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Motivation

I Manifolds with special holonomy X play important roles in the
study of string theory and supersymmetric field theory. One
can learn non-trivial lessons of physical systems from using the
geometric property of X , and the physical methods can often
provide unexpected insights about the geometry of X . An
example is the discovery of mirror symmetry of Calabi-yau
manifolds.

I This talk has two parts: the first part reviews the mirror
construction of G2 manifolds motivated by string duality
(Gukov-Yau-Zaslow); The second part is mainly about the
physical interpretation of K stability of the existence of three
dimensional Ricci-flat conical metric (equivalently
Sasaki-Einstein metric and Kahler-Einstein metric on Fano
orbifolds) (Collins-Xie-Yau), and such metric can be used to
construct non-compact G2 manifolds.



Part I

Mirror symmetry for G2 Manifolds and associative/co-associative
fibration



String/M theory duality

String duality relates one type of string theory with another type of
string theory. It typically involves the compactification of string
theory on different manifolds. The basic string/M theory dualities
that will be used in this talk are (Witten 1995):

I 11d M theory compactified on a circle is equivalent to 10d
type IIA string theory, i.e. the strongly coupled limit of IIA
string theory is 11d supergravity.

I Type IIA string theory compactified on a circle SA is dual to
type IIB string theory on a dual circle SB . This is the T
duality symmetry. More generally, Type IIA string theory
compactified on odd dimensional torus is equivalent to type
IIB string on dual torus.

I M theory compactified on K3 manifold is equivalent to
Heterotic string theory compactified on T 3.

I Type IIA string theory comapctified on K3 surface is
equivalent to Heterotic string theory on T 4.



D branes

One of major discovery in the development of string theory in the
middle 90s is the realization of importance of higher dimensional
objects. An important class of such objects are called D branes. In
fact, D brane is the major motivation of the
Strominger-Yau-Zaslow picture of mirror symmetry.

One of new feature of D brane is: previous studies of CY manifolds
in string theory mainly explores the deformation space of KE
metrics, but D brane probes geometry directly: for example, the
physical theory on D0 brane has a moduli space which coincides
with the manifold that it probes! String duality often maps D
brane of one string theory to D brane of mirror string theory.



SYZ picture for mirror symmetry

The well-known conjecture of Strominger, Yau and Zaslow provides
a geometric picture of mirror symmetry, at least in the so-called
large complex structure limit. The conjecture proposes mirror pairs
of Calabi-Yau manifolds which are special Lagrangian (slg) torus
fibrations over the same base, but with dual fibres. This is
motivated by T duality of type II string theory.

Consider D3 branes wrapping on T 3 fibre (type IIB theory), and
we do T duality along the T 3 fibre and get type IIA string theory.
D3 brane now becomes D0 brane on the mirror manifold. The
quantum moduli space of D3 brane should be equivalent to D0
brane moduli space, which is equal to the mirror manifold. So by
studying the quantum moduli space of D3 brane wrapping on Slg
torus fibre, we could get the information of mirror manifold!



G2 manifolds

SYZ picture of mirror symmetry is mainly about the string
compactification on three dimensional Calabi-Yau manifolds.
These manifolds preserves half of supersymmetry. They give four
dimensional N = 2 supersymmetric theory if we consider type II
string theory on such manifolds. To have minimal four dimensional
supersymmetric field theory, we should consider M theory
compactified on seven dimensional G2 manifolds (Another
possibility is F theory compactified on elliptic four-folds).

G2 manifolds is defined by a positive three form φ, which is closed
and its dual four form is also closed. They admit covariant
constant spinor and therefore will give supersymmetric theory if we
compactify string/M theory on such manifolds.



Duality involving G2 manifolds

We can get interesting string duality involving G2 manifolds by
using the basic string duality reviewed earlier. The basic idea is
following:

I If our manifold has a fibration (In certain geometric limit)
whose fibre is the geometric object appearing in the basic
string duality, we can do the fibre-wise string duality to get a
mirror manifold over the same base.

I The fibre should be calibrated cycle, and D brane wrapping on
those cycles is supersymmetric and one can learn the mirror
manifolds by studying the D brane moduli space.

I The fibration usually involves singular fibre, and it is
conjectured that those singular fibres would not change the
fibre-wise string duality picture.



