Global aspects of Calabi-Yau moduli space

Balázs Szendrői, University of Oxford

Simons Collaboration e-meeting on Moduli of special holonomy metrics and their periods, 5 June 2020

For (X, g) a compact complex manifold of dimension n equipped with a Kähler metric, the holonomy of the metric is contained in U(n).

Fact For (X, g) compact Kähler, the following are equivalent.

- (i) The holonomy of (X, g) is contained in SU(n).
- (ii) There exists a nowhere vanishing holomorphic n-form on X.

(iii) The canonical bundle $K_X = \bigwedge^{\dim X} \Omega_X$ is trivial.

One special case is when the holonomy of (X, g) is **exactly** SU(n). This is the case we will look at.

Fact For (X, g) compact Kähler with holonomy SU(n), we have (i) $H^0(X, \Omega_X^p) = 0$ for all 0 ; $(ii) <math>\pi_1(X)$ is finite. Yau's theorem (Calabi conjecture) Given X a compact complex manifold with K_X trivial, and a Kähler class $\alpha \in H^2(X, \mathbb{R})$ (cohomology class of a Kähler form corresponding to a Kähler metric on X), there is a unique Kähler form of class α on X corresponding to a **Ricci flat** Kähler metric.

The first interesting case is n = 2: the case of K3 surfaces. This case is of different flavour; also covered in other talks at this meeting.

For the rest of the talk, X is a compact complex manifold, admitting a (Ricci flat) metric with holonomy SU(n), of dimension n > 2: Calabi–Yau *n*-fold.

Proposition A Calabi–Yau *n*-fold is automatically projective for n > 2.

Proof We have $H^2(X, \mathbb{C}) \cong H^{1,1}(X)$. So near a Kähler form $\alpha \in H^2(X, \mathbb{R})$, there is a **rational** Kähler form $\alpha' \in H^2(X, \mathbb{Q})$. An integral multiple of such a form must come from a projective embedding $X \subset \mathbb{P}^N$ by Kodaira's Embedding Theorem.

A **deformation** of X is a proper holomorphic submersion $f: \mathcal{X} \to B$ between complex manifolds such that for $0 \in B, X_0 := f^{-1}(0) \cong X$.

Bogomolov–Tian–Todorov theorem A Calabi–Yau *n*-fold $X = X_0$ has **unobstructed deformations**: there exists a universal deformation (germ) $\tilde{f}: \tilde{\mathcal{X}} \to \tilde{B}$, with $0 \in \tilde{B} \subset H^1(X, T_X)$ a (germ of a) polydisk.

Existence of universal deformation follows from

 $H^0(X, T_X) \cong H^0(X, \Omega_X^{\dim X - 1}) = 0.$

Now Kodaira–Spencer theory gives a universal deformation

$$\tilde{f}: \tilde{\mathcal{X}} \to \tilde{B} \subset H^1(X, T_X).$$

In general, we would expect this to be **obstructed**, as $H^2(X, T_X) \neq 0$. But here, all obstructions vanish. Original proofs complex analytic; there are several algebraic proofs known.

[Goto 2004] proves this uniformly for compact manifolds with special holonomy.

Let $H^*(X, \mathbb{Z})$ denote integral cohomology modulo torsion. Torsion phenomena not without interest.

Hodge decomposition:

$$H^k(X,\mathbb{Z})\otimes \mathbb{C}\cong \bigoplus_{p=0}^k H^{p,k-p}(X) \text{ with } H^{p,q}\cong H^q(X,\Omega^p_X).$$

We will assume X connected, so $H^0(X, \mathbb{Z}) \cong \mathbb{Z}$. We also have $H^1(X, \mathbb{Z}) = 0$, and trivial Hodge decomposition in degree 2:

$$H^2(X,\mathbb{Z})\otimes\mathbb{C}\cong H^{1,1}(X)\cong\operatorname{Pic}(X)\otimes\mathbb{C}.$$

Most interesting Hodge decomposition on **middle cohomology**

$$H^n(X,\mathbb{Z})\otimes\mathbb{C}\cong H^0(X,K_X)\oplus H^1(X,\Omega_X^{n-1})\oplus\ldots\oplus H^n(X,\mathcal{O}_X).$$

This is **polarized** by the intersection form $Q: H^n(X, \mathbb{Z}) \times H^n(X, \mathbb{Z}) \to \mathbb{Z}$.

