\partial_{\alpha} \mathbf{E}(M^4)$.

O. ('20) : The obstruction dim ker $\mathbf{R}_{\sigma_{\alpha}}^+ \ge 2$ is a second order version of Anderson's conjecture :

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ $\bullet 00000000$

Conclusion and perspectives

1 From Gromov-Hausdorff to weighted C^{∞}

2 Desingularization of Einstein metrics

3 Higher order obstructions to the desingularization

4 Obstructions to the desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

5 Conclusion and perspectives

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives 00000000

Naïve desingularization

by Eguchi-Hanson metrics

For t > 0 and $\varphi \in O(4) = \text{Isom}(\mathbb{R}^4/\pm)$, we glue :

$$t \cdot g_b = t \cdot \varphi_* g_{EH}.$$

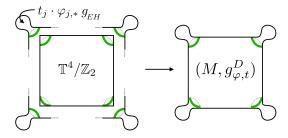
- **Positive** orientation : $\varphi \in SO(4) \longrightarrow obstruction : det \mathbb{R}^+$ and dim ker $\mathbf{R}^+ \ge 2$,
- Negative orientation : $\varphi \in O(4) \setminus SO(4) \longrightarrow$ obstruction : det \mathbf{R}^- and dim ker $\mathbf{R}^- \ge 2$,

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 0000000 Conclusion and perspectives

Hyperkähler metrics on the K3 surface Idea from Page ('78), Gibbons-Pope ('79)

Consider the desingularization $g_{\varphi,t}^D$ of a flat orbifold $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics at scales $t = (t_j)_j$ and $\varphi = (\varphi_j)_j$ in the same orientation (that is for $\varphi_j \in SO(4)$).



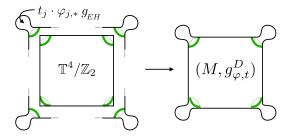
 (M, g_t^D) can be perturbed to a hyperkähler (hence Ricci-flat) metric, Topiwala ('87), Lebrun-Singer ('94), Donaldson ('12).

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

Hyperkähler metrics on the K3 surface Idea from Page ('78), Gibbons-Pope ('79)

Consider the desingularization $g_{\varphi,t}^D$ of a flat orbifold $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics at scales $t = (t_j)_j$ and $\varphi = (\varphi_j)_j$ in the same orientation (that is for $\varphi_j \in SO(4)$).



 (M, g_t^D) can be perturbed to a hyperkähler (hence Ricci-flat) metric, Topiwala ('87), Lebrun-Singer ('94), Donaldson ('12).

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

A question of Page

All known examples of **compact** (stable) Ricci-flat metrics have **special** holonomy (that is other than SO(d) in dimension d).

Question

Does there exist a **compact** Ricci-flat 4-manifold with **generic** holonomy *SO*(4)?

Question (Page ('81))

Can the desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics glued in **different** orientations (with $\varphi_j \in O(4) \setminus SO(4)$ for some *j*) be perturbed to a (stable) Ricci-flat metric? This would yield a Ricci-flat metric with **generic** holonomy.

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

A question of Page

All known examples of **compact** (stable) Ricci-flat metrics have **special** holonomy (that is other than SO(d) in dimension d).

Question

Does there exist a **compact** Ricci-flat 4-manifold with **generic** holonomy SO(4)?

Question (Page ('81))

Can the desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics glued in **different** orientations (with $\varphi_j \in O(4) \setminus SO(4)$ for some *j*) be perturbed to a (stable) Ricci-flat metric? This would yield a Ricci-flat metric with **generic** holonomy.

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

A question of Page

All known examples of **compact** (stable) Ricci-flat metrics have **special** holonomy (that is other than SO(d) in dimension d).

Question

Does there exist a **compact** Ricci-flat 4-manifold with **generic** holonomy SO(4)?

Question (Page ('81))

Can the desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics glued in **different** orientations (with $\varphi_j \in O(4) \setminus SO(4)$ for some *j*) be perturbed to a (stable) Ricci-flat metric? This would yield a Ricci-flat metric with **generic** holonomy.

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000 Conclusion and perspectives

A question of Page

All known examples of **compact** (stable) Ricci-flat metrics have **special** holonomy (that is other than SO(d) in dimension d).

Question

Does there exist a **compact** Ricci-flat 4-manifold with **generic** holonomy SO(4)?

Question (Page ('81))

Can the desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics glued in **different** orientations (with $\varphi_j \in O(4) \setminus SO(4)$ for some *j*) be perturbed to a (stable) Ricci-flat metric? This would yield a Ricci-flat metric with **generic** holonomy.

