

Spectral Networks

Nonabelianization Map

"But we also have other BPS degeneracies: (Framed BPS degeneracies) $() \overline{S} (L_{R, P, S} ; u)$ WC of I can be deduced by a simple physical argument and d Consistency then implies WCF for SU(1) 2d"QFT" (\$; of W) $(\phi_i \text{ of } W)$ (2) (D_z) has soliton degeneracies How to label solitons? til Vacua \bigcirc \overline{h} Z(1) & homology class of this path is a label for soliton sector. C $\pi'(z) = \{ z^{(i)} \}$

Soliton sectors of Sz are labeled by YET(Z,Z):=UT:(Z,Z) i,j~ sheets $\overline{\prod_{ij} (z_i z)} = \begin{cases} Chains c in C & s.t. \\ \partial c = z^{(i)} - z^{(i)} \end{cases}$ $\frac{\text{Central changes}}{Z(\vartheta) = \oint_{\mathcal{S}} \lambda \quad \mathcal{A}}$ 3 Soliton degeneracies: $\mu(8)^{A}$ Physical defn of Spectral Network $\mathcal{W}_{S} = \begin{cases} z \in C \\ z \in C \\ z(x) = S \cdot |z(x)| \\ u(x) \neq 0 \end{cases}$

There is an algorithm for Constructing $\mu(8)$ by evalving The spectral network from the branch points of $\pi: C \to C$ with points of $\pi: C \to C$ with point specific place $\left[\left(\chi^{(i)} - \chi^{(i)} \right) \right] = 5$ $\sum_{k=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_$ Then apply simple wall-crossing formulare when lines cross

3 or more sheets

The BPS degeneracies $\overline{\Sigma}(P,S,X)$ are determined as fallows: Homology Path Algebra: TTS(C) $\delta_{1} \times \delta_{2} = \begin{cases} X_{\delta_{1}+\delta_{2}} & \text{if comp.} \\ X_{\delta_{1}} \times \delta_{2} & \text{makes sense} \\ 0 & \text{else} \end{cases}$ "Formal parallel transport" P: Z, my Zz path in G

Claim [GMN, 2012]: I! degeneracies 1.) $\Omega(p, s, s)$ $\forall p, \forall \gamma \in \Gamma(z_1, z_2)$ 2.) $\mu(\vartheta)$ $\forall \in \Gamma(z;z) \forall z \in C$ such that A.) Homotopy invariance: $\Pi(p_1, 5) = \Pi(p_2, 5)$ if $P_1 \sim P_2$ (fixed endpoints) B.) Gluing: $\#(p_1, S) \#(p_2, S) = \#(p_1, p_2, S)$ $C.) If <math>gn \mathcal{W}_{S} = \phi$ $F(p, 5) = \sum_{\text{sleets}} X_{p(i)}$ $:=\mathcal{D}\langle \mathcal{P} \rangle$ $p^{(3)}$ A o t

 \mathcal{D}_{\cdot}) Detour Rule Ws Z* - $\int_{ij}^{p_{-}} \langle \partial_{t}, \chi^{(i)} \rangle = S$ $H(P,S) = D(P_{+}) \overline{II}(1+\mu(S)) D(B_{-})$ $\gamma \in \Gamma(z_{*}, z_{*})$

Idea of Prosti Build up the M(8) and I (D, S, 8) Starting from the branch points: $\sum_{i=1}^{n} \mu(x) = 1$ 1 type ij

Remarks 1.) Replacing Xy ⇒ Parallel transport by flat GL(1E) Connection Vab on E $F(p, S) = \sum \overline{\Omega}(p, S, X) \exp \int \nabla^{ab}$ o gives the nonabelianization map Ψ_{w_s} : $\mathcal{M}(\tilde{C}, GL(I)) \longrightarrow \mathcal{M}(C, GL(K))$ K=#sheets IF is halomorphic symplectic. Claim: Only provides coordinates on a chart in M_{flat} (C, GL(K)) determined by Ws

2.) Fei & Andy - tallowing Some earlier work have sought to generalize the homology path algebra to a noncommutative Aleisenberg algebra (for p closed) 3.) The 2d theory Sz has an As Category of branes (generalizing the Fukaya-Seidel category) There should be categorical analogs of the above where F(p) is a functorial analog of flat parallel transport. $\mathbb{H}(\mathcal{B}): \mathbb{B}_{r}(\mathbb{S}_{z_{1}}) \longrightarrow \mathbb{B}_{r}(\mathbb{S}_{z_{2}})$

For the case of LG models this was actually constructed in Gaioto-Morre-Witten, 2015.

It should lead to a categorified Version of Stokes phenomenon.

Sij walls were associated with ("S-wall") crossing functors Fij in GMW. These are Categorical generalizations of Stokes factors.

Hd SU(2) proc. C = P with 2 punctures $\lambda^{2} = \left(\frac{\Lambda^{2}}{Z^{3}} + \frac{\mathcal{U}}{Z^{2}} + \frac{\Lambda^{2}}{Z}\right) dz^{\otimes 2}$ Couple this to CP' model. It has global SU(2) Symmetry. for Z in certain regions Can identify w/ Bzt See GMN 1103.2598 section 8.3

Two math references related to this.

- Acc category of branes for Sz:
 G. Kerr + Y. Soibelman 1711,03695
- Math formulation/construction of functor IF(p) giving categorical
 Stokes factors:
 - M. Kapranov, Y. Solbelman, L. Southanov, 2011.00845