Hodge theory and the topology of hyper-Kähler manifolds: an introduction

Claire Voisin

Collège de France

June 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• Fact. Kähler metrics g on Riemannian manifolds M of even real dimension 2n are characterized as metrics of holonomy contained in U(n).

• Explanation. Holonomy contained in U(n) says that there is an almost complex structure operator I which is Levi-Civita parallel, hence integrable, and such that $g(u, Iv) := \omega(u, v)$ is a skew-form. Then ω is also parallel hence closed. Hence X = (M, I) is complex and (X, ω) is Kähler.

• Fact. Kähler metrics g on Riemannian manifolds M of even real dimension 2n are characterized as metrics of holonomy contained in U(n).

• Explanation. Holonomy contained in U(n) says that there is an almost complex structure operator I which is Levi-Civita parallel, hence integrable, and such that $g(u, Iv) := \omega(u, v)$ is a skew-form. Then ω is also parallel hence closed. Hence X = (M, I) is complex and (X, ω) is Kähler.

- Holonomy $\subset SU(n)$. This means that there is a (n, 0)-form η_X which is parallel for the Levi-Civita connection. Then η_X is holomorphic and nowhere 0. Hence K_X is trivial.
- Conversely: Yau's theorem. If X is compact Kähler and has trivial canonical bundle, for any Kähler class α on X, there is a unique Kähler form ω_{α} of class α , such that η_X is parallel for the Levi-Civita connection (Ricci flat Kähler-Einstein metric).

• n = 2m. Subgroup $Sp(m) \subset SU(n)$ defined as the group preserving the standard hermitian form on \mathbb{C}^n and symplectic form σ on \mathbb{C}^{2m} . σ^m generates $\bigwedge^n(\mathbb{C}^n)$, which gives the inclusion.

Thm. (Beauville) A simply connected compact Kähler *n*-fold X admits a metric of holonomy Sp(m) if and only if $H^{2,0}(X) = \mathbb{C}\sigma_X$ for some holomorphic 2-form σ_X which is everywhere nondegenerate.

• n = 2m. Subgroup $Sp(m) \subset SU(n)$ defined as the group preserving the standard hermitian form on \mathbb{C}^n and symplectic form σ on \mathbb{C}^{2m} . σ^m generates $\bigwedge^n(\mathbb{C}^n)$, which gives the inclusion.

Thm. (Beauville) A simply connected compact Kähler *n*-fold X admits a metric of holonomy Sp(m) if and only if $H^{2,0}(X) = \mathbb{C}\sigma_X$ for some holomorphic 2-form σ_X which is everywhere nondegenerate.

Proof. If X admits a metric of holonomy Sp(m), there exists a unique (2,0)-form σ_X on X which is Levi-Civita-parallel and everywhere nondegenerate. σ_X is closed, hence holomorphic. Any holomorphic 2-form on X is parallel by Bochner principle, hence proportional to σ_X .

Conversely. If σ_X exists, then K_X is trivial. Then Yau provides Kähler-Einstein metrics on X. For such a metric, the holomorphic forms are parallel, so in particular the holonomy is contained in Sp(m). If the holonomy is smaller, use Berger classification and conclude that X has parallel (1,0)-forms or other parallel (2,0)-forms. These forms would be holomorphic, contradicting simple connectedness and/or $H^{2,0}(X) = \mathbb{C}\sigma_X$. qed

