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Special holonomy

e Fact. Kahler metrics g on Riemannian manifolds M of even real dimension 2n are
characterized as metrics of holonomy contained in U(n).

e Explanation. Holonomy contained in U(n) says that there is an almost complex structure
operator I which is Levi-Civita parallel, hence integrable, and such that g(u, [v) := w(u,v) is
a skew-form. Then w is also parallel hence closed. Hence X = (M, I) is complex and (X,w) is
Kahler.
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operator I which is Levi-Civita parallel, hence integrable, and such that g(u, [v) := w(u,v) is
a skew-form. Then w is also parallel hence closed. Hence X = (M, I) is complex and (X,w) is
Kahler.

e Holonomy C SU(n). This means that there is a (n,0)-form nx which is parallel for the
Levi-Civita connection. Then nx is holomorphic and nowhere 0. Hence Kx is trivial.

e Conversely: Yau’s theorem. If X is compact Kahler and has trivial canonical bundle, for
any Kahler class o on X, there is a unique Kahler form w,, of class «, such that nx is parallel
for the Levi-Civita connection (Ricci flat Kahler-Einstein metric).



Hyper-Kahler manifolds: two definitions

e n = 2m. Subgroup Sp(m) C SU(n) defined as the group preserving the standard hermitian
form on C™ and symplectic form o on C?™. o™ generates \"(C"), which gives the inclusion.

Thm. (Beauville) A simply connected compact Kahler n-fold X admits a metric of holonomy

Sp(m) if and only if H*°(X) = Cox for some holomorphic 2-form ox which is everywhere
nondegenerate.
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e n = 2m. Subgroup Sp(m) C SU(n) defined as the group preserving the standard hermitian
form on C™ and symplectic form o on C?™. o™ generates \"(C"), which gives the inclusion.

Thm. (Beauville) A simply connected compact Kahler n-fold X admits a metric of holonomy
Sp(m) if and only if H*°(X) = Cox for some holomorphic 2-form ox which is everywhere
nondegenerate.

Proof. If X admits a metric of holonomy Sp(m), there exists a unique (2,0)-form ox on X
which is Levi-Civita-parallel and everywhere nondegenerate. ox is closed, hence holomorphic.
Any holomorphic 2-form on X is parallel by Bochner principle, hence proportional to ox.

Conversely. If ox exists, then Kx is trivial. Then Yau provides Kahler-Einstein metrics on
X. For such a metric, the holomorphic forms are parallel, so in particular the holonomy is
contained in Sp(m). If the holonomy is smaller, use Berger classification and conclude that X
has parallel (1,0)-forms or other parallel (2,0)-forms. These forms would be holomorphic,
contradicting simple connectedness and/or H?%(X) = Cox. qed



A global construction: Twistor lines

e X as in the theorem will be called a hyper-Kahler manifold.

e Let (X,0x,w) be a hyper-Kdhler manifold, where w is K3hler-Einstein. Then

Reox, Imox, w are parallel real 2-forms.

o Write Re o x (u,v) = w(u, Jv) and Imox (u,v) = w(u, Kv), defining Levi-Civita—parallel
operators K, J on T)y;.

e Now, use the fact that w is of type (1,1) while ox is of type (2,0). Thus
w(lu, Iv) = w(u,v), Reox(u, [v) = —Imox(u,v), Imox(u, Iv) = Reox(u,v).

e This implies relations [J = —-JI = K, IK = —-KI = —J.
e One also gets that J2 = K? is a self-adjoint parallel endomorphism of T/, hence

proportional to the identity. After rescalling o, one can arrange J? = K2 = —Idrp,, ~
quaternionic structure.

e The operators I, J, K are Levi-Civita parallel hence for any I, = al 4+ J + ~vK in the
sphere of pure quaternions of norm 1, the almost complex structure I; on X is integrable.



e X complex compact. Deformation functor:
(B,0) — {isom. classes of families f : X — B, plus isom. Xy = X}. Here (B,0) = (germ
of) pointed analytic space, X’ is complex analytic, f is smooth proper holomorphic,.

o If HO(X,Tx) = 0, this functor is representable by a universal family X.niv — Bunio-

e The tangent space T, 0 is by definition the set of first order deformations X; — D; of
X, where D1 = Spec C[t]/t2. This set is also isomorphic to H'(X,Tx) by the
Kodaira-Spencer map.
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of) pointed analytic space, X’ is complex analytic, f is smooth proper holomorphic,.

o If HO(X,Tx) = 0, this functor is representable by a universal family X.niv — Bunio-

e The tangent space T, 0 is by definition the set of first order deformations X; — D; of
X, where D1 = Spec C[t]/t2. This set is also isomorphic to H'(X,Tx) by the
Kodaira-Spencer map.

e Bogomolov-Tian-Todorov Theorem. If X is a compact Kahler manifold with trivial
canonical bundle, the deformations of X are unobstructed.

e This means that B,,;, is smooth at 0. Equivalently, the first order deformations of X
extend to any higher order.



