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Determining the 4D theory in string compactification

Physical quantities in low energy string theory depend on the metric and

gauge connections in the extra dimensions.

For example:

Yukawa couplings in Heterotic string theory descend from a term in the

10-dimensional action of the form ∼
∫
d10√−g ψ̄Aψ. Normalization of

fields and coefficients of the superpotential depend on g .

Matter field Kahler potential unknown except for special cases.

Modes of V -twisted Dirac Operator: /∇XΨ = 0 depend on the metric and a

connection on a vector bundle, V on X (gauge field vevs on X ).

Problems in moduli stabilization

How to determine the metric and the connection?

Only current viable approach via ⇒ numeric approximation.
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One definition of a Calabi-Yau three-fold: A complex 3-fold admitting a

nowhere vanishing real two-form, J, and a complex three-form, Ω,such

that:

J ∧ Ω = 0 J ∧ J ∧ J =
3i

4
Ω ∧ Ω

dJ = 0 dΩ = 0

Yau’s theorem guarantees existence of a Ricci-flat metric associated to

such a structure that is unique if the manifold is fixed. It is related to the

two form as igab̄ = Jab̄

Note that on the Calabi-Yau threefolds that will appear in this talk, an

explicit expression is known for Ω.
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Simple algebraic descriptions of CY manifolds

Calabi-Yau threefolds are algebraic.

Metric deformations parameterized by h1,1(X ) (Kähler) and h2,1(X )

(complex structure moduli).

Simplest examples: complete intersection manifolds in complex projective

spaces

The “Quintic” hypersurface: X = P4[5]

e.g. p(z⃗) = z50 + z51 + z52 + z53 + z54 + ψz0z1z2z3z4 = 0

Here the holomorphic (3, 0) form can constructed easily (Candelas, et al).

On a patch where za = 1 and considering the coordinate zb as an implicit

function of the coordinates zc with c ̸= a, b:

Ω =
1

∂pψ(z⃗)/∂zb

∧
c=0,...3,
c ̸=a,b

dzc
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The idea behind most metric algorithms used to date

For Calabi-Yau (Kähler) manifolds we always have an embedding X ∈ Pn

for some n.

Kodaira embedding: Given an ample line bundle L on X then an

embedding

ik : X → Pnk−1, (x0, . . . , x2) 7→
[
s0(x) : . . . : snk−1(x)

]
(1)

exists for all Lk = L⊗k with k ≥ k0 for some k0, where sα ∈ H0(X ,Lk).

What do we know about metrics on Pn? Fubini-Study:

(gFS)i j̄ =
i

2
∂i ∂̄j̄KFS where KFS =

1

π
ln
∑
i j̄

hi j̄zi z̄j̄ (2)

and hi j̄ is any hermitian, non-singular matrix.

FS metric restricted to X is not Ricci-flat. But...
Lara Anderson (Virginia Tech) SU(3)-Holon. and SU(3)-Struct. Metrics from ML Simons Workshop, May 25th, ’21 5 / 36



The starting point

In terms of the natural embedding line bundle, we can generalize the FS

Kähler potential to

Kh,k =
1

kπ
ln

nk−1∑
α,β̄=0

hαβ̄sαs̄β̄ = ln ||s||2h,k . (3)

and restrict it to X .

Geometrically, (3) defines an hermitian metric, h, on the line bundle L⊗k

itself (i.e. a Kähler form ω = ∂i ∂̄j̄(h)dx
i ∧ dx̄ j̄). It provides a natural inner

product on the space of global sections

Mαβ̄ = ⟨sβ |sα⟩ =
nk

VolCY (X )

∫
X

sαs̄β̄
||s||2h

dVolCY , (4)

where dVolCY = Ω ∧ Ω̄ and Ω is the holomorphic (3,0) volume form on X .
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Density

Such metrics on ample line bundles can provide a “basis” of Kähler

metrics on X .

Theorem (Tian)

Let {sα} be a basis for H0(X ,Lk) for some ample line bundle L. Then the space

of all “algebraic” Kähler potentials,

Kh,k =
1

kπ
ln

nk−1∑
α,β̄=0

hαβ̄sαs̄β̄ (5)

where k ∈ Z, is dense in the space of Kähler potentials.

Idea: Generalized Fubini study metrics can approximate the metric of our

choice. But how to find the right “path” to the Ricci flat metric?
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Balanced Metrics

The metric h on the line bundle L is called “balanced” if (Mαβ̄)
−1 = hαβ̄

“Orthonormal” basis for sections for which Mαβ = δαβ = hαβ

Fixed point of Donaldson’s “T-operator” ↔ balanced point.