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

General desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics

- 9-dimensional space of flat deformations of $\mathbb{T}^4/\mathbb{Z}_2$ with fixed volume,
- 16 Eguchi-Hanson metrics with 3-dimensional spaces of Einstein deformations : one from a scaling factor t > 0 and two from φ ∈ SO(4)/U(2) (since g_{EH} is U(2)-invariant).

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

General desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics

- 9-dimensional space of flat deformations of $\mathbb{T}^4/\mathbb{Z}_2$ with fixed volume,
- 16 Eguchi-Hanson metrics with 3-dimensional spaces of Einstein deformations : one from a scaling factor t > 0 and two from $\varphi \in SO(4)/U(2)$ (since g_{EH} is U(2)-invariant).

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

General desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics

- 9-dimensional space of flat deformations of $\mathbb{T}^4/\mathbb{Z}_2$ with fixed volume,
- 16 Eguchi-Hanson metrics with 3-dimensional spaces of Einstein deformations : one from a scaling factor t > 0 and two from $\varphi \in SO(4)/U(2)$ (since g_{EH} is U(2)-invariant).

Desingularization 000000 Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

General desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics

- 9-dimensional space of flat deformations of $\mathbb{T}^4/\mathbb{Z}_2$ with fixed volume,
- 16 Eguchi-Hanson metrics with 3-dimensional spaces of Einstein deformations : one from a scaling factor t > 0 and two from $\varphi \in SO(4)/U(2)$ (since g_{EH} is U(2)-invariant).

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 0000000000

Conclusion and perspectives

Obstructions on
$$\mathbb{T}^4/\mathbb{Z}_2$$

Theorem (0. 20)

- There are 57 obstructions to a Ricci-flat desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics in different orientations. 48 are analogous to det $\mathbf{R}^{\pm} = 0$.
- There are 84 obstructions to a nondegenerate or stable

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 0000000000

Conclusion and perspectives

Obstructions on
$$\mathbb{T}^4/\mathbb{Z}_2$$

Theorem (0. 20)

- There are 57 obstructions to a Ricci-flat desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics in different orientations. 48 are analogous to det $\mathbf{R}^{\pm} = 0$.
- There are 84 obstructions to a nondegenerate or stable **Ricci-flat** desingularization. 80 are analogous to $\mathbf{R}^{\pm} = 0$.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 0000000000

Conclusion and perspectives

Obstructions on
$$\mathbb{T}^4/\mathbb{Z}_2$$

Theorem (0. 20)

- There are 57 obstructions to a **Ricci-flat** desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ by Eguchi-Hanson metrics in different orientations. 48 are analogous to det $\mathbf{R}^{\pm} = 0$.
- There are 84 obstructions to a nondegenerate or stable **Ricci-flat** desingularization. 80 are analogous to $\mathbf{R}^{\pm} = 0$.

This indicates that for almost all flat metric on $\mathbb{T}^4/\mathbb{Z}_2$, the desingularization should be obstructed.

- 1 Consider the hyperkähler **partial** desingularizations.
- **2** Consider the obstruction on \mathbf{R}^{\pm} to the **total** desingularization?

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 000000000 Conclusion and perspectives

Obstructed situation

Theorem (O. ('20))

It is **impossible** to d_{GH} -desingularize the **regular** $\mathbb{T}^4/\mathbb{Z}_2$ coming from the lattice \mathbb{Z}^4 by Ricci-flat metrics thanks to

- one positively oriented Eguchi-Hanson metric and
- 15 negatively oriented Eguchi-Hanson metrics.

Theorem (O. ('20))

It is **impossible** to d_{GH} -desingularize the **regular** $\mathbb{T}^4/\mathbb{Z}_2$ coming from the lattice \mathbb{Z}^4 by **stable** Ricci-flat metrics thanks to

- one, two or three positively oriented Eguchi-Hanson metrics,
- the rest of negatively oriented Eguchi-Hanson metrics.

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Brendle-Kapouleas ('17) configuration

Consider the following 1-dimensional set of desingularization configurations depending on t>0 :

- the regular torus T⁴/Z₂ coming from the lattice Z⁴,
- a "**chessboard**" configuration of points with positive and negative orientations,

• For all
$$j$$
, $t_{(j)} = t > 0$, $\varphi_{(j)} = \text{Id} \in SO(4)$ or
 $\varphi_{(j)} = (x_1, x_2, x_3, x_4) \mapsto (-x_1, x_2, x_3, x_4) \notin SO(4).$

Brendle-Kapouleas ('17) : There exists one nonvanishing **obstruction** to the desingularization. It is strikingly used to construct an intriguing **ancient solution to the Ricci flow**.

In this configuration, **none** of our 57 obstructions is satisfied.

