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Special holonomy

• Fact. Kähler metrics g on Riemannian manifolds M of even real dimension 2n are
characterized as metrics of holonomy contained in U(n).

• Explanation. Holonomy contained in U(n) says that there is an almost complex structure
operator I which is Levi-Civita parallel, hence integrable, and such that g(u, Iv) := ω(u, v) is
a skew-form. Then ω is also parallel hence closed. Hence X = (M, I) is complex and (X,ω) is
Kähler.

• Holonomy ⊂ SU(n). This means that there is a (n, 0)-form ηX which is parallel for the
Levi-Civita connection. Then ηX is holomorphic and nowhere 0. Hence KX is trivial.

• Conversely: Yau’s theorem. If X is compact Kähler and has trivial canonical bundle, for
any Kähler class α on X, there is a unique Kähler form ωα of class α, such that ηX is parallel
for the Levi-Civita connection (Ricci flat Kähler-Einstein metric).
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Hyper-Kähler manifolds: two definitions

• n = 2m. Subgroup Sp(m) ⊂ SU(n) defined as the group preserving the standard hermitian
form on Cn and symplectic form σ on C2m. σm generates

∧n(Cn), which gives the inclusion.

Thm. (Beauville) A simply connected compact Kähler n-fold X admits a metric of holonomy
Sp(m) if and only if H2,0(X) = CσX for some holomorphic 2-form σX which is everywhere
nondegenerate.

Proof. If X admits a metric of holonomy Sp(m), there exists a unique (2, 0)-form σX on X
which is Levi-Civita-parallel and everywhere nondegenerate. σX is closed, hence holomorphic.
Any holomorphic 2-form on X is parallel by Bochner principle, hence proportional to σX .

Conversely. If σX exists, then KX is trivial. Then Yau provides Kähler-Einstein metrics on
X. For such a metric, the holomorphic forms are parallel, so in particular the holonomy is
contained in Sp(m). If the holonomy is smaller, use Berger classification and conclude that X
has parallel (1, 0)-forms or other parallel (2, 0)-forms. These forms would be holomorphic,
contradicting simple connectedness and/or H2,0(X) = CσX . qed
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A global construction: Twistor lines

• X as in the theorem will be called a hyper-Kähler manifold.

• Let (X,σX , ω) be a hyper-Kähler manifold, where ω is Kähler-Einstein. Then
ReσX , ImσX , ω are parallel real 2-forms.

• Write ReσX(u, v) = ω(u, Jv) and ImσX(u, v) = ω(u,Kv), defining Levi-Civita–parallel
operators K, J on TM .

• Now, use the fact that ω is of type (1, 1) while σX is of type (2, 0). Thus
ω(Iu, Iv) = ω(u, v), ReσX(u, Iv) = −ImσX(u, v), ImσX(u, Iv) = ReσX(u, v).

• This implies relations IJ = −JI = K, IK = −KI = −J .

• One also gets that J2 = K2 is a self-adjoint parallel endomorphism of TM , hence
proportional to the identity. After rescalling σX , one can arrange J2 = K2 = −IdTM  
quaternionic structure.

• The operators I, J, K are Levi-Civita parallel hence for any It = αI + βJ + γK in the
sphere of pure quaternions of norm 1, the almost complex structure It on X is integrable.



Deformations

• X complex compact. Deformation functor:
(B, 0) 7→ {isom. classes of families f : X → B, plus isom.X0

∼= X}. Here (B, 0) = (germ
of) pointed analytic space, X is complex analytic, f is smooth proper holomorphic,.

• If H0(X,TX) = 0, this functor is representable by a universal family Xuniv → Buniv.

• The tangent space TBuniv ,0 is by definition the set of first order deformations X1 → D1 of
X, where D1 = SpecC[t]/t2. This set is also isomorphic to H1(X,TX) by the
Kodaira-Spencer map.

• Bogomolov-Tian-Todorov Theorem. If X is a compact Kähler manifold with trivial
canonical bundle, the deformations of X are unobstructed.

• This means that Buniv is smooth at 0. Equivalently, the first order deformations of X
extend to any higher order.
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The Hodge decomposition theorem

• X compact Kähler⇒ H i(X,C) ∼= ⊕p+q=iHp,q(X), where Hp,q(X) ⊂ H i(X,C) is the set of
cohomology classes representable by a closed form of type (p, q), and Hp,q(X) ∼= Hq(X,Ωp

X).

• ⇒ bk(X) =
∑

p+q=k h
p,q(X) ⇒ the Frölicher hypercohomology spectral sequence of

H i(X,C) ∼= Hi(X,Ω·X) degenerates at E1.

• ⇒ Hodge numbers hp,q(Xt) remain constant under a small or infinitesimal deformation
and the Frölicher spectral sequence of a small deformation also degenerates at E1.

• Proof. bk(Xt) ≤
∑

p+q=k h
p,q(Xt) and equality is equivalent to degeneracy at E1. Under a

small deformation, Xt remains homeomorphic to X so bk(Xt) = bk(X). But also
(upper-semicontinuity) hp,q(Xt) ≤ hp,q(X).