The Hodge decomposition theorem

e X compact Kihler = H*(X,C) & @&, HP(X), where H?Y(X) C H'(X,C) is the set of
cohomology classes representable by a closed form of type (p,q), and HP9(X) = H1(X, Q).

o = bp(X) = Zp+q:k hP1(X) = the Frolicher hypercohomology spectral sequence of
H'(X,C) 2 H'(X,Qy) degenerates at E.
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e = Hodge numbers hP4(X}) remain constant under a small or infinitesimal deformation
and the Frolicher spectral sequence of a small deformation also degenerates at Ej.

e Proof. bi(X;) < Zp-i—q:k hP(X};) and equality is equivalent to degeneracy at E;. Under a
small deformation, X; remains homeomorphic to X so by (X:) = bx(X). But also
(upper-semicontinuity) h?4(X;) < hP4(X).

e The schematic version of this argument, due to Deligne, gives an algebraic proof of BTT in
the form:

Thm. Let X be complex compact, with trivial canonical bundle and Frolicher spectral
sequence degenerating at . Then the deformations of X are unobstructed.



Deformations and the local period map

e When (the complex structure of) X deforms, say along a 1-parameter family (X;):en,
HP4(X,) € H(X;,C) = H'(X,C) varies in a C* way. It does not vary holomorphically but

FPHY(Xt) = @5, H""(X¢) C H(X:,C) = H(X,C)
does (Griffiths).
Thm (Griffiths transversality) %(FpHi(Xt))“:O C FPIHY(X) .



Deformations and the local period map

e When (the complex structure of) X deforms, say along a 1-parameter family (X;):en,
HP4(X,) € H(X;,C) = H'(X,C) varies in a C* way. It does not vary holomorphically but
FPHY(Xt) = @5, H""(X¢) C H(X:,C) = H(X,C)

does (Griffiths).

Thm (Griffiths transversality) %(FpHi(Xt))“:O C FPIHY(X) .

It follows that the first order variation of FPH(X;) C H'(X,C) is described by a linear map
$p:  HPP(X) = HPTRTPRX)

I I
HIP(X,0) — HPH (X0

Thm. (Griffiths) ¢, is given by interior product/cup-product with uw € H'(X,Tx), where u is
the Kodaira-Spencer class of the first order deformation (X;)ien.



Period map and Beauville-Bogomolov form

Corollary. Let X be a hyper-Kahler manifold. Then the local period map:

P : Buniv — P(H%(X,C)), which to t associates the line H*°(X;) = Cox, C H*(X,C), is
an immersion whose image is a smooth (germ of) hypersurface.

Proof. B,y is smooth with tangent space HI(X, Tx). By Griffiths, dPy is the composite
HY(X,Tx) = HY(X,Qx) < H?(X,C)/H?*°(X), where the first map is the isomorphism
given by ox 1, the second map is the inclusion of a hyperplane. qed.
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Proof. B,y is smooth with tangent space HI(X, Tx). By Griffiths, dPy is the composite
HY(X,Tx) = HY(X,Qx) < H?(X,C)/H?*°(X), where the first map is the isomorphism

given by ox 1, the second map is the inclusion of a hyperplane. qed.

Corollary. (Beauville-Bogomolov-Fujiki) Let X be a hyper-Kahler n-fold with n = 2m. There
exists a quadratic form q on H 2(X Q) and a coefficient A € Q such that
Va € H3(X,Q), (x) [y« ot = Aq(a)™.

Proof. The left hand side of (* ) defines a nonzero degree n homogeneous function on
H%(X,C). As o™ =0 in H>"*2(X,C) (for type reasons) for oy € H>°(X;), this function
vanishes to order > m along the (germ of) hypersurface Im P. So either Im P is open, hence
Zariski dense, in a quadric ) defined by a quadratic form ¢ satisfying (*), or Im P is an open
set of a hyperplane, which one easily excludes. qed



Topological properties

e The form ¢ can be normalized so that g is integral, A > 0.

Thm. The signature of q is (3,by — 3).

Proof. Let h € H?(X,Q) be a Kihler class. Then by differentiating (*)
[x nh"ta = 2mq(h)™ 'q(a, h), so a is h-primitive iff g(c, h) = 0.
Differentiating again,

(%) j‘ 1)h"™ QQﬂ = 2mgq(h)™~ Q(a,/B)

if a, B are pr|m|t|ve. Conclude by Hodge index theorem. qed
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Proof. Let h € H?(X,Q) be a Kihler class. Then by differentiating (*)
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Differentiating again,
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if a, B are primitive. Conclude by Hodge index theorem. ged

e More properties of ¢. Let Q = {¢ =0} C P(H?(X,C)). By construction an open set of )
is made of ox, =: P(t) for some small deformations X; of X.

Thm. One has q(ox,,0x,) > 0 and q(ox,, ) =0 iffa € FLH%(X}).

Proof. Let i be a Kahler class on X;. Since ox, and G, are primitive, we can apply (**).
The first statement thus follows from Hodge index thm.