- X as in the theorem will be called a hyper-Kähler manifold.
- Let (X, σ_X, ω) be a hyper-Kähler manifold, where ω is Kähler-Einstein. Then $\operatorname{Re} \sigma_X$, $\operatorname{Im} \sigma_X$, ω are parallel real 2-forms.
- Write $\operatorname{Re} \sigma_X(u, v) = \omega(u, Jv)$ and $\operatorname{Im} \sigma_X(u, v) = \omega(u, Kv)$, defining Levi-Civita-parallel operators K, J on T_M .
- Now, use the fact that ω is of type (1,1) while σ_X is of type (2,0). Thus $\omega(Iu, Iv) = \omega(u, v)$, $\operatorname{Re} \sigma_X(u, Iv) = -\operatorname{Im} \sigma_X(u, v)$, $\operatorname{Im} \sigma_X(u, Iv) = \operatorname{Re} \sigma_X(u, v)$.
- This implies relations IJ = -JI = K, IK = -KI = -J.
- One also gets that $J^2 = K^2$ is a self-adjoint **parallel** endomorphism of T_M , hence proportional to the identity. After rescalling σ_X , one can arrange $J^2 = K^2 = -Id_{T_M} \rightsquigarrow$ quaternionic structure.
- The operators I, J, K are Levi-Civita parallel hence for any $I_t = \alpha I + \beta J + \gamma K$ in the sphere of pure quaternions of norm 1, the almost complex structure I_t on X is integrable.

• X complex compact. **Deformation functor**:

 $(B,0) \mapsto \{\text{isom. classes of families } f : \mathcal{X} \to B, \text{ plus isom. } \mathcal{X}_0 \cong X\}$. Here (B,0) = (germ of) pointed analytic space, \mathcal{X} is complex analytic, f is smooth proper holomorphic,.

• If $H^0(X, T_X) = 0$, this functor is representable by a universal family $\mathcal{X}_{univ} \to B_{univ}$.

• The tangent space $T_{B_{univ},0}$ is by definition the set of first order deformations $X_1 \to D_1$ of X, where $D_1 = \operatorname{Spec} \mathbb{C}[t]/t^2$. This set is also isomorphic to $H^1(X, T_X)$ by the Kodaira-Spencer map.

• X complex compact. **Deformation functor**:

 $(B,0) \mapsto \{\text{isom. classes of families } f : \mathcal{X} \to B, \text{ plus isom. } \mathcal{X}_0 \cong X\}$. Here (B,0) = (germ of) pointed analytic space, \mathcal{X} is complex analytic, f is smooth proper holomorphic,.

• If $H^0(X, T_X) = 0$, this functor is representable by a universal family $\mathcal{X}_{univ} \to B_{univ}$.

• The tangent space $T_{B_{univ},0}$ is by definition the set of first order deformations $X_1 \to D_1$ of X, where $D_1 = \operatorname{Spec} \mathbb{C}[t]/t^2$. This set is also isomorphic to $H^1(X, T_X)$ by the Kodaira-Spencer map.

• **Bogomolov-Tian-Todorov Theorem**. If X is a compact Kähler manifold with trivial canonical bundle, the deformations of X are unobstructed.

• This means that B_{univ} is smooth at 0. Equivalently, the first order deformations of X extend to any higher order.

The Hodge decomposition theorem

• X compact Kähler $\Rightarrow H^i(X, \mathbb{C}) \cong \bigoplus_{p+q=i} H^{p,q}(X)$, where $H^{p,q}(X) \subset H^i(X, \mathbb{C})$ is the set of cohomology classes representable by a closed form of type (p,q), and $H^{p,q}(X) \cong H^q(X, \Omega^p_X)$.

• $\Rightarrow b_k(X) = \sum_{p+q=k} h^{p,q}(X) \Rightarrow$ the Frölicher hypercohomology spectral sequence of $H^i(X, \mathbb{C}) \cong \mathbb{H}^i(X, \Omega_X)$ degenerates at E_1 .

• X compact Kähler $\Rightarrow H^i(X, \mathbb{C}) \cong \bigoplus_{p+q=i} H^{p,q}(X)$, where $H^{p,q}(X) \subset H^i(X, \mathbb{C})$ is the set of cohomology classes representable by a closed form of type (p,q), and $H^{p,q}(X) \cong H^q(X, \Omega^p_X)$.

• $\Rightarrow b_k(X) = \sum_{p+q=k} h^{p,q}(X) \Rightarrow$ the Frölicher hypercohomology spectral sequence of $H^i(X, \mathbb{C}) \cong \mathbb{H}^i(X, \Omega_X)$ degenerates at E_1 .

• \Rightarrow Hodge numbers $h^{p,q}(X_t)$ remain constant under a small or infinitesimal deformation and the Frölicher spectral sequence of a small deformation also degenerates at E_1 .