Assume $f: \mathcal{X} \to B \ni 0$ is a deformation of $X = X_0$ over a contractible base B and fibres X_t for $t \in B$. Get identification $H^k(X_t, \mathbb{Z}) \cong H^k(X, \mathbb{Z})$. Thus the Betti numbers $b_k(X_t)$ and also the Hodge numbers $h^{p,q}(X_t)$ are constant. But the vector subspaces

$$H^{p,k-p}(X_t) \subset H^k(X_t,\mathbb{C}) \cong H^k(X,\mathbb{C})$$

vary, and in fact vary **non-holomorphically**.

Griffiths The **Hodge filtration** F^{\bullet} on $H^k(X, \mathbb{C})$ given by $F^p H^k(X_t, \mathbb{C}) = \bigoplus_{r \ge p} H^{r,k-r}(X_t)$

varies **holomorphically** with $t \in B$.

Griffiths transversality This variation satisfies

$$\frac{d}{dt}\left(F^{p}H^{k}(X_{t},\mathbb{C})\right)\Big|_{t=0}\subseteq F^{p-1}H^{k}(X_{0},\mathbb{C}).$$

Consider middle cohomology $(H^n(X,\mathbb{Z}),Q)$. Define the **period domain** \mathcal{D} to be the space parametrising all flags F^{\bullet} in $H^n(X,\mathbb{C})$ satisfying the following conditions:

- (1) dim $F^k = \dim F^k(X);$
- (2) $Q(F^k, F^{n-k+1}) = 0;$

(3) certain positivity properties with respect to the product Q.

The period domain \mathcal{D} is an analytic open subset of its **compact dual** $\overline{\mathcal{D}}$, the projective variety of flags in $H^n(X, \mathbb{C})$ given by conditions (1)-(2).

Consider a deformation $f: \mathcal{X} \to B \ni 0$ of $X = X_0$ over a contractible base. Fix isomorphisms $(H^n(X_t, \mathbb{Z}), Q_t) \cong (H^n(X, \mathbb{Z}), Q).$

The variation of the Hodge filtration in middle cohomology gives rise to the **local period map**

$$\varphi_B : B \to \mathcal{D}$$

 $t \mapsto (F^{\bullet}H^n(X_t, \mathbb{C}))$

Infinitesimal Torelli theorem For the universal deformation $\tilde{f}: \tilde{\mathcal{X}} \to \tilde{B}$, the local period map $\varphi_{\tilde{B}}$ is a complex analytic embedding.

There is a simple proof in Claire's online lecture. [Goto 2004]: uniform proof for compact manifolds with special holonomy.

Theorem [Bryant–Griffiths 1983] The image of any period map φ_B is contained in a so-called **horizontal** submanifold of \mathcal{D} , an integral manifold for a certain differential system corresponding to Griffiths transversality.

To define a version of the period map globally, we need to construct a global moduli space of Calabi–Yau *n*-folds. Fix a lattice (Λ, Q_{Λ}) with the correct symmetry and signature properties. A **marked Calabi–Yau** *n*-fold is a pair (X, γ) with X a Calabi–Yau *n*-fold, and an isomorphism

 $\gamma \colon (H^n(X,\mathbb{Z}),Q) \cong (\Lambda,Q_\Lambda).$

Consider triples (X, L, γ) , where (X, γ) is a marked Calabi–Yau *n*-fold and L (the Kähler class of) an ample line bundle on X. The space of all such triples up to isomorphism has a natural topology.

Fact Every connected component \mathcal{T} of the space of triples (X, L, γ) has the structure of a (connected, Hausdorff) complex manifold.

 \mathcal{T} is a **Teichmüller space** of marked, polarized Calabi–Yau *n*-folds.

For any $t \in \mathcal{T}$ corresponding to a triple (X_t, L_t, γ_t) , the local germ of $t \in \mathcal{T}$ can be identified with the universal deformation germ of X_t . In particular, there is a global family of Calabi–Yau manifolds $f_{\mathcal{T}} \colon \mathcal{X}_{\mathcal{T}} \to \mathcal{T}$. Fix a base point $0 \in \mathcal{T}$ corresponding to a triple (X, L, γ) . Using the markings, we have consistent identifications

$$(H^n(X_t,\mathbb{Z}),Q_t)\cong (\Lambda,Q_\Lambda)\cong (H^n(X,\mathbb{Z}),Q)$$

for $t \in \mathcal{T}$ and fibres X_t of the family $f_{\mathcal{T}} \colon \mathcal{X}_{\mathcal{T}} \to \mathcal{T}$.