T (h)αβ̄ = nk
VolCY (X )

∫
X

sα s̄β̄∑
γδ̄ hγδ̄sγ s̄δ̄

dVolCY

Many theorems about balanced metrics. This one gives a possible path:

Theorem (Donaldson)

For each k ≥ 1, the balanced metric, h, on L⊗k exists and is unique. As k → ∞,
the sequence of metrics

g
(k)

i j̄
=

1

kπ
∂i ∂̄j̄ ln

nk−1∑
α,β̄=0

hαβ̄sαs̄β̄ (6)

on X converges to the unique Ricci-flat metric for the given Kähler class and

complex structure.
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The metric algorithm implemented

(See work of Douglas, Karp, Reinbacher and Brelidze, Braun, Ovrut, et al)

1 Choose an ample line bundle L and a degree k (that is, a twisting of the

line bundle Lk) at which to compute the balanced metric which will

approximate the Calabi-Yau metric.

2 Calculate a basis {sα}nk−1
α=0 for H0(X ,Lk) at the chosen k.

3 Choose an initial non-singular, hermitian matrix, hγδ̄. Perform the

numerical integration to compute the T-operator.

4 Set the new hαβ̄ to be hαβ̄ = (Tαβ̄)
−1.

5 Return to item 3 and repeat until hαβ̄ approaches its fixed point. In

practice, this convergence occurs in less than 10 iterations and does not

depend on the initial choice of hαβ̄ .

6 Increment k and repeat all steps until desired accuracy is reached.
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∫
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So, given the need for a certain accuracy of approximation to the

Ricci-flat metric, one can choose a sufficiently high k and iterate the

T-operator to convergence.

What is a “good enough” level of accuracy? We don’t really know yet –

the methods are computationally intensive and no one has yet pushed the

development further to the physical applications it is ultimately wanted

for.

Note: other approaches do exist in the literature (we’ll touch on one

briefly later)
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Plan of the rest of the talk

Supervised learning of moduli dependence of Calabi-Yau metrics using

the Donaldson algorithm to generate training data.

Direct learning of moduli dependent Calabi-Yau metrics both using the

metric ansatz and without it.

Direct learning of metrics associated to SU(3) structures with torsion.
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Learning Moduli Dependence

For most applications need to know the metric as a function of the

moduli.

The problem with using the Donaldson algorithm for this is that the

moduli enter in a rather subtle way (through the choice of points on the

Calabi-Yau in discretizing the integral in the T-operator). In addition the

algorithm is computationally costly (so running it to high accuracy at

many different values of the moduli is prohibitively slow).

Idea: learn the moduli dependence using Supervised Learning with

training data produced by the Donaldson algorithm.
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Procedure

Compute h for different choices of complex structure using Donaldson’s

algorithm as training data. Used a sample of 80, 000 points over the

Calabi-Yau, at k = 3 and demanded iteration to converge to the 10−6

level.

Input: Re(ψ), Im(ψ), |ψ|

Output: Re(hαb̄), Im(hαb̄)

Not very sensitive to hyperparameter tuning, does not require
complicated network architectures. Feed forward NN:

Layer Number of Nodes Activation Number of Parameters

input 3 – –

hidden 1 100 leaky ReLU 400

hidden 2 1000 leaky ReLU 101 000

hidden 3 1000 leaky ReLU 1 001 000

output N2
k identity 1000×N2

k + N2
k
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Results

Error Measure: σ = 1∫
X
Ω∧Ω

∫
X
|1 + 4i

3
J3

Ω∧Ω
|
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Key point is that this interpolation continues to work even with a sparser

training set
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This is important because running the Donaldson algorithm is so costly,

especially if we wished to obtain results to higher accuracy (or if we

wanted to work in cases with less symmetry...).
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There is no in principle problem with extending such methods to other

Calabi-Yau threefolds and multiple moduli.

The downside of what we just did is that we need to run Donaldson to

obtain the training data. This ties us to the accuracy and computational

cost of that algorithm, even if we can make do with a sparser set of

training data than one may have thought...

The obvious thing to try is to learn the moduli dependent metric directly,

without using Donaldson’s algorithm as a crutch.
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Direct Learning of the Kahler Potential

The balanced metric output by Donaldson’s algorithm at given finite k is

not necessarily the most accurate approximation to the Ricci-flat metric -

maybe we can do better?

So instead of using Donaldson algorithm data, we instead generate

networks to find the parameters that are trained directly using a loss such

as:

LMA =

∣∣∣∣1 + 4i

3

J3

Ω ∧ Ω

∣∣∣∣
C.f.: Headrick and Nassar (0908.2635), (although note that we are

obtaining moduli dependent results and using ML techniques, rather than

using a minimize function in Mathematica).
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Procedure

Input: |ψ| and arg(ψ)

Output: Cholesky decomposition of hαβ̄ at k = 6 (42, 025 parameters)

The Cholesky decomposition is used in the output as it makes it easy to

ensure h is positive definite. It also seems to lead to slightly better results

than utilizing the real and imaginary parts of h directly.