Co-associative fibration and Calabi-Yau mirror
Now for the G2 manifolds, there are two kinds of calibrated cycles:
co-associative four-folds and associative three-folds. Consider
co-associative fibration, we have the following possibilities
(Gukov-Yau-Zaslow):

I We can consider M theory on G2 manifold admitting
co-associative T4 fibration. We can first do reduction along
one of T4 direction and get type IIA string on CY manifolds
with fluxes turned on, and then perform T duality along the
remaining T3 fibre to get type IIB string theory on a ”mirror”
CY3 fold with fluxes turned on.

I We can consider M theory on G2 manifold admitting
co-associative K3 fibration. We can use the basic duality of M
theory on K3 and heterotic string on T3, and the dual theory
is heterotic string on T3 fibred mirror Calabi-Yau manifold.

In each case, we can wrap M5 brane on co-assocative fibre, and
the study of the quantum moduli space of it should give us the
information of mirror manifolds.



Co-associative fibration and G2 mirror

We can also study type II string theory on G2 manifold (Acharya),
and get mirror manifold which is also a G2 manifold. There are
several interesting scenarios

I Type II string theory on G2 manifold admitting co-associative
T4 fibration.

I Type II string theory on G2 manifold admitting co-associative
K3 fibration.

I Type II string theory on G2 manifold admitting associative T3

fibration.

One can use fibre-wise string duality to get type II string theory on
mirror G2 manifold which admits the same type of fibration. More
interestingly, using type IIA on K3 and heterotic string on T4

duality, one can get duality between type IIA string on K3 fibred
G2 manifold and heterotic string on T4 fibered G2 manifold.



K3 fibration

Gukov-Yau-Zaslow had proposed some methods to construct G2

manifolds admitting co-associative/associative fibration (see more
recent discussions by Baraglia, Kovalev, Donaldon, etc). Here we
review the basic ideas.

Imagine a G2 manifold which is a K3 fibration over a base S3, with
a discriminant locus ∆, which we assume to be a closed manifold
of co-dimension two — a knot or link. If we consider the case of a
non-satellite knot, then by Thurston’s theorem there exists a
hyperbolic metric on the complement S3/∆. We use this reasoning
to look for a G2 structure on a K3 fibration X over a non-compact
hyperbolic manifold. For simplicity, one use B = SO(3, 1)/SO(3)
as the base, and use metric gB left invariant by SO(3, 1).



We write
π : X → B (1)

for the projection to base. Note that at a point p ∈ X the vertical
vectors are defined as the kernel of π and span a sub-bundle TVX
of TX , but there is no canonical notion of horizontal vectors until
we have a connection, i.e. a choice of “horizontal” subbundle THX
of TX . We showed that there is a canonical way to decompose
TX as TX = THX ⊕ TVX , and we write PH and PV for the
corresponding projection operators. One can then construct a
three form Φ using the projection operator PH and PV . The three
form φ constructed there is not closed though, and it is interesting
to further study the deformation of this φ so that one can find a
G2 structure.



Torus fibration

Hitchin has shown how certain functionals on differential forms in
six dimensions generate metrics with G2 and weak SU(3)
holonomy. Here, we outline his construction and use his result to
construct new G2 metrics. The main point is to consider the
Hamiltonian flow of a volume functional on a symplectic space of
stable three- and four-forms on a six-manifold. When a group acts
on the six-fold, the invariant differential forms can restrict the
infinite-dimensional variational problem to a finite-dimensional set
of equations governing the evolution. Including the “time”
direction, one is able to create a closed and co-closed G2
three-form, thus a metric of G2 holonomy.

Gukov-Yau-Zaslow used Hitchin’s method to produce non-compact
G2 manifolds admitting T 3 fibration.



Branes wrapping on transverse calibrated cycle

In the context of SYZ picture of mirror symmetry, one can also
study the brane wrapping on slg sub-manifold intersecting with the
fibre once. The mirror of it involves deformed Hermitian
Yang-Mills (dHYM) equation. Now for the associative and
co-associative fibration, we could also study the brane wrapping on
calibrated cycles intersecting with the fibres once, and it would be
interesting to study the analog of dHYM in this context.



String duality suggests that associative and co-associative fibration
of G2 manifolds are very useful to understand the mirror symmetry
involving G2 manifolds. Many details of these mirror symmetry
involving G2 manifolds are remained to be studied.

Up to now, the two main constructions of compact G2 manifolds
are Joyce’s orbifold construction and twisted connected sum. Can
we use above mirror symmetry of G2 manifold to construct more
G2 manifolds?