We can thus define the period map **globally** by

$$\varphi\colon \mathcal{T}\to \mathcal{D}$$

to the corresponding period domain, using the Hodge filtration on middle cohomology.

For Calabi–Yau *n*-folds, this holomorphic map is **locally injective** by the infinitesimal Torelli theorem. Its image lies in a horizontal submanifold of \mathcal{D} .

Teichmüller space \mathcal{T} carries a natural metric, the Weil–Petersson metric. For the Teichmüller space of elliptic curves, K3 surfaces and abelian varieties, this is a complete metric which tends to be negatively curved.

- W–P metric on \mathcal{T} is incomplete; there are finite distance singularities [Candelas–Green–Hubsch 1990].
- A certain 1-dimensional \mathcal{T} has W–P curvature tending to $+\infty$ near a point [Candelas, de la Ossa et al 1991].
- Whenever \mathcal{T} is 1-dimensional, the W–P metric is asymptotic to the Poincaré metric near certain boundary points [Wang 2003].
- Ooguri–Vafa conjectured that the scalar curvature of the W–P metric should be non-positive near the boundary; disproved by [Trenner-Wilson 2011].

Hodge metric on \mathcal{T} : natural metric pulled back from \mathcal{D} via φ . This has better curvature properties [Lu–Sun 2004].

We can also consider polarized Calabi–Yau manifolds (X, L) up to isomorphism, without marking. This also has a natural topology. Let \mathcal{M} be a connected component, a **moduli space of polarized Calabi–Yau** *n*-folds.

Theorem (Viehweg) The space \mathcal{M} carries the structure of a quasiprojective algebraic variety (orbifold).

For $t \in \mathcal{M}$, representing an isomorphism class $[(X_t, L_t)]$ of polarized Calabi– Yau *n*-folds, the topological invariants $\{b_i(X_t) \mid 2 \leq i \leq n\}$ are independent of t.

 \mathcal{M} is what is known as a **coarse** moduli space: there is no family over it. There exists a family over a finite cover of \mathcal{M} .

Key questions about the moduli space

Key questions:

- (i) In a fixed dimension n, how many (substantially) different moduli spaces \mathcal{M}_k exist? Is this number finite?
- (ii) Fixing topological invariants $\{b_i \mid 2 \leq i \leq n\}$, how many different moduli spaces \mathcal{M}_k exist? Is this number finite?
- (iii) "Reid's fantasy" [Reid 1983]: are all Calabi-Yau-n moduli spaces connected by geometric transitions?

Known:

(i) Already for n = 3, at least tens of thousands of different \mathcal{M}_i

(ii) Examples known of different families with the same data $\{b_i \mid 2 \le i \le n\}$

(iii) Bounds for b_i known if we assume extra structure (e.g. elliptic fibrations)

(iv) Many moduli spaces can be connected by geometric transitions [Gross 1997].

For Calabi–Yau 3-folds, have (b_2, b_3) . Plot of Kreuzer–Braun–Candelas of different possible topologies, in coordinates $(\chi(X), h^{1,1}(X) + h^{2,1}(X))$:

To define the period map on the moduli space, we need to "forget the marking". Let

$$\Gamma = \operatorname{Aut}(\Lambda, Q_{\Lambda}).$$

This is an arithmetic group that is known to act properly and discontinuously on \mathcal{D} .

We get a commutative diagram

$$\begin{array}{cccc} \mathcal{T} & \stackrel{\varphi}{\longrightarrow} & \mathcal{D} \\ \downarrow & & \downarrow \\ \mathcal{M} & \stackrel{\bar{\varphi}}{\longrightarrow} & \mathcal{D}/\Gamma. \end{array}$$

This defines the period map $\bar{\varphi}$ on moduli space.

The global Torelli problem is the question whether the period map

$$\bar{\varphi}\colon \mathcal{M} \to \mathcal{D}/\Gamma$$

is **injective** for a connected moduli space \mathcal{M} of polarized Calabi–Yau *n*-folds.