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 000000000

Conclusion and perspectives

Brendle-Kapouleas ('17) configuration

Consider the following 1-dimensional set of desingularization configurations depending on t > 0:

- the **regular** torus $\mathbb{T}^4/\mathbb{Z}_2$ coming from the lattice \mathbb{Z}^4 ,
- a "chessboard" configuration of points with positive and

• For all
$$j$$
, $t_{(j)} = t > 0$, $\varphi_{(j)} = \mathsf{Id} \in SO(4)$ or
 $\varphi_{(j)} = (x_1, x_2, x_3, x_4) \mapsto (-x_1, x_2, x_3, x_4) \notin SO(4).$

Brendle-Kapouleas ('17) : There exists one nonvanishing

Brendle-Kapouleas ('17) configuration

Consider the following 1-dimensional set of desingularization configurations depending on t>0 :

- the regular torus $\mathbb{T}^4/\mathbb{Z}_2$ coming from the lattice $\mathbb{Z}^4,$
- a "chessboard" configuration of points with positive and negative orientations,
- For all j, $t_{(j)} = t > 0$, $\varphi_{(j)} = Id \in SO(4)$ or $\varphi_{(j)} = (x_1, x_2, x_3, x_4) \mapsto (-x_1, x_2, x_3, x_4) \notin SO(4).$

Brendle-Kapouleas ('17) : There exists one nonvanishing **obstruction** to the desingularization. It is strikingly used to construct an intriguing **ancient solution to the Ricci flow**.

In this configuration, **none** of our 57 obstructions is satisfied.

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 000000000

Conclusion and perspectives

Brendle-Kapouleas ('17) configuration

Consider the following 1-dimensional set of desingularization configurations depending on t > 0:

- the **regular** torus $\mathbb{T}^4/\mathbb{Z}_2$ coming from the lattice \mathbb{Z}^4 ,
- a "chessboard" configuration of points with positive and negative orientations,

• For all
$$j$$
, $t_{(j)} = t > 0$, $\varphi_{(j)} = \mathsf{Id} \in SO(4)$ or
 $\varphi_{(j)} = (x_1, x_2, x_3, x_4) \mapsto (-x_1, x_2, x_3, x_4) \notin SO(4).$

Brendle-Kapouleas ('17): There exists one nonvanishing

Brendle-Kapouleas ('17) configuration

Consider the following 1-dimensional set of desingularization configurations depending on t > 0:

- the **regular** torus $\mathbb{T}^4/\mathbb{Z}_2$ coming from the lattice \mathbb{Z}^4 ,
- a "chessboard" configuration of points with positive and negative orientations,

• For all
$$j$$
, $t_{(j)} = t > 0$, $\varphi_{(j)} = \mathsf{Id} \in SO(4)$ or
 $\varphi_{(j)} = (x_1, x_2, x_3, x_4) \mapsto (-x_1, x_2, x_3, x_4) \notin SO(4).$

Brendle-Kapouleas ('17) : There exists one nonvanishing **obstruction** to the desingularization. It is strikingly used to construct an intriguing ancient solution to the Ricci flow.

Brendle-Kapouleas ('17) configuration

Consider the following 1-dimensional set of desingularization configurations depending on t > 0:

- the **regular** torus $\mathbb{T}^4/\mathbb{Z}_2$ coming from the lattice \mathbb{Z}^4 ,
- a "chessboard" configuration of points with positive and negative orientations,

• For all
$$j$$
, $t_{(j)} = t > 0$, $\varphi_{(j)} = \mathsf{Id} \in SO(4)$ or
 $\varphi_{(j)} = (x_1, x_2, x_3, x_4) \mapsto (-x_1, x_2, x_3, x_4) \notin SO(4).$

Brendle-Kapouleas ('17) : There exists one nonvanishing **obstruction** to the desingularization. It is strikingly used to construct an intriguing ancient solution to the Ricci flow.

In this configuration, **none** of our 57 obstructions is satisfied.

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Unobstructed situation?

Consider the 48-dimensional situation with :

- the **regular** torus $\mathbb{T}^4/\mathbb{Z}_2$ coming from the lattice \mathbb{Z}^4 ,
- a "**chessboard**" configuration of points with g_{EH}^+ or g_{EH}^- .

Then, there exists a 14-dimensional subspace of desingularization configurations satisfying **all** of the 84 obstructions.

Conjecture

Higher order obstructions should prevent this gluing.

Conclusion and perspectives

Unobstructed situation?

Consider the 48-dimensional situation with :

- the **regular** torus $\mathbb{T}^4/\mathbb{Z}_2$ coming from the lattice \mathbb{Z}^4 ,
- a "chessboard" configuration of points with g_{FH}^+ or g_{FH}^- .

