G_2, $\text{Spin}(7)$ BPS Equations and T-branes

Craig Lawrie

$G_2 \times \text{T-branes}$ \cite{1906.02212} Barbosa, Cveti\c{c}, Heckman, CL, Torres, Zoccarato

$\text{Spin}(7)$ \cite{1811.01959} Heckman, CL, Lin, Zoccarato

Cveti\c{c}, Heckman, Rocha\~is, Torres, Zoccarato

\cite{2003.13682}
Special holonomy \Rightarrow important super-symmetric compactification of string theory

10D string theory X_{10} (oriented spin)

want $X_{10} = \mathbb{R}^{1,3} \times Y_6$

holonomy is $SO(6)$

oriented compact spin manifold

"We are here!"
Sting theory is supersymmetric.

\[S_8 \text{ (boson)} = \text{fermion} \]
\[S_8 \text{ (fermion)} = \text{boson} \]

\(\rightarrow \) symmetry generated by some \(\varepsilon \) in spinor rep of \(SO(11,9) \) \(\text{[rotation of } X_{11,9} \text{]} \)

Want 4D spacetime to have susy

\[\mathbb{E} = \mathbb{E}_{4D} \otimes \mathbb{E}_6 \]
\[\text{SU}(4) \rightarrow \text{KSE:} \]
\[\partial_6 \epsilon_6 + (\text{flux}) \epsilon_6 = 0 \]

If \((\text{flux}) = 0 \) then \[\partial_6 \epsilon_6 = 0 \]

"covariantly constant spinor".

\[\text{SO}(1,9) \longrightarrow \text{SO}(1,3) \times \text{SO}(6) \]

\[\mathbf{3} \oplus \mathbf{16} \longrightarrow (2,1,4) \oplus (1,2,\bar{4}) \]

\(\text{transform non-trivially under } \text{SO}(6) \)
If Y_6 is CY3

$SO(6) \rightarrow SU(3)$

4 \rightarrow 3 \oplus 1

Similar story for G_2, Spin(7)

$SO(7) \rightarrow G_2$

8 \rightarrow 7 \oplus 1

$SO(8) \rightarrow Spin(7)$

8 \rightarrow 7 \oplus 1

What if $(flux) \neq 0$?

Y_6 to be Kähler (hol $U(3)$) but turn on $(flux)$.
\[D_6 \equiv \epsilon_6 + (\text{flux}) \epsilon_6 = 0 \]

"SL(2,\mathbb{R}) flux" \(\rightarrow\) elliptically fibrad Calabi-Yau fourfold

"F-theory" \(\rightarrow\) 4d \(\mathcal{N}=1\)

\[\pi: Y_4 \rightarrow \mathcal{B}_3 \]

\[\hat{\text{Kähler}} \]
Interesting 4D \(N=1 \) physics

non-abelian gauge algebra \(g \)
matter fields in \(\mathfrak{g} \) \(R \) of \(g \)

\[
\text{gauge field} \quad (2,2; \text{adj})
\]

matter \(
\begin{cases}
\text{left fermions} \quad (2,1; R) \\
\text{right fermions} \quad (1,2; R')
\end{cases}
\)

\# left and right chiral

-1 chiral spectrum.
What do physicists work from G_2- compactifications?

1) supersymmetry ✓
2) non-abelian gauge group.
3) chiral matter.

M-theory on a smooth G_2-manifold:
abelian gauge group
no charged matter

not the physics we want for the real world.
Singularity:

\[
\begin{cases}
\text{codim 4} & \rightarrow \text{non-abelian gauge} \\
\text{codim 6} & \rightarrow \text{non-chiral matter} \\
\text{codim 7} & \rightarrow \text{chiral matter}
\end{cases}
\]

TCS - singularity from CY3 "building blocks"
not in TCS construction?
Maxim: (ORM)

When one encounters an obstacle, what to do?

1) Mathematician: attack the obstacle until it is gone.
2) Physicist: slip past the obstacle and get to their destination.
Instead of building global geometry

we use dual gauge theory description.
Pantev-Wijnholt: partial topological twist of 7D super-Yang-Mills

on M_3 associated inside G_2

\rightarrow BPS equation (PW system)

vector multiplet: A gauge field

Φ scalar

Ψ fermion.
$SO(1,6) \times SU(2)_R \longrightarrow SO(1,3) \times SU(2)_{M_3} \times SU(2)_R$

\[A = (7, 1) \]

\[\phi = (1, 3) \]

\[(2, 2; 1, 1) \oplus (1, 1; 3, 1) \]

\[(1, 1; 1, 3) \]

\[\text{diagonal } SU(2) \]