Part 2

K stability and dynamics of supersymmetric field theory



The construction of non-compact G2 manifold is easier than
compact ones. One can construct non-compact G2 manifolds
starting with a six dimensional Ricci-flat conical metric (Foscolo,
Haskins, Nordstrom). The existence of Ricci-flat conical metric is
given by K stability, here we will discuss how to interpret K
stability from string theory point of view.



Canonical singularity
If we deform a compact CY manifold, it could develop singularity
which is proven to be canonical singularity. A canonical singularity
X is normal and satisfies following conditions (Reid 81):
I The Weyl divisor KX is Q-Cartier, i.e. there is an integer r

such that rKX is a Cartier divisor.
I For any resolution of singularity f : Y → X , with exceptional

divisors Ei ∈ Y , we have

KY = f ∗KX +
∑
i

aiEi , (2)

with ai ≥ 0. r is called index of the singularity. If ai > 0 for
all exceptional divisors, it is called terminal singularity.

Two dimensional canonical singularity has a ADE classification:

An : x2 + y2 + zn = 0, Dn : x2 + yn−1 + zy2 = 0 (3)

E6 : x2 + y3 + z4 = 0, E7 : x2 + y3 + yz3 = 0,

E8 : x2 + y3 + z5 = 0



We are mainly interested in three dimensional Q-Gorenstein
canonical singularity with a C ∗ action, so the index r = 1. There is
no complete classification, and the space of such singularities is
very large:

I Quotient singularity C 3/G , with G ∈ SL(3).

I Toric Gorenstein singularity.

I Quasi-homogeneous isolated hypersurface singularity
f (z1, z2, z3, z4) satisfying the condition

f (λqi zi ) = λf (zi ),
∑

qi > 1. (4)

I Isolated complete intersection singularity defined by two
polynomials f1 and f2 (5 is the maximal embedding dimension
for 3d canonical singularity), the weights and degrees of f1
and f2 are (w1, . . . ,w5; d1, d2), and the canonical condition is

5∑
i=1

wi − d1 − d2 > 0. (5)



Here we also list 3d Gorenstein terminal singularity with C ∗ action

j Singularity

AN−1 x21 + x22 + xN3 + zk = 0

x21 + x22 + xN3 + x3z
k = 0

DN x21 + xN−12 + x2x
2
3 + zk = 0

x21 + xN−12 + x2x
2
3 + zkx3 = 0

E6 x21 + x32 + x43 + zk = 0

x21 + x32 + x43 + zkx3 = 0

x21 + x32 + x43 + zkx2 = 0

E7 x21 + x32 + x2x
3
3 + zk = 0

x21 + x32 + x2x
3
3 + zkx3 = 0

E8 x21 + x32 + x53 + zk = 0

x21 + x32 + x53 + zkx3 = 0

x21 + x32 + x53 + zkx2 = 0



For isolated three dimensional canonical singularity X with a
chosen C ∗ action ζ, the link LX of X is a smooth manifold and has
a Sasakian structure (For the existence of Sasakian structure on
the link LX , the singularity can be relaxed to be isolated log
terminal singularity). Sasakian manifold has a distinguished
isometry which is related to chosen C ∗ action ζ on X .

We would like to determine whether LX has Sasaki-Einstein metric,
namely, determine the pair (X , ζ) such that LX has SE metric
whose Reeb vector field is given by ζ. Given (X , ζ), there are two
situations:

I Given X , we can tune ζ such that LX has SE metric.

I Given X , there is no choice of ζ such that LX has SE metric.



Ricci-flat conical metric

Equivalently, we are interested in following Ricci-flat conical metric
(it is also Kahler and has an isometry determined by ζ) on
singularity X :

ds2 = dr2 + r2dgLX . (6)

The existence of above metric on X implies:

I The link LX has a Sasaki-Einstein metric.

I If the Sasakian manifold is quasi-regular, then it can be
regarded as the total space of a circle bundle over a Fano
orbifold S , and the existence of Ricci-flat conical metric is
equivalent to the existence of the Kahler-Einstein metric on S .



K stability

The necessary and sufficient condition of the existence of
Sasaki-Einstein metric on LX is given by K stability (
Chen-Donaldson-Sun, Collins-Szekelyhidi 15) of (X , ζ). We give
definition of K stability relevant for Sasaki-Einstein metrics.

I Test configurations, or flat degenerations of the affine variety
X embedded in some ambient space.

I Associated to such a degeneration, a number called the Futaki
invariant.