• The schematic version of this argument, due to Deligne, gives an algebraic proof of BTT in
the form:

Thm. Let X be complex compact, with trivial canonical bundle and Frölicher spectral
sequence degenerating at E1. Then the deformations of X are unobstructed.
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Deformations and the local period map

• When (the complex structure of) X deforms, say along a 1-parameter family (Xt)t∈∆,
Hp,q(Xt) ⊂ H i(Xt,C) = H i(X,C) varies in a C∞ way. It does not vary holomorphically but

F pH i(Xt) := ⊕r≥pHr,i−r(Xt) ⊂ H i(Xt,C) = H i(X,C)

does (Griffiths).

Thm (Griffiths transversality) d
dt(F

pH i(Xt))|t=0 ⊂ F p−1H i(X) .

It follows that the first order variation of F pH i(Xt) ⊂ H i(X,C) is described by a linear map

φp : Hp,i−p(X) → Hp−1,i−p+1(X)
q q

H i−p(X,Ωp
X) → H i−p+1(X,Ωp−1

X )

Thm. (Griffiths) φp is given by interior product/cup-product with u ∈ H1(X,TX), where u is
the Kodaira-Spencer class of the first order deformation (Xt)t∈∆.
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Period map and Beauville-Bogomolov form

Corollary. Let X be a hyper-Kähler manifold. Then the local period map:
P : Buniv → P(H2(X,C)), which to t associates the line H2,0(Xt) = CσXt ⊂ H2(X,C), is
an immersion whose image is a smooth (germ of) hypersurface.
Proof. Buniv is smooth with tangent space H1(X,TX). By Griffiths, dP0 is the composite
H1(X,TX)→ H1(X,ΩX) ↪→ H2(X,C)/H2,0(X), where the first map is the isomorphism
given by σXy, the second map is the inclusion of a hyperplane. qed.

Corollary. (Beauville-Bogomolov-Fujiki) Let X be a hyper-Kähler n-fold with n = 2m. There
exists a quadratic form q on H2(X,Q) and a coefficient λ ∈ Q such that
∀α ∈ H2(X,Q), (∗)

∫
X α

n = λq(α)m.

Proof. The left hand side of (*) defines a nonzero degree n homogeneous function on
H2(X,C). As σm+1

t = 0 in H2m+2(X,C) (for type reasons) for σt ∈ H2,0(Xt), this function
vanishes to order ≥ m along the (germ of) hypersurface ImP. So either ImP is open, hence
Zariski dense, in a quadric Q defined by a quadratic form q satisfying (*), or ImP is an open
set of a hyperplane, which one easily excludes. qed
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Topological properties

• The form q can be normalized so that q is integral, λ > 0.

Thm. The signature of q is (3, b2 − 3).

Proof. Let h ∈ H2(X,Q) be a Kähler class. Then by differentiating (*)∫
X nh

n−1α = 2mq(h)m−1q(α, h), so α is h-primitive iff q(α, h) = 0.

Differentiating again,
(**)

∫
X n(n− 1)hn−2αβ = 2mq(h)m−1q(α, β)

if α, β are primitive. Conclude by Hodge index theorem. qed

• More properties of q. Let Q = {q = 0} ⊂ P(H2(X,C)). By construction an open set of Q
is made of σXt =: P(t) for some small deformations Xt of X.

Thm. One has q(σXt , σXt) > 0 and q(σXt , α) = 0 iff α ∈ F 1H2(Xt).

Proof. Let h be a Kähler class on Xt. Since σXt and σXt are primitive, we can apply (**).
The first statement thus follows from Hodge index thm.
For the second statement: F 1H2(Xt) is by Griffiths the image of dP but it is also the tangent
space to Q at σXt . qed



Topological properties

• The form q can be normalized so that q is integral, λ > 0.

Thm. The signature of q is (3, b2 − 3).

Proof. Let h ∈ H2(X,Q) be a Kähler class. Then by differentiating (*)∫
X nh

n−1α = 2mq(h)m−1q(α, h), so α is h-primitive iff q(α, h) = 0.

Differentiating again,
(**)

∫
X n(n− 1)hn−2αβ = 2mq(h)m−1q(α, β)

if α, β are primitive. Conclude by Hodge index theorem. qed

• More properties of q. Let Q = {q = 0} ⊂ P(H2(X,C)). By construction an open set of Q
is made of σXt =: P(t) for some small deformations Xt of X.

Thm. One has q(σXt , σXt) > 0 and q(σXt , α) = 0 iff α ∈ F 1H2(Xt).

Proof. Let h be a Kähler class on Xt. Since σXt and σXt are primitive, we can apply (**).
The first statement thus follows from Hodge index thm.
For the second statement: F 1H2(Xt) is by Griffiths the image of dP but it is also the tangent
space to Q at σXt . qed



The Beauville-Bogomolov form and cohomology ring

Remark. The deformations along twistor lines provide conics in Q. The projective plane of
the conic has to be real positive.