For the second statement: F'H?(X;) is by Griffiths the image of dP but it is also the tangent
space to () at o,. qed



The Beauville-Bogomolov form and cohomology ring

Remark. The deformations along twistor lines provide conics in ). The projective plane of
the conic has to be real positive.

e Thm. (Huybrechts) Any o € Q with q(o,5) > 0 is P(X,) for some hyper-Kihler
deformation X; of X.

Proof. Use the (iterated) twistor lines to get large deformations and all period points. qed
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Thm. (Verbitsky) The kernel of i is generated by the relations (*) a™*! = 0 when q(a) = 0.
In particular 4 is injective in degree 2x < 2m.



The Beauville-Bogomolov form and cohomology ring

Remark. The deformations along twistor lines provide conics in ). The projective plane of
the conic has to be real positive.

e Thm. (Huybrechts) Any o € Q with q(o,5) > 0 is P(X,) for some hyper-Kihler
deformation X; of X.

Proof. Use the (iterated) twistor lines to get large deformations and all period points. qed
e Cohomology ring. i : Sym* H%(X,C) — H?**(X,C).
Thm. (Verbitsky) The kernel of i is generated by the relations (*) a™*! = 0 when q(a) = 0.

In particular 4 is injective in degree 2x < 2m.

Proof. The relations (*) are satisfied, because a Zariski dense subset of Q C H?(X,C)
consists of forms ox, of type (2,0) on a deformation of X.

These are all the relations: I, := ideal generated by (*), T* := Sym* H?(X,C)/I,,, :
Fact. T =0 for k > n, dimT™ = 1 and the pairing T* ® T"% — T" is perfect.

If K <nand 30 # 8 € Ker (u: TF — H?(X,C)), there is an a € T"* such that a3 # 0 in
T™ and then p(T™) = 0. Absurd because p(h™) # 0. qed



Some results on Betti numbers

Thm. (S. Salamon) Let X be a HK manifold of dimension n = 2m. Then

mbo (X) = 23757 (=1)9 (352 — m)baym—;(X).

Sketch of proof. Riemann-Roch applied to the vector bundles QfX gives

[y cr(X)en1(X) = 0o (=1)P(6p* — 5n(3n + 1)) xp, where

xp = X(X,0%) = Zj(—l)Jhp’J( ). So |f Kx trivial, 3°0_(=1)? (6p* — $n(3n+1))x, = 0.
When X is K&hler, uses the Hodge symmetry h??(X) = h%P(X). When X is hyper-Kahler,

use the extra symmetry h" 74(X) = hP4(X) given by isomorphism o’y 7 : QF = QP
Regroup... qed
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Thm. (Guan) Let X be HK of dim 4. Then ba(X) = 23 or ba(X) < 8.

Proof (of by < 23, also due to Beauville). Salamon gives the equality
2b4(X) = —2b3(X) + QObQ(X) + 92, hence b4(X) < 10b2(X) + 46.

Verbitsky gives by(X) > 20051

Hence 2X0020FD) < 10py(X) + 46 and by(X) < 23 (equality only if b3(X) = 0). qed
e (Conjectural) results by Kurnuzov, Sawon, Laza et col. Bound on by ?



Riemann-Roch for holomorphic line bundles on hyper-Kahler manifolds

The quadratic form ¢ appears in

Thm (Fujiki) Let X be HK 2m-fold. Then there exists a degree m polynomial P with rational
coefficients, such that for any holomorphic line bundle L on X, x(X, L) = P(q(c1(L))).

Proof. Apply Riemann-Roch. x(X,L)=>"" OfX Qi(c;(X))e1(L)™¢, for some polynomials
Q; in the Chern classes of X.
Then the result follows from ¢;(X) = 0 for [ odd and Thm' applied to o = ¢1(L).

Thm'. For any j < m, any polynomial () of weighted degree 2j in the Chern classes c;(X),
there exists a rational number \; such that [ Q(c;(X))a™ % = Xjq(a)™ 7 for any
a € H*(X,Q).

e The last statement is proved as the absolute Fujiki relations, using the fact that the class
Q(a(X)) = Q(c(Xy)) is of type (27,25) on any deformation X; of X, hence

oI Q(er(Xy)) = 0 in H?"(X;,C). qed



Projectivity of hyper-Kahler manifolds

Thm. Let X be a hyper-Kahler manifold with universal deformation X — Biy.,. Then the
set of points t € Byniy such that Xy is projective is dense in Byyiy.

Proof. H'!(X) is the orthogonal complement of (ox,7x) wrt ¢. For A € H?(X,Q),

A€ HY(X) iff g(A,0x) = 0. Let w be a Kahler class on X and let )\, € H*(X,Q) with
lim;, 00 A, = A. Then, as ¢(w,0x) = 0 and P is submersive onto an open set of @,

By, = {t € Buniv, ¢(An,0x,) = 0} has points ¢, tending to 0 with n. For n large enough, A,
is a Kahler class on X;, by openness of the Kahler condition. Then X;, is projective by
Kodaira. ged

Thm. (Huybrechts) Let X be a hyper-Kahler manifold. Then X is projective if and only X
has a holomorphic line bundle L with q(ci(L)) > 0.

The proof uses Demailly-Paun theorem describing the Kahler cone of a compact Kahler
manifold.