Architecture is of similar types to that seen earlier (sigmoid activation

function used this time)
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Results

These networks were optimized for 0 ≤ |ψ| ≤ 10

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
| |

10 2

10 1 Donaldson k = 6

Donaldson at k = 12, = 0

DenseModel-1 DenseModel-3

(shaded region denotes extrapolation of the networks).

Note Donaldson algorithm with k = 12 takes order days to run even for

the single case of ψ = 0.

This network at k = 6 takes only minutes and gives comparable accuracy

for a whole range of ψ.
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Here are some networks trained over a larger range:

101 102 103

| |

10 1

100

Accuracy for
DenseModel-1
DenseModel-2
Donaldson k=6
Extrapolation from = 100

We see again that we do better than Donaldson Alg. at k = 6 and that

this improvement extends up to |ψ| ≃ 175, nearly a factor of 2 beyond the

regime used during training.

Results are strongly dependent on architecture (including extrapolation)

– optimization left for future work.
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Direct learning of the metric

Instead of learning parameters in an ansatz for the Kahler potential we

can try to learn the CY metric directly.

Why try?

Perhaps we can improve performance by not being tied to an ansatz at

fixed k.

We will be able to generalize this approach to more complicated

geometries.

One disadvantage:

We now need losses to check that the metric is globally well defined and

Kahler!

We did a few different experiments with this – will only sketch one here.
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Loss functions and Boosts

We use

L = λ1LMA + λ2LdJ + λ3Loverlap

Here LMA is the loss described before and we add to this

LdJ =
1

2
||dJ||1

Loverlap =
1

d

∑
k,j

∣∣∣∣g (k)
NN(z⃗)− Tjk(z⃗) · g (j)

NN(z⃗) · T
†
jk (⃗z̄)

∣∣∣∣
n

Losses used to enforce that the two form is closed and globally consistent.

We tried both additive and multiplicative boosts:

gCY = gFS + gNN vs gCY = gFS(1 + gNN)

Multiplicative boosting works best (linear boosting didn’t do much better

than just using the FS metric and depends sensitively on the λ’s)
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Procedure

Input: Re(zi ), Im(zi ) (homogeneous coords describing pt in CY)

Re(ψ), Im(ψ)

Output d2 real and imaginary parts of a metric at that point.

To give a concrete example, lets look at a case optimized at ψ = 10 on a

data set of 10, 000 points.

We split the points according to train:test=90 : 10 and we train for 20

epochs.

Accuracy reaches same level as Donaldson Alg. at k = 5 (we expect more

points and better architecture will easily improve this).
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Figure: Left: Optimizing the NN with all three losses. Middle: Optimizing the NN

without Kähler loss (i.e. λ2 = 0). Right: Optimizing the NN without overlap loss (i.e.

λ3 = 0).
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Learning SU(3) structures from an anzatz

One important class of geometries for N = 1 compactifications: SU(3)

structure manifolds

These are six-manifolds with a nowhere vanishing two form J and three

form Ω obeying the same algebraic properties as the Calabi-Yau threefold

case:

J ∧ Ω = 0 J ∧ J ∧ J =
3i

4
Ω ∧ Ω (7)

But with different differential properties...
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An SU(3) structure can be classified by its torsion classes:

dJ = −3

2
Im(W1Ω) +W4 ∧ J +W3

dΩ = W1J ∧ J +W2 ∧ J +W5 ∧ Ω ,

Where torsion classes are given the defining forms:

W1 = −1

6
iΩ⌟dJ =

1

12
J2⌟dΩ , W4 =

1

2
J⌟dJ , W5 = −1

2
Ω+⌟dΩ+

Given string theories place different constraints on the torsion classes for

there to be an associated solution to the theory of the type we want.

E.g. heterotic string theory: W1 = W2 = 0, W4 =
1
2W5 = dϕ, W3 free.

Note that a CY structure is a special case: Wi = 0 ∀i = 1, . . . 5.
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Learning an anzatz

Our goal was to start with some well-controlled/simple example.

Observation: Some CY manifolds admit not only Ricci-flat metrics, but

other SU(3) structures as well.