This is equivalent to the following concrete formulation: given polarised Calabi– Yau *n*-folds (X_1, L_1) , (X_2, L_2) which live in the same deformation family, does the existence of an isomorphism

 $(H^n(X_1,\mathbb{Z}),Q_{X_1})\cong (H^n(X_2,\mathbb{Z}),Q_{X_2})$

respecting the Hodge filtrations imply that X_1 , X_2 are **isomorphic**? Variants of the global Torelli problem:

- We could ask for **generic** injectivity of $\bar{\varphi}$: weak global Torelli.
- We could change the group Γ to a different group Γ' acting discontinuously on \mathcal{D} , perhaps arising from monodromy considerations.

Consider the family of smooth quintic threefolds

$$X = \{f_5(x_i) = 0\} \subset \mathbb{P}^4.$$

These have K_X trivial by the Adjunction Formula; $H^2(X, \mathbb{Z}) \cong \mathbb{Z}$ by Lefschetz; also $H^3(X, \mathbb{Z}) \cong \mathbb{Z}^{204}$ with Hodge numbers (1, 101, 101, 1). Connected moduli space

$$\mathcal{M}_X \cong U/\mathrm{PGL}(5,\mathbb{C})$$

of dimension 101 = 125 - 24, where

$$U \subset \mathbb{P}(H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(5)))$$

is the open set of non-singular quintic polynomials.

The period domain \mathcal{D} parametrises flags $\mathbb{C} \subset \mathbb{C}^{102} \subset \mathbb{C}^{203} \subset \mathbb{C}^{204} \cong H^3(X, \mathbb{C})$. A lot of information in the period point! **Theorem (Voisin)** Quintic threefolds satisfy weak global Torelli: a general quintic threefold can be recovered from its period point.

Discussion of proof [Donagi 1983]: for projective hypersurfaces, the knowledge of the Hodge structure is equivalent to the knowledge of a certain algebraic structure on the Jacobian ring of the hypersurface. Using a trick called the **Symmetrizer Lemma**, this information is often enough to recover the equation of the hypersurface. Not in Calabi–Yau cases!

[Voisin 1999]: a (large!) bag of special tricks for the quintic threefold, invented while being prevented from doing more exciting mathematics by other concerns.

[Voisin 2020]: a systematic algebraic treatment of weak global Torelli for classes of hypersurfaces where the Symmetrizer Lemma does not apply.

Next, let Y be a resolution of singularities of a hypersurface

$$\bar{Y} = \{f_8(x_i, y_j) = 0\} \subset \mathbb{P}^4[1, 1, 2, 2, 2].$$

This family of Calabi–Yau threefolds has $b_2(Y) = 2$ and middle cohomology of dimension $b_3(Y) = 174$. Thus the moduli space \mathcal{M}_Y has dimension 86.

Theorem [Szendrői 2000] The period map

$$\bar{\varphi} \colon \mathcal{M}_Y \to \mathcal{D}/\Gamma$$

is of degree at least 2.

These are weak counterexamples: 3-folds in the family with the same period point are **birational** but not **isomorphic**.

At the other extreme are Calabi–Yau threefolds with small moduli spaces. dim $\mathcal{M} = 0$, the case of rigid Calabi–Yau threefolds, is not without interest. But here focus on some cases when dim $\mathcal{M} = 1$.

The best-known example is the **mirror quintic** X^{\vee} , the resolution of a finite quotient of the Fermat quintic threefold:

$$X^{\vee} \to \bar{X}^{\vee} = \left\{ \sum_{i=0}^{4} x_i^5 = 0 \right\} \Big/ G \subset \mathbb{P}^4 / G$$

with $G \cong (\mathbb{Z}/5\mathbb{Z})^3 \subset \text{PGL}(4,\mathbb{C})$ a certain finite subgroup. This has a onedimensional moduli space

 $\mathcal{M}_{X^{\vee}} \cong \mathbb{P}^1 \setminus \{1, \infty\}$, with $0 \in \mathcal{M}_{X^{\vee}}$ an orbifold point of order 5.

Theorem [Usui 2008] The quintic mirror family satisfies weak global Torelli: its period map $\bar{\varphi} \colon \mathcal{M}_{X^{\vee}} \to \mathcal{D}/\Gamma$ is generically injective.

