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SU(n) holonomy

For (X, g) a compact complex manifold of dimension n equipped with a Kähler

metric, the holonomy of the metric is contained in U(n).

Fact For (X, g) compact Kähler, the following are equivalent.

(i) The holonomy of (X, g) is contained in SU(n).

(ii) There exists a nowhere vanishing holomorphic n-form on X .

(iii) The canonical bundle KX =
∧dimX ΩX is trivial.

One special case is when the holonomy of (X, g) is exactly SU(n). This is

the case we will look at.

Fact For (X, g) compact Kähler with holonomy SU(n), we have

(i) H0(X,Ωp
X) = 0 for all 0 < p < n;

(ii) π1(X) is finite.



SU(n) holonomy

Yau’s theorem (Calabi conjecture) Given X a compact complex man-

ifold with KX trivial, and a Kähler class α ∈ H2(X,R) (cohomology class of a

Kähler form corresponding to a Kähler metric on X), there is a unique Kähler

form of class α on X corresponding to a Ricci flat Kähler metric.

The first interesting case is n = 2: the case of K3 surfaces. This case is of

different flavour; also covered in other talks at this meeting.

For the rest of the talk, X is a compact complex manifold, admitting a (Ricci

flat) metric with holonomy SU(n), of dimension n > 2: Calabi–Yau n-fold.

Proposition A Calabi–Yau n-fold is automatically projective for n > 2.

Proof We have H2(X,C) ∼= H1,1(X). So near a Kähler form α ∈ H2(X,R),

there is a rational Kähler form α′ ∈ H2(X,Q). An integral multiple of such a

form must come from a projective embeddingX ⊂ PN by Kodaira’s Embedding

Theorem.



Deformation theory

A deformation of X is a proper holomorphic submersion f : X → B between

complex manifolds such that for 0 ∈ B, X0 := f−1(0) ∼= X .

Bogomolov–Tian–Todorov theorem A Calabi–Yau n-fold X = X0 has

unobstructed deformations: there exists a universal deformation (germ)

f̃ : X̃ → B̃, with 0 ∈ B̃ ⊂ H1(X,TX) a (germ of a) polydisk.

Existence of universal deformation follows from

H0(X,TX) ∼= H0(X,ΩdimX−1
X ) = 0.

Now Kodaira–Spencer theory gives a universal deformation

f̃ : X̃ → B̃ ⊂ H1(X,TX).

In general, we would expect this to be obstructed, as H2(X,TX) 6= 0. But

here, all obstructions vanish. Original proofs complex analytic; there are several

algebraic proofs known.

[Goto 2004] proves this uniformly for compact manifolds with special holonomy.



Topology and Hodge decomposition

Let H∗(X,Z) denote integral cohomology modulo torsion. Torsion phenomena

not without interest.

Hodge decomposition:

Hk(X,Z)⊗ C ∼=
k⊕
p=0

Hp,k−p(X) with Hp,q ∼= Hq(X,Ωp
X).

We will assume X connected, so H0(X,Z) ∼= Z. We also have H1(X,Z) = 0,

and trivial Hodge decomposition in degree 2:

H2(X,Z)⊗ C ∼= H1,1(X) ∼= Pic(X)⊗ C.

Most interesting Hodge decomposition on middle cohomology

Hn(X,Z)⊗ C ∼= H0(X,KX)⊕H1(X,Ωn−1
X )⊕ . . .⊕Hn(X,OX).

This is polarized by the intersection form Q : Hn(X,Z)×Hn(X,Z)→ Z.



Hodge decomposition in families

Assume f : X → B 3 0 is a deformation of X = X0 over a contractible base

B and fibres Xt for t ∈ B. Get identification Hk(Xt,Z) ∼= Hk(X,Z).

Thus the Betti numbers bk(Xt) and also the Hodge numbers hp,q(Xt) are con-

stant. But the vector subspaces

Hp,k−p(Xt) ⊂ Hk(Xt,C) ∼= Hk(X,C)

vary, and in fact vary non-holomorphically.

Griffiths The Hodge filtration F • on Hk(X,C) given by

F pHk(Xt,C) =
⊕
r≥p

Hr,k−r(Xt)

varies holomorphically with t ∈ B.

Griffiths transversality This variation satisfies

d

dt

(
F pHk(Xt,C)

) ∣∣∣
t=0
⊆ F p−1Hk(X0,C).



The period domain

Consider middle cohomology (Hn(X,Z), Q). Define the period domain D
to be the space parametrising all flags F • in Hn(X,C) satisfying the following

conditions:

(1) dimF k = dimF k(X);

(2) Q(F k, F n−k+1) = 0;

(3) certain positivity properties with respect to the product Q.