• **Proof.** $b_k(X_t) \leq \sum_{p+q=k} h^{p,q}(X_t)$ and equality is equivalent to degeneracy at E_1 . Under a small deformation, X_t remains homeomorphic to X so $b_k(X_t) = b_k(X)$. But also (upper-semicontinuity) $h^{p,q}(X_t) \leq h^{p,q}(X)$.

• The schematic version of this argument, due to Deligne, gives an algebraic proof of BTT in the form:

Thm. Let X be complex compact, with trivial canonical bundle and Frölicher spectral sequence degenerating at E_1 . Then the deformations of X are unobstructed.

• When (the complex structure of) X deforms, say along a 1-parameter family $(X_t)_{t\in\Delta}$, $H^{p,q}(X_t) \subset H^i(X_t,\mathbb{C}) = H^i(X,\mathbb{C})$ varies in a C^{∞} way. It does not vary holomorphically but

 $F^{p}H^{i}(X_{t}) := \bigoplus_{r \ge p} H^{r,i-r}(X_{t}) \subset H^{i}(X_{t},\mathbb{C}) = H^{i}(X,\mathbb{C})$

does (Griffiths).

Thm (Griffiths transversality) $\frac{d}{dt}(F^pH^i(X_t))|_{t=0} \subset F^{p-1}H^i(X)$.

• When (the complex structure of) X deforms, say along a 1-parameter family $(X_t)_{t\in\Delta}$, $H^{p,q}(X_t) \subset H^i(X_t,\mathbb{C}) = H^i(X,\mathbb{C})$ varies in a C^{∞} way. It does not vary holomorphically but

 $F^{p}H^{i}(X_{t}) := \bigoplus_{r \ge p} H^{r,i-r}(X_{t}) \subset H^{i}(X_{t},\mathbb{C}) = H^{i}(X,\mathbb{C})$

does (Griffiths).

Thm (Griffiths transversality) $\frac{d}{dt}(F^pH^i(X_t))|_{t=0} \subset F^{p-1}H^i(X)$.

It follows that the first order variation of $F^pH^i(X_t) \subset H^i(X,\mathbb{C})$ is described by a linear map

$$\phi_p: \quad H^{p,i-p}(X) \quad \to \quad H^{p-1,i-p+1}(X)$$

$$\stackrel{\scriptstyle ||}{H^{i-p}(X,\Omega_X^p)} \quad \to \quad H^{i-p+1}(X,\Omega_X^{p-1})$$

Thm. (Griffiths) ϕ_p is given by interior product/cup-product with $u \in H^1(X, T_X)$, where u is the Kodaira-Spencer class of the first order deformation $(X_t)_{t \in \Delta}$.

Corollary. Let X be a hyper-Kähler manifold. Then the local period map: $\mathcal{P}: B_{univ} \to \mathbb{P}(H^2(X, \mathbb{C}))$, which to t associates the line $H^{2,0}(X_t) = \mathbb{C}\sigma_{X_t} \subset H^2(X, \mathbb{C})$, is an immersion whose image is a smooth (germ of) hypersurface. **Proof.** B_{univ} is smooth with tangent space $H^1(X, T_X)$. By Griffiths, $d\mathcal{P}_0$ is the composite $H^1(X, T_X) \to H^1(X, \Omega_X) \hookrightarrow H^2(X, \mathbb{C})/H^{2,0}(X)$, where the first map is the isomorphism

given by $\sigma_X \lrcorner$, the second map is the inclusion of a hyperplane. **qed**.

Corollary. Let X be a hyper-Kähler manifold. Then the local period map: $\mathcal{P}: B_{univ} \to \mathbb{P}(H^2(X, \mathbb{C}))$, which to t associates the line $H^{2,0}(X_t) = \mathbb{C}\sigma_{X_t} \subset H^2(X, \mathbb{C})$, is an immersion whose image is a smooth (germ of) hypersurface. **Proof.** B_{univ} is smooth with tangent space $H^1(X, T_X)$. By Griffiths, $d\mathcal{P}_0$ is the composite $H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}) \to H^2(X, \mathbb{C})/(H^2)(X)$

 $H^1(X, T_X) \to H^1(X, \Omega_X) \hookrightarrow H^2(X, \mathbb{C})/H^{2,0}(X)$, where the first map is the isomorphism given by $\sigma_X \lrcorner$, the second map is the inclusion of a hyperplane. **qed**.