There is a related example of a family of Calabi–Yau threefolds

$$Z \to \bar{Z} = \left\{ \sum_{i=0}^{4} x_i^5 = 0 \right\} \Big/ H \subset \mathbb{P}^4 / H$$

with $H \cong \mathbb{Z}/5\mathbb{Z} \ltimes (\mathbb{Z}/5\mathbb{Z})^2 \subset \text{PGL}(4, \mathbb{C})$ another specific finite subgroup, studied by [Aspinwall–Morrison 1994].

These Calabi–Yau threefolds have fundamental group $\pi_1(Z) \cong \mathbb{Z}/5\mathbb{Z}$, and a one-dimensional moduli space \mathcal{M}_Z .

Theorem [Szendrői 2004] The period map $\bar{\varphi} \colon \mathcal{M}_Z \to \mathcal{D}/\Gamma'$ is of degree at least 5, for a certain group Γ' acting properly discontinuously on the relevant period domain \mathcal{D} .

I conjecture that the Calabi–Yau threefolds in this family with the same period point are not biratonal (and have non-equivalent derived categories of coherent sheaves). There may be interesting phenomena lurking here. Let us return to the diagram

$$\begin{array}{ccccc} \mathcal{T} & \stackrel{\varphi}{\longrightarrow} & \mathcal{D} & \hookrightarrow & \overline{\mathcal{D}} \\ \downarrow & & \downarrow \\ \mathcal{M} & \stackrel{\bar{\varphi}}{\longrightarrow} & \mathcal{D}/\Gamma \end{array}$$

involving Teichmüller and moduli spaces of some Calabi–Yau $n\text{-}\mathrm{fold.}$ We know

- (i) $\overline{\mathcal{D}}$ is a projective variety containing as an analytic open subset the period domain \mathcal{D} ;
- (ii) \mathcal{M} is a quasiprojective orbifold;
- (iii) φ is locally injective;
- (iv) the image of φ is constrained to lie in a horizontal submanifold of \mathcal{D} , by Griffiths transversality.

It appears that in most cases, the images of the maps $(\varphi, \overline{\varphi})$ are too transcendental to describe in terms that would help us understand the moduli space.

Definition A closed horizontal submanifold $Z \subset \mathcal{D}$ is called **semi-algebraic**, if Z is a connected component of an intersection $\overline{Z} \cap \mathcal{D}$ for a Zariski closed subvariety $\overline{Z} \subset \overline{\mathcal{D}}$.

Theorem [Friedmann–Laza 2013] Suppose $Z \subset \mathcal{D}$ is a closed horizontal subvariety, with stabilizer group $\Gamma_Z \subset \Gamma$. Assume that

- (i) $Z \subset \mathcal{D}$ is semi-algebraic, and
- (ii) Z/Γ_Z is quasi-projective.

Then Z itself is a Hermitian symmetric domain, whose embedding into \mathcal{D} is an equivariant, holomorphic, horizontal embedding.

Semi-algebraic subvarieties of the period domain

We have a diagram

Message: the image of the period map could sometimes be described explicitly in geometric terms, and interesting conclusions drawn.

Caveat: most Calabi–Yau *n*-folds will not have period maps with semialgebraic image.

For Calabi–Yau threefolds, semi-algebraicity of the image of the period map is equivalent to the fact that the period map involves no "quantum corrections" [Liu–Yin 2014].

Let $D = \bigcup_{i=1}^{6} H_i \subset \mathbb{P}^3$ be a union of general hyperplanes, $\overline{X} \to \mathbb{P}^3$ the triple cover of \mathbb{P}^3 branched along D, and $X \to \overline{X}$ a small resolution. Get a Calabi–Yau 3-fold X with $b_3(X) = 8$, and 3-dimensional moduli space \mathcal{M}_X . Let (Λ, h) be a \mathbb{Z} -lattice of signature (3, 1). Let

 $\mathbb{B}_3 = \{ v \in \mathbb{P}(\Lambda \otimes \mathbb{C}) \mid h(v, v) < 0 \},\$

a complex unit 3-ball. Let $G = \operatorname{Aut}(\Lambda, h)$.

