Magnetic Quivers for Singular HyperKähler Spaces

Antoine Bourget
CEA Saclay & ENS Paris
10 January 2022
PLAN OF THE TALK

I - Introduction: two questions and one (partial) answer.

II - The concept of magnetic quivers

III - Examples

IV - Generalizations and unknown territory.
I- Introduction:
Two questions and one (partial) answer
SYMPLECTIC SINGULARITIES

- X is normal affine variety over \mathbb{C}.

- X has symplectic singularities if there is a holomorphic symplectic form ω on X smooth whose pullback extends to a holomorphic 2-form Ω on any resolution $Y \to X$. [Beauville 99]
SYMPLECTIC SINGULARITIES

- X is a normal affine variety over \mathbb{C}.

- X is (has) symplectic singularities if there is a holomorphic symplectic form ω on X_{smooth} whose pullback extends to a holomorphic 2-form Ω on any resolution $Y \to X$. [Beauville 99]

- X is a conical symplectic singularity (CSS) if it has a good \mathbb{C}^*-action ($\mathcal{O}[X] = \bigoplus_{i \in \mathbb{N}} R_i$ with $R_0 = \mathbb{C}$) with respect to which ω is homogeneous. [Namikawa 11]
EXAMPLES OF CSS

- Normal nilpotent orbit closures
- Nakajima quiver varieties
- Conical hyperKähler quotients
- Higgs branch of supersymmetric QFT with 8 supercharges
- Coulomb branch of "good" 3d $\mathcal{N}=4$ theories

Examples in other talks today.
EXAMPLES OF CSS

- Normal nilpotent orbit closures
- Nakajima quiver varieties
- Conical hyperKähler quotients
- Higgs branch of supersymmetric QFT with 8 supercharges
- Coulomb branch of “good” 3d $\mathcal{N}=4$ theories
- Examples in other talks today.

Question 1: is there a UNIFORM description of CSS?
For X a CSS there exists a finite stratification:

- Gives the structure of the CSS
- In physics, characterizes how theories are connected to each other.
For X a CSS there exists a finite stratification:

- Gives the structure of the CSS
- In physics, characterizes how theories are connected to each other.

Question 2: How can this Hasse diagram be computed explicitly?
Magnetic Quivers

A partial answer is given by Magnetic Quivers and the quiver subtraction algorithm.
II - The concept of Magnetic Quiver
DEFINITIONS

- Provisional definition: Quiver = connected finite graph with nodes labeled by positive integers, with balance ≥ 0.

Example:

```
1 -- 2 -- 2 -- 1
```

DEFINITIONS

- Provisional definition: Quiver = connected finite graph with nodes labeled by positive integers, with balance \(\geq 0 \).

Example:

\[
\begin{array}{c}
1 & \rightarrow & 2 & \rightarrow & 2 & \rightarrow & 1 \\
\end{array}
\]

- Map \(\mathcal{C} \)

[Cremonesi, Hanany, Zaffaroni 13]
[Nakajima 15] [Bullimore, Dimofte, Gaiotto 15]
[Braverman, Finkelberg, Nakajima 16]

Quiver \(\rightarrow \) 3d \(\mathcal{N}=4 \) gauge theory \(\rightarrow \) 3d \(\mathcal{N}=4 \) IR SCFT \(\rightarrow \) Coulomb branch

\(\mathcal{C} \)
Definitions

Given a CSS X, a quiver Q is a magnetic quiver for X if $\mathcal{C}(Q) = X$.

(more generally, $\bigcup_{i=1}^{\hat{N}} \mathcal{C}(Q_i) = X$)
DEFINITIONS

- Given a CSS X, a quiver Q is a magnetic quiver for X if $\mathcal{C}(Q) = X$.

 (more generally, $\bigcup_{i=1}^{n} \mathcal{C}(Q_i) = X$)

- Quiver subtraction is an algorithm
 \[
 \{ \text{Quivers} \} \xrightarrow{S} \{ \text{Hasse diagrams} \}
 \]

[AB, Cabrera, Grimminger, Hanany,
Spierling, Zajac, Zhong, 19]
EXAMPLE OF QUIVER SUBTRACTION

See my June 2020 talk
EXAMPLE OF QUIVER SUBTRACTION

* See my June 2020 talk
EXAMPLE OF QUIVER SUBTRACTION

See my June 2020 talk
EXAMPLE OF QUIVER SUBTRACTION

See my June 2020 talk
III - Examples

A - HyperKähler quotients (quiver varieties)
B - Wreathed quivers
C - Quasi-minimal singularities
D - Higgs branch of 4d $\mathcal{N}=2$ SCFTs
QUIVER VARIETIES : SL/GL.

\[Higgs \left(\begin{array}{c} \cdots \nabla_{N_i} \cdots \nabla_{N_n} \\ k_1 \cdots k_n \end{array} \right) = \text{HK quotient by } \text{GL}(k_1) \times \cdots \times \text{GL}(k_n). \]

When \(k_{i-1} + k_{i+1} + N_i \geq 2k_i \), magnetic quiver well known.
QUIVER VARIETIES: SL/GL.

\[\text{Higgs} \left(\begin{array}{c|ccc} 0 & N_1 & \cdots & N_n \\ \hline k_1 & & & \\ \hline & k_n & & \\ \end{array} \right) = \text{HK quotient by } \prod_{k_i} \text{GL}(k_i) \times \cdots \times \text{GL}(k_n). \]

When \(k_{i-1} + k_{i+1} + N_i \geq 2k_i \), magnetic quiver well known.

