Informal Remarks Preparatory For/Complementary To Fei Yan’s Talk

Simons Collaboration On Special Holonomy
Jan. 13, 2021
Arbeitstagung

Useful
Comments On:

1. Physics Background
2. Defects And Their BPS States
3. Class S
4. Spectral Networks + Nonabelianization Map
5. RH Problems, Integral Equations and Hyperkähler Geometry
1. Physics Background

- Physicists assume many things and have intuitions and examples in mind that they take for granted, but which are not obvious to anyone else.

- Hamburg School On Higgs Bundles, Sept. 2018: Talk # 84 on my homepage goes back to the beginning:

 * Branes + Geometrization of Higgs Mechanism
 * M5 Branes
 * 6d (2,0) Theory
 * Geometrical pictures for class Σ and their BPS states

Goal:

Explain the physics intuition behind theory of "spectral networks"
2. Defects

* There exists a rigorous theory in the context of extended TQFT ("cobordism hypothesis").

* In the SUSY context: New BPS deg's

4d $N=2$ SQFT: $\Omega(\mathcal{Y}) \rightarrow$ DT

- Line defects $\mapsto \Omega(L, \mathcal{Y})$ "framed"
- Surface defects $\mapsto \mathcal{M}(\mathcal{Y}_{ij})$ "soliton"
- Line defects in surface $\mapsto \Omega(\mathcal{L}_p, \mathcal{Y}_{ij})$ "framed soliton"

* $\Omega(\mathcal{Y}) \Rightarrow$ Well-known RH problem useful for construction of HK metrics on moduli \mathcal{M}: space of solutions to Hitchin equations on a R.S. \mathcal{G}' (with singularities)
other BPS

* deg's \Rightarrow\text{ Similar RH problems }

Constructing:

a.) Hyper-holo connections on certain vector bundles over M

b.) Explicit construction of solutions to Hitchin equations on \mathbb{R}-Surface C.

Now give some examples of defects.
Example 1: Soliton \(\frac{1}{i} \) framed soliton deg's:

\(X \) exact Kähler \(\omega = d\lambda \)

\(W: X \to \mathbb{C} \) superpotential (hale, Morse)

\((X,W) \to 1+1 \) diml massive LG model. (Phys)

\(\rightarrow \) Fukaya–Seidel category (Math)

Critical points of \(W: \{ \phi_i \} \to \)

\[\mathcal{E}_{\phi_i} = \{ \phi: \mathbb{R} \to X, \phi \to \phi_i \}_{\phi \to +\infty} \]

\[h = \int_{\mathbb{R}} [\phi^*(\lambda) - \text{Re} (\mathcal{E} W(\phi(x))) \, dx] \]

\(Sh = 0 \) soliton eq. \(\frac{d\phi}{dx} = S \nabla W \)

\[\mu_{ij} = X (\text{Morse Complex}) \]

"Soliton degeneracies"
Consider a manifold G' of Morse superpotentials:

$$\overline{W}(\phi; z), \ z \in G'$$

$\mapsto \phi(x): z_1 \mapsto z_2$ path in G'

\[h = \int [\phi^*(\alpha) - \text{Re}(\overline{s} W(\phi(x), z(x)))dx] \]

$sh=0$ soliton-like q gives a new Morse complex.

Physical picture:

- Line defect

$$M_{ij}(\phi) = \chi(\text{Morse Complex})$$
Example 2: Line Defects In 4d Gauge Theory w/ gauge group G

4d spacetime: \(TR^3 \times S^1 \)

Wilson:
\[
\varphi \in \mathcal{Y} \otimes \mathbb{C}
\]

\[
L(R, s) = \text{Tr} \text{ Pexp} \int_R \left(5^\varphi + A + 5\varphi^+ \right)
\]

\[
Q \in \Lambda \text{char}(G) \quad \text{highest wt of } R.
\]

\`t Hooft:

In path integral, put bc:

\[
\tilde{x} \rightarrow \bar{x}_0 \in \mathbb{R} \quad F^x \sim P \quad \sin \theta \delta \phi + \ldots
\]

\[
\rightarrow \text{Re}(S^{-1} \varphi) \sim \frac{P}{r} + \ldots
\]

\[
P \in \Lambda \text{cochar}(G) \subset \mathbb{C}
\]
Put them together

\[\bf{\Lambda}_{\text{char}} \oplus \Lambda_{\text{cochar}} \]

\[\Rightarrow \text{Wilson - 't Hooft lines: } L_{P,Q,S} \]

These are "UV descriptions of the line defects" because they tell us how to modify the path integral of the nonabelian field theory.

At \(x \to \infty \) we have b.c.

\[\Rightarrow F(x) \sim \sum_{m} \sin \theta d\theta d\phi \quad \forall \in \Lambda_{\text{coroot}} \]

This is a long-distance/IR condition

\[\varphi \sim \langle \varphi \rangle = \psi \in B = \text{base of Hitchin fibration} \]
Without line defects (Smooth monopoles)

\[\Omega (Y_{m, u}) = \dim_c (\ker D) \text{ monopole mod.sp.} \]

With line defects:

Use singular monopoles w/ singularity E

\[\Omega (L_{p_s}, Y_m) = \dim_c (\ker D) \text{ sing.mon. mod.sp.} \]

The presence of the line defect at \(\bar{X} = X_0 \times 1 \times R_t \times S^1_t \) has modified the Hilbert space as a representation of \(N=2 \) super-Painleve algebra (which contains Hamiltonian). So spectrum of BPS - or groundstates - has changed.
Example 3: Surface Defect.

General idea:

- 4d spacetime \mathbb{R}^4 or $\mathbb{R}^3 \times S^1$

Coordinates (x, y, z, t)

- $\mathbb{R}_y^2 \subset \mathbb{R}_{x,y,z,t}^4$: Subspace with fixed y_0, z_0.

- 4d QFT E_4 w/ gauge group G

- 2d QFT E_2 w/ global symmetries G

2d-4d system:

Couple E_4 to E_2 supported on \mathbb{R}_y^2 supported on \mathbb{R}_{y, z_0}^2 by adding to action

$$\int_{\mathbb{R}_y^2} \left< z^*(A^\mu), j^\mu \right> \, d\text{vol}(\mathbb{R}_{y, z_0}^2)$$
The BPS particles of E_8 can bind to the surface defect

$$y = y_0, \quad z = z_0$$

$$\Rightarrow$$ Nontrivial interplay between 2d + 4d BPS degeneracies.

If we put a line defect in the surface defect we get "framed 2d4d degeneracies".
③ Class S

$\mathfrak{g} = \text{s.s. Lie algebra w/ ADE summands}$

\Rightarrow 6d QFT $S(\mathfrak{g})$

See below for comment on the definition of $S(\mathfrak{g})$.

- $C = \text{Riemann surface}$
- $D = \text{"defect data"}$
 - divisor $\subset C$ support $\{p_{\alpha}\}$
 - Choice of orbits in \mathfrak{g}_0 at p_{α}

\Rightarrow 4d QFT $S[\mathfrak{g}, C, D]$

Proof: $6 = 4 + 2$ $M_4 \times C$

Partial topological twist \Rightarrow

independence of some quantities on Kähler class of C', $\text{area}(C) \to 0$
Example:

→ $\mathfrak{g} \otimes \mathfrak{su}(2) \cdot 6d$

→ C: genus g

→ D: n punctures, orbit at p: $\begin{pmatrix} m_2^+ & 0 \\ -m_2 \end{pmatrix}$

4d gauge theory has gauge group G

- Lie $(G) = \mathfrak{su}(2)^{3g-3+n} = \mathfrak{g}_{4d}$

- Coupling constants τ_i parametrize conformal structure of $C_{g,n}$

(Many different descriptions based on pants decomposition: Gaiotto)

\[\tau \]

- p_x, $n=0$ makes sense, but is qualitatively different.
There are 't Hooft–Wilson line defects \(L_{p+q} \),

\[P+Q \in \Lambda_{\text{cochar} (\mathfrak{g}_{4d})} \oplus \Lambda_{\text{char} (\mathfrak{g}_{4d})} \]

Drukker–Morrison–Okuda: These are Dehn–Thurston coordinates for isotopy class of closed 1-dimensional submanifold \(P < C \).