A, ϕ are adjoint-valued one-forms on M_3. Combine them $A = A + i\phi$.
Introduce new structures:

\[D_{\mathbf{A}} = \frac{d}{dt} \mathbf{A} \quad F = [D_{\mathbf{A}}, D_{\mathbf{\bar{A}}}^\dagger] \]

\[D_{\mathbf{\bar{A}}} = \frac{d}{dt} \mathbf{\bar{A}} \quad F = [D_{\mathbf{A}}, D_{\mathbf{\bar{A}}}] \]

In terms of the original field (\(\mathbf{A}, \phi \)):

\[\ln \mathbf{F}_{ij} = \mathbf{F}_{ij} - [\phi_i, \phi_j] \quad [i, j = 1, \ldots, 3] \]
SUSY requires F_-, D-terms.

$$F_{ij} = 0, \quad g^{ij} D_{ij} = 0$$

moduli: span of vacua

$$\{ F_{ij} = 0 \} \leftrightarrow \{ \mathcal{G}_C \}$$

$$\{ F_{ij} = 0, \quad g^{ij} D_{ij} = 0 \} \leftrightarrow \{ \mathcal{G}_C \}$$
\(\text{Spin}(7) \rightarrow \text{SYM of 4-manifold: } M_8 \)

\[
\text{SO}(1,3) \times \text{SO}(4) \times \text{SO}(2)_\mathbb{R}
\]

\[
\text{SO}(2)_\mathbb{R} \times \text{SO}(2)_\mathbb{R}
\]

diagonal of these.

\(\phi_{SD} \) self-dual two-form

BPS equations: \(D_A \phi = 0 \quad F_{SD} + \phi \times \phi = 0 \)
\[M_4 = M_3 \times S^1 \]

\[\phi_{SD} = \phi_{PW} \wedge dt + *_3 \phi_{PW} \]

\[F - [\phi_{PW}, \phi_{PW}] + *_3 (\partial_t A - d_3 A_t) = 0 \]

\[D_A \phi_{PW} + *_3 D_t \phi_{PW} = 0 \]

\[D_A *_3 \phi_{PW} = 0 \]

\[A_t = \delta_t A = \partial_t \phi \]

\[\text{PW equation} = 0 \]
Consider fluxed solutions of PW system.

\[(F \neq 0) \quad \text{[fluxless solutions] } \]

[Brown, Cizel, Hubner, Schütz, Namiki].

Consider \(M_3 \) locally, \(\Sigma \subset M_3 \)

local patch \(M_3 = \Sigma \times I \).
Let \(t \) be a coordinate. \(x_a = (x_1, x_2) \) coordinates. \(\Sigma \)

\[
\begin{align*}
F_{ab} - [\phi_a, \phi_b] &= 0 \\
D_a \phi_b - D_b \phi_a &= 0 \\
g^{ab} D_a \phi_b + g^{tt} D_t \phi_b &= 0
\end{align*}
\]

\[
F_{ta} - [\phi_t, \phi_a] = 0
\]

\[
D_t \phi_c - D_c \phi_t = 0
\]

\[
\text{“almost” the Hitchin equations.}
\]

\underline{Solution:}

Power series expansion in \(t \).

\[
A_i(t, x_a) = \sum_{j=0} \Lambda_i^{(j)}(x_a) t^j
\]
Pick a gauge:

\[\mathbf{A}_t^{(j)} = 0. \]

\[\sum_{\nu = 0}^{\infty} \mathbf{G}_{ab}^{(j)} t^{\nu} = 0 \]

\[\sum_{\nu = 0}^{\infty} \mathbf{H}_{ab}^{(j)} t^{\nu} = 0 \]

And 3 more equations which are linear in either \(\mathbf{A}^{(j+1)} \), \(\mathbf{\phi}^{(j+1)} \).

\[j = 0 \quad \text{we get} \quad \mathbf{F}_{ob}^{(1)} - [\mathbf{\phi}_c^{(0)}, \mathbf{\phi}_b^{(0)}] = 0 \]

Assume \(\mathbf{A}_a^{(0)}, \mathbf{\phi}_a^{(0)} \) on such that these equations are solved.

\[\Rightarrow \text{solved at all orders in } t. \]

\[\mathbf{\phi}_a^{(0)} \text{ sets the trajectory of the solution} \]
Non-abelian background \((SU(3))\)

\[
\phi = \begin{bmatrix}
 i g_1 \partial_1 & - v_2 \epsilon e^{*} & \bar{e} e^{*} \partial_2 & 0 \\
 v_2 e^{*} \partial_2 & i g_2 \partial_2 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
 a & 0 & 0 & 0 \\
 0 & -a & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
a = \frac{i}{2} \left(\partial_{\bar{z}} f d\bar{z} - \partial_{\bar{z}} f d\bar{z} \right)
\]

\[\text{counting zero-modes.} \]

\[\Rightarrow \text{observe chiral matter fields.} \]

Conclude

7-brane configuration for sols to PW system

behaves like chiral matter

\[\Rightarrow \text{bypassed difficulty with codim 7 singularity.} \]