Generalizations

1) Drop the \((*)\) condition

2) Replace some \(\text{GL}(k_i) \) by \(\text{SL}(k_i) \) in \((***)\)
**Quiver Varieties: ** SL/GL

$$\text{Higgs} \left(\begin{array}{c} \square \text{N}_1 \\ 0 \vdots \square \text{N}_n \\ k_1 \vdots \k_n \end{array} \right) = \text{HK quotient by } GL(k_1) \times \cdots \times GL(k_n).$$

When $k_{i-1} + k_{i+1} + \text{N}_i \geq 2k_i$, magnetic quiver well known.

Generalizations

1) Drop the (\ast) condition

2) Replace some $GL(k_i)$ by $SL(k_i)$ in $(\ast\ast)$

Answer: the Brane Locking algorithm

[AB, Grimminger, Hanany, Kalveks, Zhong 21]
THE BRANE LOCKING ALGORITHM

$GL(5)$ $GL(5)$

#MQ = 1
THE BRANE LOCKING ALGORITHM

$GL(5) \quad SL(5)$

$\# MQ = 2$
THE BRANE LOCKING ALGORITHM

\[\# \text{MQ} = 2 \]
THE BRANE LOCKING ALGORITHM

\[2 \quad 3 \]
\[SL(5) \quad SL(5) \]

\[\# MQ = 4 \]
THE BRANE LOCKING ALGORITHM

Questions:

- Cross check the results using other methods?
- What is $\# MQ$ in general? ($= \#$ irreducible components)
- What is the dimension?
- Physics: is brane locking part of string theory?
WREATHED and FOLDED QUIVERS

Quiver Q with automorphism (sub-)group Γ.

$$C(\Gamma\text{-wreathed } Q) = C(Q)/\Gamma$$

[AB, Hanany, Miketa 20]

$$C(\Gamma\text{-folded } Q) = C(Q)^\Gamma$$

[Cremonei, Fedito, Hanany, Mekareeya 14]
[Nakajima, Weekes 13]

This is a generalization of the map C

\rightarrow New possibilities for C^{-1}
<table>
<thead>
<tr>
<th>Initial</th>
<th>Discretely Gauged</th>
<th>Folded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_2 t^2$</td>
<td>$(\mu_1 + \mu_2) t^2 + \mu_1^2 t^4$</td>
<td>$\mu_2 t^2$</td>
</tr>
<tr>
<td>$(\mu_1 + \mu_2) t^2 + (2\mu_1 + \mu_2) t^2 + \mu_2 t^4$</td>
<td>$\mu_2 t^2 + (\mu_1^2 + \mu_2) t^4 + 2\mu_1^3 t^6 - \mu_6 t^{12}$</td>
<td>$\mu_2 t^2$</td>
</tr>
<tr>
<td>D_4</td>
<td>B_3</td>
<td>G_2</td>
</tr>
<tr>
<td>B_3</td>
<td>G_2</td>
<td>G_2</td>
</tr>
</tbody>
</table>

The expressions represent the polynomials associated with each graph, where μ_1 and μ_2 are parameters, and G_2 indicates the symmetry group for each graph.
Example: Higgs (\[0^6 \atop \sim \text{SL}(3)] \, \sim \text{SL}(3) = \text{SL}(3) \times \mathbb{Z}_2$

\mathbb{Z}_2-wreathed quiver:

Check using refined Hilbert series computation:

Wendt's integration formula \leftrightarrow Wreathed Monopole formula

[Anis-Tamargo, AB, Pini 21]

[Wendt 01]
QUASI-MINIMAL SINGULARITIES

\equiv Slices in affine Grassmannians that are not \tilde{G}_{min} or \mathbb{C}^2/Γ ($\Gamma \subset \text{SU}(2)$)

List:

\[
\begin{cases}
ac_n = & E \\
aq_2 = & E \\
cq_2 = & E
\end{cases}
\]
Higgs Branch of 4d $\mathcal{N}=2$ SCFTs

4d SCFTs can be organized according to the rank, i.e. the dim of their Coulomb branch.

[Argyres, Lotito, Lu, Martone 16]
[Apruzzi, Giacomelli, Schäfer-Namiki 20]

<table>
<thead>
<tr>
<th>Rank 1 SCFT</th>
<th>Magnetic quiver</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_5</td>
<td></td>
</tr>
<tr>
<td>$C_3 \times A_1$</td>
<td></td>
</tr>
<tr>
<td>$C_2 \times U_1$</td>
<td></td>
</tr>
<tr>
<td>A_3</td>
<td></td>
</tr>
<tr>
<td>$A_1 \times U_1$</td>
<td></td>
</tr>
<tr>
<td>A_2</td>
<td></td>
</tr>
</tbody>
</table>

[AB, Grimminger, Hanany, Speiling, Zafir, Zhang 20]
Rank 2 uses all types of quivers introduced above, and all kinds of transverse slices.