To explain this in more detail, fix an affine variety X , defining a
Gorenstein (for simplicity) affine variety of dimension n + 1 with an
isolated log-terminal singularity at 0 ∈ X . The condition that the
link of X admits a Sasakian structure guarantees there is a
(maximal) torus T ⊂ Aut(X ) such that there is an element ζ ∈ t
(generating a Reeb field) with the property that if f is any
T -equivariant holomorphic function on X , then Lζ f =

√
−1λf for

λ = λ(f , ζ) > 0.



K-stability

More concretely, we can assume that X ↪→ CN in such a way that
T is contained in the diagonal torus in U(N). Write

X = Spec
C[z1, . . . , zN ]

(f1, . . . , fk)

where f1, . . . , fk are T -equivariant polynomials. Then there is an
open (convex, polyhedral) cone CR ⊂ t = Lie(T ) such that, for any
ζ ∈ CR we have

Lζzi =
√
−1λizi

for λi > 0. The cone CR is called the Reeb cone, and it’s elements
are called Reeb vector fields.



K-stability
Since X is Gorenstein there is a unique up to scale, non-vanishing
holomorphic section Ω ∈ H0(X ,KX ). Consider the set

ΣR = {ζ ∈ CR : LζΩ =
√
−1(n + 1)Ω}.

It turns out this is a compact, affine slice (or cross section) of CR .
We will call Reeb fields in ΣR normalized.

The ring

H =
C[z1, . . . , zN ]

(f1, . . . , fk)

is positively multigraded by the Lie algebra t. More precisely, H
decomposes under the T action into weight spaces

H =
⊕
α∈t∗
Hα

and we can define the index character

CR 3 ζ 7→ F (ζ, t) =
∑
α∈t∗

dimHαe−α(ζ)t .



According to (Collins-Székelyhidi) the index character admits a
meromorphic expansion

CR 3 ζ 7→ F (ζ, t) =
a0(ζ)

tn+1
+

a1(ζ)

tn
+ O(t1−n)

where a0, a1 are smooth functions on CR . A key point is that all of

this discussion still makes sense when X is only an affine scheme.

Define a test configuration, or degeneration to be a choice of
T -equivariant holomorphic functions f1, . . . , fM generating H, and
a choice of weights w1, . . . ,wM ∈ R. Associated to this data we
get a degeneration of X by embedding X into CM , and then acting
on the generators by zi 7→ twi zi . Taking a flat limit over zero yields
a scheme X0 acted on by a torus T0 ⊃ T . We say the
degeneration is special if X0 is a normal affine variety.



Associated to this degeneration is the Futaki invariant. If η ∈ t0\t
be chosen tangent to the normalized Reeb fields ΣR,0 of X0. Then
the Futaki invariant is (up to a positive constant)

Fut(ζ, η) =
d

ds

∣∣∣∣
s=0

a0(ζ + sη).

Define (X , ζ) to be K -stable if Fut(ζ, η) ≥ 0 for all special
degenerations and Fut(ζ, η) = 0 if and only if X0 = X .

So how do we understand the ingredients of K stability from
physical point of view? We will see that K stability can be
naturally understood from the field theory associated with D
branes probing X .



Now let’s consider type IIB string theory on the following
background

R1,3 × X , (7)

where X is a three dimensional canonical singularity, and we also
add N D3 brane whose world volume is in the direction R1,3, so D3
branes are points on X . One get four dimensional N = 1
supersymmetric field theory on D3 branes.

X

L

D3



One can write down a gauge theory description for lots of X
(mainly if X is toric). However, even without gauge theory
description, we can learn two facts about the field theory from the
geometry of X :

I The field theory has a U(1) symmetry group which is
identified with C ∗ action of X .

I The field theory has a branch of moduli space which is
identified with Nth symmetric product of X .

We are concerned with the low energy behavior at the most
singular point of the moduli space. At the deep IR, the low energy
theory at the most singular point is a superconformal field theory
(SCFT), which we might call it T0, whose property is crucial to
understand K stability.



4d N = 1 SCFT
Given the importance of N = 1 SCFT, we review some relevant
facts here:

I It has a bosonic SO(2, 4)× U(1)R symmetry group, here
SO(2, 4) is the four dimensional conformal group.