The period domain D is an analytic open subset of its compact dual D, the

projective variety of flags in Hn(X,C) given by conditions (1)-(2).



Local period map and infinitesimal Torelli

Consider a deformation f : X → B 3 0 of X = X0 over a contractible base.

Fix isomorphisms (Hn(Xt,Z), Qt) ∼= (Hn(X,Z), Q).

The variation of the Hodge filtration in middle cohomology gives rise to the

local period map

ϕB : B → D
t 7→ (F •Hn(Xt,C))

Infinitesimal Torelli theorem For the universal deformation f̃ : X̃ → B̃,

the local period map ϕB̃ is a complex analytic embedding.

There is a simple proof in Claire’s online lecture.

[Goto 2004]: uniform proof for compact manifolds with special holonomy.

Theorem [Bryant–Griffiths 1983] The image of any period map ϕB is

contained in a so-called horizontal submanifold of D, an integral manifold for

a certain differential system corresponding to Griffiths transversality.



Teichmüller space

To define a version of the period map globally, we need to construct a global

moduli space of Calabi–Yau n-folds. Fix a lattice (Λ, QΛ) with the correct

symmetry and signature properties. A marked Calabi–Yau n-fold is a

pair (X, γ) with X a Calabi–Yau n-fold, and an isomorphism

γ : (Hn(X,Z), Q) ∼= (Λ, QΛ).

Consider triples (X,L, γ), where (X, γ) is a marked Calabi–Yau n-fold and L

(the Kähler class of) an ample line bundle on X . The space of all such triples

up to isomorphism has a natural topology.

Fact Every connected component T of the space of triples (X,L, γ) has the

structure of a (connected, Hausdorff) complex manifold.

T is a Teichmüller space of marked, polarized Calabi–Yau n-folds.

For any t ∈ T corresponding to a triple (Xt, Lt, γt), the local germ of t ∈ T can

be identified with the universal deformation germ of Xt. In particular, there is

a global family of Calabi–Yau manifolds fT : XT → T .



The global period map on Teichmüller space

Fix a base point 0 ∈ T corresponding to a triple (X,L, γ). Using the markings,

we have consistent identifications

(Hn(Xt,Z), Qt) ∼= (Λ, QΛ) ∼= (Hn(X,Z), Q)

for t ∈ T and fibres Xt of the family fT : XT → T .

We can thus define the period map globally by

ϕ : T → D

to the corresponding period domain, using the Hodge filtration on middle co-

homology.

For Calabi–Yau n-folds, this holomorphic map is locally injective by the

infinitesimal Torelli theorem. Its image lies in a horizontal submanifold of D.



Metric aspects of Teichmüller space

Teichmüller space T carries a natural metric, the Weil–Petersson metric. For

the Teichmüller space of elliptic curves, K3 surfaces and abelian varieties, this

is a complete metric which tends to be negatively curved.

• W–P metric on T is incomplete; there are finite distance singularities

[Candelas–Green–Hubsch 1990].

• A certain 1-dimensional T has W–P curvature tending to +∞ near a point

[Candelas, de la Ossa et al 1991].

• Whenever T is 1-dimensional, the W–P metric is asymptotic to the Poincaré

metric near certain boundary points [Wang 2003].

• Ooguri–Vafa conjectured that the scalar curvature of the W–P metric should

be non-positive near the boundary; disproved by [Trenner-Wilson 2011].

Hodge metric on T : natural metric pulled back from D via ϕ. This has better

curvature properties [Lu–Sun 2004].



Moduli space

We can also consider polarized Calabi–Yau manifolds (X,L) up to isomorphism,

without marking. This also has a natural topology. Let M be a connected

component, a moduli space of polarized Calabi–Yau n-folds.

Theorem (Viehweg) The spaceM carries the structure of a quasiprojec-

tive algebraic variety (orbifold).

For t ∈ M, representing an isomorphism class [(Xt, Lt)] of polarized Calabi–

Yau n-folds, the topological invariants {bi(Xt) | 2 ≤ i ≤ n} are independent

of t.

M is what is known as a coarse moduli space: there is no family over it.

There exists a family over a finite cover ofM.



Key questions about the moduli space

Key questions:

(i) In a fixed dimension n, how many (substantially) different moduli spacesMk

exist? Is this number finite?

(ii) Fixing topological invariants {bi | 2 ≤ i ≤ n}, how many different moduli

spacesMk exist? Is this number finite?