<table>
<thead>
<tr>
<th>#</th>
<th>d_{NB}</th>
<th>f</th>
<th>Quiver</th>
<th>d_{NB}</th>
<th>f</th>
<th>Quiver</th>
<th>UR</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>23</td>
<td>$\text{su}(6)_{16} \times \text{su}(2)_9$</td>
<td></td>
<td>41</td>
<td>19</td>
<td>$\text{su}(5)_{18}$</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>13</td>
<td>$\text{su}(4)_{12} \times \text{su}(2)_7 \times \text{u}(1)$</td>
<td></td>
<td>45</td>
<td>6</td>
<td>$\text{su}(3)_{12} \times \text{u}(1)$</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>11</td>
<td>$\text{su}(3){10} \times \text{su}(3){10} \times \text{u}(1)$</td>
<td></td>
<td>46</td>
<td>3</td>
<td>$\text{su}(2)_{10} \times \text{u}(1)$</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>8</td>
<td>$\text{su}(3)_{16} \times \text{su}(2)_6 \times \text{u}(1)$</td>
<td></td>
<td>47</td>
<td>32</td>
<td>$\text{sp}(12)_{11}$</td>
<td>See Table 7</td>
</tr>
<tr>
<td>37</td>
<td>6</td>
<td>$\text{su}(2)_8 \times \text{su}(2)_8 \times \text{u}(1)^2$</td>
<td></td>
<td>48</td>
<td>8</td>
<td>$\text{sp}(4)_{5} \times \text{so}(4)_8$</td>
<td>?</td>
</tr>
<tr>
<td>38</td>
<td>2</td>
<td>$\text{u}(1)^2$</td>
<td></td>
<td>49</td>
<td>14</td>
<td>$\text{sp}(8)_7$</td>
<td>See Table 7</td>
</tr>
<tr>
<td>39</td>
<td>29</td>
<td>$\text{sp}(14)_9$</td>
<td></td>
<td>50</td>
<td>4</td>
<td>$\text{sp}(4)_{13/3}$</td>
<td>?</td>
</tr>
<tr>
<td>40</td>
<td>17</td>
<td>$\text{su}(2)_8 \times \text{sp}(10)_7$</td>
<td></td>
<td>51</td>
<td>28</td>
<td>$\text{sp}(8){10} \times \text{su}(2){20}$</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>15</td>
<td>$\text{su}(2)_5 \times \text{sp}(8)_7$</td>
<td></td>
<td>52</td>
<td>14</td>
<td>$\text{sp}(4)9 \times \text{su}(2){16} \times \text{su}(2)_{18}$</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>11</td>
<td>$\text{sp}(8)_6 \times \text{u}(1)$</td>
<td></td>
<td>53</td>
<td>7</td>
<td>$\text{su}(2)7 \times \text{su}(2){14} \times \text{u}(1)$</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>6</td>
<td>$\text{sp}(6)_5$</td>
<td></td>
<td>54</td>
<td>6</td>
<td>$\text{su}(2)_6 \times \text{su}(2)_8$</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>2</td>
<td>$\text{su}(2)_5$</td>
<td></td>
<td>56</td>
<td>2</td>
<td>$\text{su}(2)_{10}$</td>
<td></td>
</tr>
</tbody>
</table>

[AB, Grimminger, Martone, Zaffan 21]
Conjecture: \(\forall r \geq 2, \exists 4d \ N=2 \ SCFT \) with rank \(r \) such that its HB does not admit a MQ in the class introduced above ("unitary")

Example

\[X = Higgs_{\text{twisted}} \begin{pmatrix} \text{A3} \\ \text{class S} \end{pmatrix} \]

\(\dim_H X = 11 \)

\(\text{Isom} \ X = \mathfrak{su}(2) \oplus \mathfrak{u}(3) \oplus \mathfrak{u}(1) \)

\(\rightarrow \) needs to go to orthosymplectic quivers
IV - Conclusion:
Where does it end?
- \(E \) is not injective (ie MQ not unique)
- nor surjective

Ex: \[1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \] \(\rightarrow \) \(C_{\text{min}}(E_6) \)
S needs additional input: what is the list of elementary slices to subtract?

Very recent addition to the list: infinite family $\mathcal{Z}(d)$ ($d \geq 4$) of isolated CSS (with trivial local fundamental group)

[Blánsky, Bonnafé, Fu, Juteau, Levy, Sommers 21]
- S needs additional input: what is the list of elementary slices to subtract?

Very recent addition to the list: infinite family $Z(d)$ ($d \geq 4$) of isolated CSS (with trivial local fundamental group)

[Bellamy, Bonnafé, Fu, Juteau, Levy, Sommers 21]

- C^{-1} closely related to recent progress in string theory. To be continued...