Corollary. (Beauville-Bogomolov-Fujiki) Let X be a hyper-Kähler n-fold with n = 2m. There exists a quadratic form q on $H^2(X, \mathbb{Q})$ and a coefficient $\lambda \in \mathbb{Q}$ such that $\forall \alpha \in H^2(X, \mathbb{Q}), (*) \int_X \alpha^n = \lambda q(\alpha)^m$.

Proof. The left hand side of (*) defines a nonzero degree n homogeneous function on $H^2(X, \mathbb{C})$. As $\sigma_t^{m+1} = 0$ in $H^{2m+2}(X, \mathbb{C})$ (for type reasons) for $\sigma_t \in H^{2,0}(X_t)$, this function vanishes to order $\geq m$ along the (germ of) hypersurface $\operatorname{Im} \mathcal{P}$. So either $\operatorname{Im} \mathcal{P}$ is open, hence Zariski dense, in a quadric Q defined by a quadratic form q satisfying (*), or $\operatorname{Im} \mathcal{P}$ is an open set of a hyperplane, which one easily excludes. **qed**

Topological properties

• The form q can be normalized so that q is integral, $\lambda > 0$.

Thm. The signature of q is $(3, b_2 - 3)$.

Proof. Let $h \in H^2(X, \mathbb{Q})$ be a Kähler class. Then by differentiating (*) $\int_X nh^{n-1}\alpha = 2mq(h)^{m-1}q(\alpha, h)$, so α is *h*-primitive iff $q(\alpha, h) = 0$.

Differentiating again,

(**) $\int_X n(n-1)h^{n-2}\alpha\beta = 2mq(h)^{m-1}q(\alpha,\beta)$

if $\alpha,\,\beta$ are primitive. Conclude by Hodge index theorem. \mathbf{qed}

Topological properties

• The form q can be normalized so that q is integral, $\lambda > 0$.

Thm. The signature of q is $(3, b_2 - 3)$.

Proof. Let $h \in H^2(X, \mathbb{Q})$ be a Kähler class. Then by differentiating (*) $\int_X nh^{n-1}\alpha = 2mq(h)^{m-1}q(\alpha, h)$, so α is *h*-primitive iff $q(\alpha, h) = 0$.

Differentiating again,

(**) $\int_X n(n-1)h^{n-2}\alpha\beta = 2mq(h)^{m-1}q(\alpha,\beta)$

if $\alpha,\,\beta$ are primitive. Conclude by Hodge index theorem. \mathbf{qed}

• More properties of q. Let $Q = \{q = 0\} \subset \mathbb{P}(H^2(X, \mathbb{C}))$. By construction an open set of Q is made of $\sigma_{X_t} =: \mathcal{P}(t)$ for some small deformations X_t of X.

Thm. One has $q(\sigma_{X_t}, \overline{\sigma_{X_t}}) > 0$ and $q(\sigma_{X_t}, \alpha) = 0$ iff $\alpha \in F^1 H^2(X_t)$.

Proof. Let h be a Kähler class on X_t . Since σ_{X_t} and $\overline{\sigma_{X_t}}$ are primitive, we can apply (**). The first statement thus follows from Hodge index thm. For the second statement: $F^1H^2(X_t)$ is by Griffiths the image of $d\mathcal{P}$ but it is also the tangent space to Q at σ_{X_t} . **qed** **Remark.** The deformations along twistor lines provide conics in Q. The projective plane of the conic has to be real positive.

- Thm. (Huybrechts) Any $\sigma \in Q$ with $q(\sigma, \overline{\sigma}) > 0$ is $\mathcal{P}(X_t)$ for some hyper-Kähler deformation X_t of X.
- Proof. Use the (iterated) twistor lines to get large deformations and all period points. qed

Remark. The deformations along twistor lines provide conics in Q. The projective plane of the conic has to be real positive.