Then, there exists a 14-dimensional subspace of desingularization configurations satisfying **all** of the 84 obstructions.

Conjecture

Higher order obstructions should prevent this gluing.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives 00000

1 From Gromov-Hausdorff to weighted C^{∞}

4 Obstructions to the desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

5 Conclusion and perspectives

Desingularization

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives 0000

Conclusion (O. '19)

- described the d_{GH} -neighborhood of $\partial_o \mathbf{E}(M)$ in $\overline{\mathbf{E}(M)}_{GH}$ in a **smooth** sense,
- extended the obstruction det $\mathbf{R}(p) = 0$ to the conjecturally general situation
 - assuming only a d_{GH}-convergence,
 - allowing the orbifold to have infinitesimal deformations and several singularities of general type,
 - considering any gravitational instanton and quotient,
 - allowing the formation of trees of singularities.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives 00000

Conclusion (O. '19)

- described the d_{GH} -neighborhood of $\partial_o \mathbf{E}(M)$ in $\mathbf{E}(M)_{GH}$ in a smooth sense.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

00000

Conclusion (O. '19)

- described the d_{GH} -neighborhood of $\partial_o \mathbf{E}(M)$ in $\mathbf{E}(M)_{GH}$ in a smooth sense.
- extended the obstruction det $\mathbf{R}(p) = 0$ to the conjecturally general situation
 - assuming only a d_{GH}-convergence,
 - allowing the orbifold to have infinitesimal deformations and
 - considering any gravitational instanton and quotient,
 - allowing the formation of trees of singularities.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

00000

Conclusion (O. '19)

- described the d_{GH} -neighborhood of $\partial_o \mathbf{E}(M)$ in $\mathbf{E}(M)_{GH}$ in a smooth sense.
- extended the obstruction det $\mathbf{R}(p) = 0$ to the conjecturally general situation
 - assuming only a d_{GH}-convergence,
 - allowing the orbifold to have infinitesimal deformations and several singularities of general type,
 - considering any gravitational instanton and quotient,
 - allowing the formation of trees of singularities.

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

00000

Conclusion (O. '19)

- described the d_{GH} -neighborhood of $\partial_o \mathbf{E}(M)$ in $\mathbf{E}(M)_{GH}$ in a smooth sense.
- extended the obstruction det $\mathbf{R}(p) = 0$ to the conjecturally general situation
 - assuming only a d_{GH}-convergence,
 - allowing the orbifold to have infinitesimal deformations and several singularities of general type,
 - considering any gravitational instanton and quotient,
 - allowing the formation of trees of singularities.

From GH to C^{∞} Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ Conclusion and perspectives

00000

Conclusion (O. '19)

- described the d_{GH} -neighborhood of $\partial_o \mathbf{E}(M)$ in $\mathbf{E}(M)_{GH}$ in a smooth sense.
- extended the obstruction det $\mathbf{R}(p) = 0$ to the conjecturally general situation
 - assuming only a d_{GH}-convergence,
 - allowing the orbifold to have infinitesimal deformations and several singularities of general type,
 - considering any gravitational instanton and quotient,
 - allowing the formation of trees of singularities.

Desingularization

Conclusion and perspectives 00000

Conclusion (O. 20)

I have partially answered and motivated 4 questions.

- Does a *d_{GH}*-limit of Einstein metric bubbling out gravitational instantons satisfy dim ker $\mathbf{R}^{\pm} \ge 2$ at its singular points?
- Are the *d_{GH}*-limits of sequences of Einstein metrics bubbling out gravitational instantons Kähler-Einstein orbifolds?
- Should $\partial_{\alpha} \mathbf{E}(M^4)$ be thought of as a filling of missing pieces in $\mathbf{E}(M^4)$ rather than a boundary?
- Can we desingularize $\mathbb{T}^4/\mathbb{Z}_2$ by a Ricci-flat but not hyperkähler metric by perturbing one of the configurations of the 14-dimensional set satisfying all of the first 84 identified obstructions?

Desingularization

Higher order obstructions Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$

Conclusion and perspectives 00000

Conclusion (0. 21)

- Analogy between the problem of desingularization of Einstein metrics and the question of **integrability** of infinitesimal Einstein deformations.
- Some obstructions can be recovered from the conformal **Killing** vector fields of the cones in the neck regions.
- It is impossible to d_{GH} -desingularize spherical and hyperbolic orbifolds with $\mathbb{R}^4/\mathbb{Z}_2$ singularities.

Desingularization 000000

Higher order obstructions

Desingularization of $\mathbb{T}^4/\mathbb{Z}_2$ 00000000

Conclusion and perspectives

Thank you for your attention !