Quadratic Differentials on stability conditions

(joint work with Tom Bidgelond, Girea lote Getaceous)
Fix g=2, a R. Surface E I genus g, & a quadratic
differential
$$\phi \in H^{o}(K_{\Sigma}^{\otimes 2})$$
 with distinct errors.
~) $\gamma_{\phi} = \{(a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi\}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes 3} \mid ab + c^{2} = \phi \end{cases}$
 $J = \begin{cases} (a,b,c) \in K_{\Sigma}^{\otimes$

$$\exists 2: (\text{ conv} \quad \hat{\xi} \xrightarrow{2:} \xi : 2 \text{ Leven} (\phi) : g(\hat{\xi}) = 4g.3.$$

$$H_3(T_p) = H_1(\hat{\xi})^T \text{ entrinvaluet part for involvent rank 6g.6.}$$

$$K^{\circ}(\exists (T_k)) \longrightarrow H_3(T_p, \mathbb{R}).$$

$$\underbrace{(\text{orjecture}: \quad \text{Stab}(\exists (T_k)))/(\text{Auteg}(T))}_{\text{Auteg}(T)} = Qued(g)$$

$$g. detherehals with simple zerow$$

$$There are inlied 3-lo(der fixed \qquad \subseteq V \longrightarrow M_3$$

$$g. uth for (me) mosthing \qquad V_3 := H^{\circ}(K_3^{\circ L}).$$

Throne : (Bridgehend, S.) (If
$$g(s) = 0, \# D \ge J$$
)
3 a deshingwohld rubertypes $C \subseteq J(T_{\phi}, Z)$ it.
 $Stody(C) / Aut_{\phi}(C) = Quad p(S)$
Quad $g \ge q.d.$ with deshirt resses at points after than D
 gm
Ruad $g \ge q.d.$ with deshirt resses at points after than D
 gm
Ruad $g \ge q.d.$ with deshirt resses at points after than D
 gm
Ruad $g \ge q.d.$ with deshirt resses at points after than D
 gm
Ruad $g \ge q.d.$ with deshirt resses at points after than D
 gm
Ruad $g \ge q.d.$ with deshirt resses at points after than D.
 gm
 $Ruad $g \ge q.d.$ with deshirt resses at points after that $point = 1$
 gm
 $Ruad $g \ge q.d.$ with deshirt resses at points after that $point = 1$
 gm
 $Ruad $g \ge q.d.$ with deshirt resses gm points at $point = 1$
 $(R R_{12} - at fold structure a (ong that divise)).$
Remark : One is allow higher order poles in ϕ ; for expanding
 $T_{6} \to S$ has engling fires of poles in ϕ ; for expanding
 $T_{6} \to S$ has engling fires of poles in ϕ ; $D$$$$

Now we again confider
$$\hat{S} \xrightarrow{q} S \ge 2even (\emptyset)$$
 (2 add
order pole)
H₁ (\hat{S}_0)
H₁ (\hat{S}_0)
H₁ (\hat{S}_0)
H₂ (\hat{T}_{ϕ}) = $K^{\circ}(C) \xrightarrow{q} C$ for $\sigma_{+}Stab$.
H₃ (\hat{T}_{ϕ}) = $K^{\circ}(C) \xrightarrow{q} C$ for $\sigma_{+}Stab$.
Then $q^{*}\phi = 4 \otimes \psi$ for an energy advalue of therearboul.
 $Z_{\sigma}(\gamma) := \int_{\gamma} \psi$ $\gamma \in \hat{H}(S) := H_{1}(\hat{S}_{0})^{-}$.

Theorem (continued):
For a quadrantical
$$\phi$$
, the stable objects of the
associated showing condition are the saddle trajectories for ϕ .
 $T(y) = 1$
 $T(y) = 1$
 $T(y) = 1$
 $T(y) = -2$
 $T(y) = -2$

Special Example : If
$$g = 0$$
, consider deflerentials with
a single higher order pole at ∞ : pole of order $n+s$:
Quad $(= Quad_0) = \begin{cases} p_{n+1}(t) dt^{\infty L} \\ dt^{\infty L} \\ = \begin{pmatrix} dug & n+1 & pol^{d_1} \\ unth & d_1 & hn + 1 \\ terreen \\ terreen \\ \vdots = t \\ \hline TT((t-a_1) dt^{\infty L}) \\ a_1 \neq a_2, \\ z \neq a_1, \\ z = 0 \end{cases} = \begin{cases} dug & n+1 & pol^{d_2} \\ unth & d_2 & hn + 1 \\ terreen \\ dt^{(n+s)} \\ z \neq a_1, \\ z \neq a_2 \\ dt^{(n+s)} \\ z \neq a_1 + b \\ z \neq a_1 + b \\ dt^{(n+s)} \\ z \neq b \\ z \neq$

 $C \in (C^{*})^{2}$ $\int \alpha v = \beta$ f delins C. $a, v \in \mathbb{C}$ 4