Theorem [Sheng–Xu 2019] The period map for the family \mathcal{M}_X factors

 $\mathcal{M}_X \hookrightarrow \mathbb{B}_3/G \hookrightarrow \mathcal{D}/\Gamma$

where the first map is an open embedding, and the second a semi-algebraic closed embedding.

In particular, for this family, global Torelli holds.

Note that $H^3(X, \mathbb{C})$ is built from one-dimensional Hodge structures.

Global moduli theory of Calabi–Yau $n\text{-}\mathrm{folds}$

- (i) Local theory very pleasant, and well described by periods
- (ii) There is a reasonable global algebraic theory of the moduli space
 - Mirror symmetry predictions from precise form of periods plus monodromy data
- (iii) Image of period map is a horizontal submanifold of the period domain; usually a transcendental condition
 - Similar "mirror" problem: "stringy Kähler moduli space" inside space of Bridgeland stability conditions
- (iv) Period map can sometimes be of use to describe the global moduli space, but these are "very algebraic" examples
- (v) Finitely many or infinitely many families???

References

[Aspinwall-Morrison 1994] P. Aspinwall and D. Morrison, Chiral rings do not suffice: N = (2, 2) theories with nonzero fundamental group, Phys. Lett. B 334, 79–86 (1994).

[Bryant-Griffiths 1983] R. L. Bryant and P. A. Griffiths, Some observations on the infinitesimal period relations for regular threefolds with trivial canonical bundle, in: Arithmetic and Geometry, Birkhauser, 77–102 (1983).

[Candelas–Green–Hubsch 1990] P. Candelas, P. Green, and T. Hubsch, *Rolling among Calabi-Yau Vacua*, Nuclear Physics B330, 49–102 (1990).

[Candelas, de la Ossa et al 1991] P. Candelas, X. De la Ossa, P. S. Green and L. Parkes, An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds, Phys. Lett. B. 258, 118–126 (1991).

[Donagi 1983] R. Donagi, Generic Torelli for projective hypersurfaces, Comp. Math. 50, 325-353 (1983).

[Friedmann–Laza 2013] R. Friedman and R. Laza, Semialgebraic horizontal subvarieties of Calabi–Yau type, Duke M.J. 162, 2077–2148 (2013).

[Goto 2004] R. Goto, Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, G₂ and Spin(7) structures, Internat. J. Math. 15, 211–257 (2004).

[Gross 1997] M. Gross, Primitive Calabi-Yau threefolds, J. Differential Geom. 45, 288–318 (1997).

[Liu-Yin 2014] K. Liu and C. Yin, Quantum correction and the moduli spaces of Calabi-Yau manifolds, arXiv:1411.0069.

[Lu-Sun 2004] Z. Lu and X Sun, Weil-Petersson geometry on moduli space of polarized Calabi-Yau manifolds, J. Inst. Math. Jussieu 3, 185–229 (2004).

[Reid 1987] M. Reid, The moduli space of 3-folds with K=0 may nevertheless be irreducible, Math. Ann. 278), 329–334 (1987).

[Sheng-Xu 2019] M. Sheng and J. Xu, A global Torelli theorem for certain Calabi-Yau threefolds, arXiv:1906.12037.

[Szendrői 2000] B. Szendroi, Calabi-Yau threefolds with a curve of singularities and counterexamples to the Torelli problem, Int. J. Math. 11, 449-459 (2000).

[Szendrői 2004] B. Szendroi, On an example of Aspinwall and Morrison, Proc. Am. Math. Soc. 132, 621-632 (2004).

[Trenner-Wilson 2011] T. Trenner and P. M. H. Wilson, Asymptotic curvature of moduli spaces for Calabi-Yau threefolds, J. Geom. Anal. 21, 409–428 (2011).

[Usui 2008] S. Usui, Generic Torelli theorem for quintic-mirror family, Proc. Japan Acad. Ser. A Math. Sci. 84, 143–146 (2008).

[Voisin 1999] C. Voisin, A generic Torelli theorem for the quintic threefold, in: New trends in Algebraic Geometry, LMS (1999).

[Voisin 2020] C. Voisin, Schiffer variations and the generic Torelli theorem for hypersurfaces, arXiv:2004.09310.

[Wang 2003] C.L. Wang, Curvature properties of the Calabi-Yau moduli, Documenta Mathematica 8, 577–590 (2003).

Thank you for your attention!