(iii) “Reid’s fantasy” [Reid 1983]: are all Calabi-Yau-n moduli spaces connected

by geometric transitions?

Known:

(i) Already for n = 3, at least tens of thousands of differentMi

(ii) Examples known of different families with the same data {bi | 2 ≤ i ≤ n}

(iii) Bounds for bi known if we assume extra structure (e.g. elliptic fibrations)

(iv) Many moduli spaces can be connected by geometric transitions [Gross 1997].



Geography of Calabi–Yau threefolds

For Calabi–Yau 3-folds, have (b2, b3). Plot of Kreuzer–Braun–Candelas of dif-

ferent possible topologies, in coordinates (χ(X), h1,1(X) + h2,1(X)):



The global period map on moduli space

To define the period map on the moduli space, we need to “forget the marking”.

Let

Γ = Aut(Λ, QΛ).

This is an arithmetic group that is known to act properly and discontinuously

on D.

We get a commutative diagram

T ϕ−→ D
↓ ↓
M ϕ̄−→ D/Γ.

This defines the period map ϕ̄ on moduli space.



The global Torelli problem

The global Torelli problem is the question whether the period map

ϕ̄ : M→D/Γ

is injective for a connected moduli spaceM of polarized Calabi–Yau n-folds.

This is equivalent to the following concrete formulation: given polarised Calabi–

Yau n-folds (X1, L1), (X2, L2) which live in the same deformation family, does

the existence of an isomorphism

(Hn(X1,Z), QX1)
∼= (Hn(X2,Z), QX2)

respecting the Hodge filtrations imply that X1, X2 are isomorphic?

Variants of the global Torelli problem:

• We could ask for generic injectivity of ϕ̄: weak global Torelli.

• We could change the group Γ to a different group Γ′ acting discontinuously

on D, perhaps arising from monodromy considerations.



Example: quintic threefolds

Consider the family of smooth quintic threefolds

X = {f5(xi) = 0} ⊂ P4.

These have KX trivial by the Adjunction Formula; H2(X,Z) ∼= Z by Lefschetz;

also H3(X,Z) ∼= Z204 with Hodge numbers (1, 101, 101, 1).

Connected moduli space

MX
∼= U/PGL(5,C)

of dimension 101 = 125− 24, where

U ⊂ P(H0(P4,OP4(5)))

is the open set of non-singular quintic polynomials.

The period domainD parametrises flags C ⊂ C102 ⊂ C203 ⊂ C204 ∼= H3(X,C).

A lot of information in the period point!



Weak global Torelli for quintic threefolds

Theorem (Voisin) Quintic threefolds satisfy weak global Torelli: a general

quintic threefold can be recovered from its period point.

Discussion of proof [Donagi 1983]: for projective hypersurfaces, the knowl-

edge of the Hodge structure is equivalent to the knowledge of a certain alge-

braic structure on the Jacobian ring of the hypersurface. Using a trick called

the Symmetrizer Lemma, this information is often enough to recover the

equation of the hypersurface. Not in Calabi–Yau cases!

[Voisin 1999]: a (large!) bag of special tricks for the quintic threefold, invented

while being prevented from doing more exciting mathematics by other concerns.

[Voisin 2020]: a systematic algebraic treatment of weak global Torelli for classes

of hypersurfaces where the Symmetrizer Lemma does not apply.



Failure of weak global Torelli for Calabi–Yau threefolds

Next, let Y be a resolution of singularities of a hypersurface

Ȳ = {f8(xi, yj) = 0} ⊂ P4[1, 1, 2, 2, 2].

This family of Calabi–Yau threefolds has b2(Y ) = 2 and middle cohomology of

dimension b3(Y ) = 174. Thus the moduli spaceMY has dimension 86.

Theorem [Szendrői 2000] The period map

ϕ̄ : MY → D/Γ

is of degree at least 2.

These are weak counterexamples: 3-folds in the family with the same period

point are birational but not isomorphic.



Examples of small moduli spaces

At the other extreme are Calabi–Yau threefolds with small moduli spaces.

dimM = 0, the case of rigid Calabi–Yau threefolds, is not without interest.

But here focus on some cases when dimM = 1.

The best-known example is the mirror quintic X∨, the resolution of a finite

quotient of the Fermat quintic threefold:

X∨ → X̄∨ =

{
4∑
i=0

x5
i = 0

}/
G ⊂ P4/G

with G ∼= (Z/5Z)3 ⊂ PGL(4,C) a certain finite subgroup. This has a one-

dimensional moduli space

MX∨
∼= P1 \ {1,∞}, with 0 ∈MX∨ an orbifold point of order 5.

