A heterotic G_2 system is, by definition, the quadruple

\[[(Y, \varphi), (V, A), (TY, \Theta), H] \]

where φ is an integrable G_2 structure on a 7-dimensional manifold Y, V is a gauge bundle with instanton connection A, Θ is a connection on the tangent bundle TY of Y which is also an instanton, and H is a three form defined by the anomaly cancellation condition $H = DB + \frac{1}{4} (CS(A) - CS(\Theta))$. In string theory, such systems solve the Killing spinor equations and Bianchi identity of the heterotic string, provided that the three-form H equals the torsion of the G_2 structure. As such, they provide an interesting class of effectively 3 dimensional supergravity theories, which are largely determined by the geometry of the compactification. It is a goal in physics to determine this effective field theory.

In this talk, I will discuss the mathematical structure of heterotic G_2 systems. We will see that the heterotic G_2 systems can be rephrased in terms of a differential \mathcal{D} acting on a complex $\Omega^* (Y, Q)$, where $Q = T^* Y \oplus \text{End}(TY) \oplus \text{End}(V)$ and \mathcal{D} is an appropriate projection of an exterior covariant derivative \mathcal{D} which satisfies an instanton condition. The infinitesimal moduli are further parametrised by the first cohomology $H_1^\mathcal{D}(Y, Q)$. Finally, I will present a superpotential whose critical loci correspond to heterotic G_2 systems.

This talk is based on collaborations with Xenia de la Ossa, Eirik Svanes and Matthew Magill: 1607.03473, 1704.08717, 1709.06974, 1904.01027.