• Thm. (Huybrechts) Any $\sigma \in Q$ with $q(\sigma, \overline{\sigma}) > 0$ is $\mathcal{P}(X_t)$ for some hyper-Kähler deformation X_t of X.

Proof. Use the (iterated) twistor lines to get large deformations and all period points. qed

• Cohomology ring. $\mu : \operatorname{Sym}^* H^2(X, \mathbb{C}) \to H^{2*}(X, \mathbb{C}).$

Thm. (Verbitsky) The kernel of μ is generated by the relations (*) $\alpha^{m+1} = 0$ when $q(\alpha) = 0$. In particular μ is injective in degree $2* \le 2m$. **Remark.** The deformations along twistor lines provide conics in Q. The projective plane of the conic has to be real positive.

• Thm. (Huybrechts) Any $\sigma \in Q$ with $q(\sigma, \overline{\sigma}) > 0$ is $\mathcal{P}(X_t)$ for some hyper-Kähler deformation X_t of X.

Proof. Use the (iterated) twistor lines to get large deformations and all period points. qed

• Cohomology ring. $\mu : \operatorname{Sym}^* H^2(X, \mathbb{C}) \to H^{2*}(X, \mathbb{C}).$

Thm. (Verbitsky) The kernel of μ is generated by the relations (*) $\alpha^{m+1} = 0$ when $q(\alpha) = 0$. In particular μ is injective in degree $2* \le 2m$.

Proof. The relations (*) are satisfied, because a Zariski dense subset of $Q \subset H^2(X, \mathbb{C})$ consists of forms σ_{X_t} of type (2,0) on a deformation of X. These are all the relations: $I_m :=$ ideal generated by (*), $T^* := \text{Sym}^* H^2(X, \mathbb{C})/I_m$: Fact. $T^k = 0$ for k > n, dim $T^n = 1$ and the pairing $T^k \otimes T^{n-k} \to T^n$ is perfect. If $k \le n$ and $\exists 0 \ne \beta \in \text{Ker} (\mu : T^k \to H^{2k}(X, \mathbb{C}))$, there is an $\alpha \in T^{n-k}$ such that $\alpha \beta \ne 0$ in T^n and then $\mu(T^n) = 0$. Absurd because $\mu(h^n) \ne 0$. qed **Thm.** (S. Salamon) Let X be a HK manifold of dimension n = 2m. Then $mb_{2m}(X) = 2\sum_{j=1}^{2m} (-1)^j (3j^2 - m)b_{2m-j}(X)$.

Sketch of proof. Riemann-Roch applied to the vector bundles Ω_X^i gives $\int_X c_1(X)c_{n-1}(X) = \sum_{p=0}^n (-1)^p (6p^2 - \frac{1}{2}n(3n+1))\chi_p$, where $\chi_p = \chi(X, \Omega_X^p) = \sum_j (-1)^j h^{p,j}(X)$. So if K_X trivial, $\sum_{p=0}^n (-1)^p (6p^2 - \frac{1}{2}n(3n+1))\chi_p = 0$. When X is Kähler, uses the Hodge symmetry $h^{p,q}(X) = h^{q,p}(X)$. When X is hyper-Kähler, use the extra symmetry $h^{n-p,q}(X) = h^{p,q}(X)$ given by isomorphism $\sigma_X^{m-p} : \Omega_X^p \cong \Omega_X^{n-p}$. Regroup... ged

Thm. (S. Salamon) Let X be a HK manifold of dimension n = 2m. Then $mb_{2m}(X) = 2\sum_{j=1}^{2m} (-1)^j (3j^2 - m)b_{2m-j}(X)$.