Theorem [Usui 2008] The quintic mirror family satisfies weak global

Torelli: its period map ϕ̄ : MX∨ → D/Γ is generically injective.



Examples of small moduli spaces and failure of global Torelli

There is a related example of a family of Calabi–Yau threefolds

Z → Z̄ =

{
4∑
i=0

x5
i = 0

}/
H ⊂ P4/H

with H ∼= Z/5Z n (Z/5Z)2 ⊂ PGL(4,C) another specific finite subgroup,

studied by [Aspinwall–Morrison 1994].

These Calabi–Yau threefolds have fundamental group π1(Z) ∼= Z/5Z, and a

one-dimensional moduli spaceMZ .

Theorem [Szendrői 2004] The period map ϕ̄ : MZ → D/Γ′ is of degree

at least 5, for a certain group Γ′ acting properly discontinuously on the relevant

period domain D.

I conjecture that the Calabi–Yau threefolds in this family with the same period

point are not biratonal (and have non-equivalent derived categories of coherent

sheaves). There may be interesting phenomena lurking here.



Global considerations

Let us return to the diagram

T ϕ−→ D ↪→ D
↓ ↓
M ϕ̄−→ D/Γ

involving Teichmüller and moduli spaces of some Calabi–Yau n-fold. We know

(i) D is a projective variety containing as an analytic open subset the period

domain D;

(ii) M is a quasiprojective orbifold;

(iii) ϕ is locally injective;

(iv) the image of ϕ is constrained to lie in a horizontal submanifold of D, by

Griffiths transversality.

It appears that in most cases, the images of the maps (ϕ, ϕ̄) are too transcen-

dental to describe in terms that would help us understand the moduli space.



Semi-algebraic subvarieties of the period domain

Definition A closed horizontal submanifoldZ ⊂ D is called semi-algebraic,

if Z is a connected component of an intersection Z∩D for a Zariski closed sub-

variety Z ⊂ D.

Theorem [Friedmann–Laza 2013] Suppose Z ⊂ D is a closed horizontal

subvariety, with stabilizer group ΓZ ⊂ Γ. Assume that

(i) Z ⊂ D is semi-algebraic, and

(ii) Z/ΓZ is quasi-projective.

Then Z itself is a Hermitian symmetric domain, whose embedding into D is an

equivariant, holomorphic, horizontal embedding.

Z ↪→ D ↪→ D
↓ ↓

Z/ΓZ ↪→ D/Γ



Semi-algebraic subvarieties of the period domain

We have a diagram

Z ↪→ D ↪→ D
↓ ↓

Z/ΓZ ↪→ D/Γ

Message: the image of the period map could sometimes be described explicitly

in geometric terms, and interesting conclusions drawn.

Caveat: most Calabi–Yau n-folds will not have period maps with semi-

algebraic image.

For Calabi–Yau threefolds, semi-algebraicity of the image of the period map is

equivalent to the fact that the period map involves no “quantum corrections”

[Liu–Yin 2014].



Semi-algebraic subvarieties of the period domain: an example

Let D = ∪6
i=1Hi ⊂ P3 be a union of general hyperplanes, X̄ → P3 the triple

cover of P3 branched along D, and X → X̄ a small resolution.

Get a Calabi–Yau 3-foldX with b3(X) = 8, and 3-dimensional moduli spaceMX .

Let (Λ, h) be a Z-lattice of signature (3, 1). Let

B3 = {v ∈ P(Λ⊗ C) | h(v, v) < 0},

a complex unit 3-ball. Let G = Aut(Λ, h).

Theorem [Sheng–Xu 2019] The period map for the familyMX factors

MX ↪→ B3/G ↪→ D/Γ

where the first map is an open embedding, and the second a semi-algebraic

closed embedding.

In particular, for this family, global Torelli holds.

Note that H3(X,C) is built from one-dimensional Hodge structures.



Conclusions

Global moduli theory of Calabi–Yau n-folds

(i) Local theory very pleasant, and well described by periods

(ii) There is a reasonable global algebraic theory of the moduli space

• Mirror symmetry predictions from precise form of periods plus mon-

odromy data

(iii) Image of period map is a horizontal submanifold of the period domain;

usually a transcendental condition

• Similar “mirror” problem: “stringy Kähler moduli space” inside space

of Bridgeland stability conditions

(iv) Period map can sometimes be of use to describe the global moduli space,

but these are “very algebraic” examples

(v) Finitely many or infinitely many families???
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Thank you for your attention!