(at least ... when \(p \) is connected ...)

So we label line defects by

\(P = \text{isotopy class of closed curve in } C \).
Two "facts"

about 6d theory $S[\mathcal{g}]$

N.B. No definition of $S[\mathcal{g}]$ exists, even by physical standards where it is considered "obvious" that four-dimensional (nonanomalous) gauge theories exist.

An attempt to write a list of working rules ("axioms") which physicists use to produce mathematically well-defined statements and conjectures can be found in
My Felix Klein lecture notes in section 6.6 pp. 78-80. See talk #47 on my homepage.
$S[\gamma]$ has **surface defects**

In 6d spacetime $\mathbb{R}^3 \times S^1 \times \mathbb{C}$

(A) $\text{Supp}(S) = \{ \vec{x}_0 \} \times S^1 \times \mathbb{R} \quad \forall \, \theta \in \mathbb{C}$

\Rightarrow Line defect in 4d theory on $\{ \vec{x}_0 \} \times S^1$

Isotopy class of P is a "UV label" generalizing the labels of 't Hooft-Wilson lines

(B) $\text{Supp}(S) = \mathbb{R}^3 \times S^1 \times \{ \gamma \} \quad \forall \gamma \in \mathbb{C}$

\Rightarrow Surface defect in 4d theory, $S[\gamma]$,

More careful analysis: L_p also labeled by rep R of γ and phase S.
2. When $S[\phi]$ is compactified on a circle, the LEET is

\[\text{5D SYM} \Rightarrow \]

- ϕ gauge connection A
- ϕ_c adjoint scalar ψ

$S[\phi]$ on

\[TR^3 \times S^1_R \times C \]

$S^1 \rightarrow \text{area}(C)$

$E \ll \frac{1}{R}$

$\text{HK } \sigma\text{-model}$

\[TR^3 \rightarrow M_{SW} \]

$E \ll \frac{1}{\sqrt{\text{area}(C)}}$

$\text{HK } \sigma\text{-model}$

\[TR^3 \rightarrow M_{\text{Hitchin}} \]
Answer to question: "How did you get the Hitchin equations?"

10D SYM (others are reductions/ trunc's)

\[A^M, \lambda \quad M = 0, \ldots, 9 \]

\[Q^\lambda = 0 \quad \Rightarrow \quad \gamma^{MN} F_{MN} A^\lambda = 0. \]

For a suitable spinor \(\xi \)

One example: \(F^+ = 0 \).

Another example: Hitchin eqs.

We did not follow Hitchin's route of reducing \(F^+ = 0 \) to two dimensions.
IR description

\[\langle \varphi \rangle = \lim_{x \to \infty} \varphi(x) \]

- **Ω** = Coulomb branch = base of Hitchin fibration

- \[\hat{C} \subset \tilde{T}^* \mathcal{C} \]

 \[\int_{\hat{C}} \mathcal{C} \]

 Abelian gauge theory \[U(1)^{\nu} \]

 Electro-magnetic charge lattice of IR AbThy

 \[\Gamma \] is a subquotient of \(H_1(\Sigma, \mathbb{Z}) \)

 \[Z = \phi_{\lambda} : \Gamma \to \mathcal{C} \] determines IR LEFT

 \[\implies \Omega(\gamma; u) \text{ etc.} \]

 T.B. talk \(\nu = A_1 \), \(\Gamma = H_1(\Sigma, \mathbb{Z}) \)