Sketch of proof. Riemann-Roch applied to the vector bundles Ω_X^i gives $\int_X c_1(X)c_{n-1}(X) = \sum_{p=0}^n (-1)^p (6p^2 - \frac{1}{2}n(3n+1))\chi_p$, where $\chi_p = \chi(X, \Omega_X^p) = \sum_j (-1)^j h^{p,j}(X)$. So if K_X trivial, $\sum_{p=0}^n (-1)^p (6p^2 - \frac{1}{2}n(3n+1))\chi_p = 0$. When X is Kähler, uses the Hodge symmetry $h^{p,q}(X) = h^{q,p}(X)$. When X is hyper-Kähler, use the extra symmetry $h^{n-p,q}(X) = h^{p,q}(X)$ given by isomorphism $\sigma_X^{m-p} : \Omega_X^p \cong \Omega_X^{n-p}$.

Regroup... **qed**

Thm. (Guan) Let X be HK of dim 4. Then $b_2(X) = 23$ or $b_2(X) \le 8$.

Proof (of $b_2 \le 23$, also due to Beauville). **Salamon** gives the equality $2b_4(X) = -2b_3(X) + 20b_2(X) + 92$, hence $b_4(X) \le 10b_2(X) + 46$. **Verbitsky** gives $b_4(X) \ge \frac{b_2(X)(b_2(X)+1)}{2}$.

Hence $\frac{b_2(X)(b_2(X)+1)}{2} \le 10b_2(X) + 46$ and $b_2(X) \le 23$ (equality only if $b_3(X) = 0$). qed

• (Conjectural) results by Kurnuzov, Sawon, Laza et col. Bound on $b_{2_{a}}$?

The quadratic form q appears in

Thm (Fujiki) Let X be HK 2m-fold. Then there exists a degree m polynomial P with rational coefficients, such that for any holomorphic line bundle L on X, $\chi(X,L) = P(q(c_1(L)))$.

Proof. Apply Riemann-Roch. $\chi(X,L) = \sum_{i=0}^{n} \int_{X} Q_i(c_l(X))c_1(L)^{n-i}$, for some polynomials Q_i in the Chern classes of X.

Then the result follows from $c_l(X) = 0$ for l odd and **Thm**' applied to $\alpha = c_1(L)$.

Thm'. For any $j \leq m$, any polynomial Q of weighted degree 2j in the Chern classes $c_l(X)$, there exists a rational number λ_j such that $\int_X Q(c_l(X))\alpha^{n-2j} = \lambda_j q(\alpha)^{m-j}$ for any $\alpha \in H^2(X, \mathbb{Q})$.

• The last statement is proved as the absolute Fujiki relations, using the fact that the class $Q(c_l(X)) = Q(c_l(X_t))$ is of type (2j, 2j) on any deformation X_t of X, hence

 $\sigma_{X_t}^{m-j+1}Q(c_l(X_t)) = 0$ in $H^{2n}(X_t, \mathbb{C})$. qed

Thm. Let X be a hyper-Kähler manifold with universal deformation $\mathcal{X} \to B_{univ}$. Then the set of points $t \in B_{univ}$ such that \mathcal{X}_t is projective is dense in B_{univ} .

Proof. $H^{1,1}(X)$ is the orthogonal complement of $\langle \sigma_X, \overline{\sigma_X} \rangle$ wrt q. For $\lambda \in H^2(X, \mathbb{Q})$, $\lambda \in H^{1,1}(X)$ iff $q(\lambda, \sigma_X) = 0$. Let ω be a Kähler class on X and let $\lambda_n \in H^2(X, \mathbb{Q})$ with $\lim_{n\to\infty} \lambda_n = \lambda$. Then, as $q(\omega, \sigma_X) = 0$ and \mathcal{P} is submersive onto an open set of Q, $B_{\lambda_n} = \{t \in B_{univ}, q(\lambda_n, \sigma_{X_t}) = 0\}$ has points t_n tending to 0 with n. For n large enough, λ_n is a Kähler class on X_{t_n} by openness of the Kähler condition. Then X_{t_n} is projective by Kodaira. **qed**

Thm. (Huybrechts) Let X be a hyper-Kähler manifold. Then X is projective if and only X has a holomorphic line bundle L with $q(c_1(L)) > 0$.

The proof uses Demailly-Paun theorem describing the Kähler cone of a compact Kähler manifold.