• Thm. (Huybrechts) Any σ ∈ Q with q(σ, σ) > 0 is P(Xt) for some hyper-Kähler
deformation Xt of X.

Proof. Use the (iterated) twistor lines to get large deformations and all period points. qed

• Cohomology ring. µ : Sym∗H2(X,C)→ H2∗(X,C).

Thm. (Verbitsky) The kernel of µ is generated by the relations (*) αm+1 = 0 when q(α) = 0.
In particular µ is injective in degree 2∗ ≤ 2m.

Proof. The relations (*) are satisfied, because a Zariski dense subset of Q ⊂ H2(X,C)
consists of forms σXt of type (2, 0) on a deformation of X.
These are all the relations: Im := ideal generated by (*), T ∗ := Sym∗H2(X,C)/Im :

Fact. T k = 0 for k > n, dimTn = 1 and the pairing T k ⊗ Tn−k → Tn is perfect.

If k ≤ n and ∃0 6= β ∈ Ker (µ : T k → H2k(X,C)), there is an α ∈ Tn−k such that αβ 6= 0 in
Tn and then µ(Tn) = 0. Absurd because µ(hn) 6= 0. qed
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Some results on Betti numbers

Thm. (S. Salamon) Let X be a HK manifold of dimension n = 2m. Then
mb2m(X) = 2

∑2m
j=1(−1)j(3j2 −m)b2m−j(X).

Sketch of proof. Riemann-Roch applied to the vector bundles Ωi
X gives∫

X c1(X)cn−1(X) =
∑n

p=0(−1)p(6p2 − 1
2n(3n+ 1))χp, where

χp = χ(X,Ωp
X) =

∑
j(−1)jhp,j(X). So if KX trivial,

∑n
p=0(−1)p(6p2 − 1

2n(3n+ 1))χp = 0.

When X is Kähler, uses the Hodge symmetry hp,q(X) = hq,p(X). When X is hyper-Kähler,
use the extra symmetry hn−p,q(X) = hp,q(X) given by isomorphism σm−pX : Ωp

X
∼= Ωn−p

X .
Regroup... qed

Thm. (Guan) Let X be HK of dim 4. Then b2(X) = 23 or b2(X) ≤ 8.

Proof (of b2 ≤ 23, also due to Beauville). Salamon gives the equality
2b4(X) = −2b3(X) + 20b2(X) + 92, hence b4(X) ≤ 10b2(X) + 46.

Verbitsky gives b4(X) ≥ b2(X)(b2(X)+1)
2 .

Hence b2(X)(b2(X)+1)
2 ≤ 10b2(X) + 46 and b2(X) ≤ 23 (equality only if b3(X) = 0). qed

• (Conjectural) results by Kurnuzov, Sawon, Laza et col. Bound on b2 ?
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Riemann-Roch for holomorphic line bundles on hyper-Kähler manifolds

The quadratic form q appears in

Thm (Fujiki) Let X be HK 2m-fold. Then there exists a degree m polynomial P with rational
coefficients, such that for any holomorphic line bundle L on X, χ(X,L) = P (q(c1(L))).

Proof. Apply Riemann-Roch. χ(X,L) =
∑n

i=0

∫
X Qi(cl(X))c1(L)n−i, for some polynomials

Qi in the Chern classes of X.
Then the result follows from cl(X) = 0 for l odd and Thm’ applied to α = c1(L).

Thm’. For any j ≤ m, any polynomial Q of weighted degree 2j in the Chern classes cl(X),
there exists a rational number λj such that

∫
X Q(cl(X))αn−2j = λjq(α)m−j for any

α ∈ H2(X,Q).

• The last statement is proved as the absolute Fujiki relations, using the fact that the class
Q(cl(X)) = Q(cl(Xt)) is of type (2j, 2j) on any deformation Xt of X, hence

σm−j+1
Xt

Q(cl(Xt)) = 0 in H2n(Xt,C). qed



Projectivity of hyper-Kähler manifolds

Thm. Let X be a hyper-Kähler manifold with universal deformation X → Buniv. Then the
set of points t ∈ Buniv such that Xt is projective is dense in Buniv.

Proof. H1,1(X) is the orthogonal complement of 〈σX , σX〉 wrt q. For λ ∈ H2(X,Q),
λ ∈ H1,1(X) iff q(λ, σX) = 0. Let ω be a Kähler class on X and let λn ∈ H2(X,Q) with
limn→∞ λn = λ. Then, as q(ω, σX) = 0 and P is submersive onto an open set of Q,
Bλn = {t ∈ Buniv, q(λn, σXt) = 0} has points tn tending to 0 with n. For n large enough, λn
is a Kähler class on Xtn by openness of the Kähler condition. Then Xtn is projective by
Kodaira. qed

Thm. (Huybrechts) Let X be a hyper-Kähler manifold. Then X is projective if and only X
has a holomorphic line bundle L with q(c1(L)) > 0.

The proof uses Demailly-Paun theorem describing the Kähler cone of a compact Kähler
manifold.