Here is an anzatz (generalization of that appearing in work by Larfors,

Lukas and Ruehle, 1805.08499)

J =

h1,1(x)∑
i=1

aiJi Ω = A1Ω0 + A2Ω̄0 (8)

The ai are real functions and A1 and A2 are complex functions. CY taken

to be a complete intersection in a product of projective spaces (7, 890

such CICY e.g.s).
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Resulting torsion classes

W1 = 0 (9)

W2 = −i∂A1⌟Ω0 + i∂A2⌟Ω0 + i
∂(A1 + A2)

A1 + A2

⌟A1Ω0 − i
∂(A1 + A2)

A1 + A2

⌟A2Ω0

W3 =
∑
i

(dai −W4) ∧ Ji

W4 =
1

2

∑
i

Ji⌟(dai ∧ Ji )

W5 =
∂(A1 + A2)

A1 + A2

+
∂(A1 + A2)

A1 + A2

.

In principle we could use such an ansatz as a basis to learn appropriate

SU(3) structures for string compactification.

If we define Λijk by Ji ∧ Jj ∧ Jk = 3
4 iΛijkΩ0 ∧ Ω0 then (7) implies

|A1|2 + |A2|2 =
∑m

i,j,k=1 Λijkaiajak
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Then define the following LStrominger = γ1LSU(3) + γ2LW2 + γ3LW4 + γ4LW5

Where

LSU(3) =

∥∥∥∥∥∥|A1|2 + |A2|2 −
m∑

i,j,k=1

Λijkaiajak

∥∥∥∥∥∥
n

(10)

LW2 =

∥∥∥∥dΩ+ (
1

2
Ω+⌟dΩ+) ∧ Ω

∥∥∥∥
n

LW4 = ∥J⌟dJ − dϕ∥n

LW5 =

∥∥∥∥−1

2
Ω+⌟dΩ+ − dϕ

∥∥∥∥
n

This could be used to train a neural network with

Inputs: Re(zi ), Im(zi ) of point on manifold

Outputs: ϕ, hi , ai , A1 and A2

We haven’t actually done this! Perhaps the most important reason to

show you this ansatz today is to introduce an example on the quintic...
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Quintic E.g.

a1 =
1

π3

|∇p|2

σ4
, A1 = a21 , A2 = 0 , (11)

where σ =
4∑

a=0

|Xa|2 .

with p the defining equation of the hypersurface.

This has torsion classes W1 = W2 = W3 = 0, W5 = 2W4 = 2d(ln(a1)) and

thus provides a solution to heterotic string theory (this solution is from

1805.08499).

I want to show you results where we reproduce this known analytic

solution using machine learning techniques where we learn the metric

directly.

Such a check is particularly important in learning such metrics as we have

no analogue of Yau’s theorem to use to argue we are converging towards

an exact/unique solution.
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Direct learning of the SU(3) structure metric

Lets see if we can learn the two form J of the known analytic solution just

presented.

Because Ω is fixed in that case we know that

W1 = W2 = 0 W5 = 2d(ln(a1)) (12)

To try and force the network towards the known solution we need

W3 = 0 W4 = d(ln(a1)) (13)
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We are going to use the same losses as in the Calabi-Yau case, then, with

the exception of replacing the Kahler loss by the following.

LW4 = ∥dJ − dln(a1 ∧ J)∥n

We ran this for the ψ = 10 quintic, using multiplicative boosting from gFS .

Input and outputs mimic our experiment for directly learning the

Calabi-Yau metrics we saw earlier (except that now a non-Ricci flat

metric is output).

We can see by observing the evolution of the losses that we do indeed

seem to be approaching an SU(3) structure solution...
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Results

0 2 4 6 8 101214161820222426283032343638404244464850

epoch

100

101

102

103
lo

ss

Average loss per epoch

Losses

Monge-Ampère

Kähler

Overlap

Total

Figure: Change in loss during training for the SU(3)-structure example.

Can we verify it’s approaching the expected solution?...

Lara Anderson (Virginia Tech) SU(3)-Holon. and SU(3)-Struct. Metrics from ML Simons Workshop, May 25th, ’21 34 / 36



Define an error measure that measures the difference to the known

solution:

Eknown = ||gnumeric − gknown||n (14)

For n = 1 we can compare the output of the trained neural network to the

Fubini-Study metric:

EFS
known = 0.511 ENN

known = 0.025 (15)

The improvement is even more pronounced at higher n, showing that the

neural network has fewer outlying regions far from the correct value.
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Conclusions

We have presented a number of experiments.

Supervised learning of moduli dependence of Calabi-Yau metrics.

Direct learning of moduli dependent Calabi-Yau metrics (both using an

ansatz and not)

Direct learning of metrics associated to SU(3) structures with torsion.

The application of machine learning techniques in this arena seems very

promising... Much more to consider. Stick around for the discussion

session!
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