I The representation theory of N = 1 superconformal algebra
has been well studied, a generic highest weight representation
is labeled as |∆, j1, j2, r〉, here ∆ is the scaling dimension,
j1, j2 are left and right spins, and r is the U(1)R charge. Some
representations are short (BPS representation which are
annihilated by some number of supersymmetries. ). A special
class of operators are called chiral operators Br ,(j ,0), whose

scaling dimension is given as ∆ = 3
2 r .

I The chiral operators form a ring and is called chiral ring. For
SCFT, there is a U(1)R symmetry group acting on this ring,
so we actually have a graded ring. The determination of this
chiral ring is crucial, for example, the coordinate ring of the
moduli space can be read from chiral ring.



Let’s emphasize that ordinary N = 1 theory has no distinguished
global symmetry group as U(1)R symmetry. However, they also
has a chiral ring which can also be used to determine the moduli
space of vacua. There is no distinguished grading on the chiral ring
though. There might be also some symmetry group acting on their
chiral ring, so in general the chiral ring of a non-conformal N = 1
theory could also be graded. It is a difficult physical question to
distinguish whether a graded chiral ring is the chiral ring of a
SCFT!



K stability and stability of chiral ring

Now let’s come back to the SCFT T0 which is defined as the IR
theory of D3 branes probing the cone X , and the question is

I What is the graded chiral ring of T0?

There are following two possibilities:

I The chiral ring of T0 is determined by X and its C ∗ action.

I The chiral ring of T0 is not given by X .

Both possibilities can happen.



Example 1: Consider the singularity XA : x21 + x22 + x23 = 0, with
x4 free. It is well known that the theory T0A has N = 2 SUSY
(Douglas-Moore) and its chiral ring is determined by XA.
Example 2: Consider singularity XB : x21 + x22 + x23 + x44 = 0.
There is a Lagrangian description of this theory too, which is given
by a deformation of theory associated with above singularity. The
deformation is however marginal irrelevant, so the theory T0B is
actually the same as T0A, whose chiral ring is given by XA instead
of XB .



By Lagrangian description, I mean the theory can be described by
an action formed by elementary fields. The two examples listed
above have Lagrangian description, and one can use conventional
field theory tools to study these theories. In general, the
supersymmetric theory defined on D3 brane would not have a
Lagrangian description though.

In the QFT framework, an operator near a CFT point is classified
as relevant, irrelevant, and marginal (which is further classified as
exact marginal, marginal irrelevant, and marginal relevant).
Marginal irrelevant means the operator which is used to deform the
theory has dimension 4 (for four dimensional theory), but the
quantum correction changes it to be irrelevant, which means that
at the IR, the theory flows back to the original theory.



The geometric meaning of first possibility is that: There is a
Ricci-flat conical metric on X , and in the large N limit, the
superconformal field theory T0 is dual to type IIB string theory on
following background

AdS5 × LX , (8)

where LX is the link of X and has a Sasaki-Einstein metric.

Now the physical meaning of K stability is clear: X is K stable if
the chiral ring of the corresponding SCFT T0 is given by X ! The
U(1)R symmetry is identified with a special automorphism group ζ
of X whose determination will be discussed soon.



The next questions are what are the physical meaning of two
ingredients of K stability? Test configuration and the central fibre
X0 is quite simple: X0 is simply a candidate chiral ring for T0. The
next question is what is the meaning of Futaki invariant?

X
t

X
0



Generalized a maximization and Futaki invariant
The Futaki invariant is related to the central charge a of N = 1
SCFT. A four dimensional N = 1 SCFT has an invariant called
central charge a. This central charge is related to the anomaly of
the U(1)R symmetry group:

a =
3

32
TrR3 − 1

32
TrR. (9)

In practice, we often do not know the U(1)R symmetry of a SCFT.
However, if we know all the anomaly free symmetries and their ’t
hooft anomaly, Intriligator and Wecht proposed a very useful a
maximization method to determine U(1)R : the true U(1)R
symmetry maximizes the central charge a.

For a QFT, the important information is exact global symmetries,
and these are called anomaly free (as some classical symmetries
can be broken by quantum anomalies). For such anomaly free
symmetries, one can define some constants which is called ’t hooft
anomaly, which carries important information of the theory.



In our context, if X is K stable (namely there is no non-trivial
destabilizing test configuration), a maximization has following
simple geometric interpretation (Martelli-Sparks-Yau, ’05).
Consider the Hilbert series of the graded ring (X , ζ),

H(ζ, t) =
∑
α

dimHαt
α (10)

and it has the following expansion:

H(ζ, exp(−s)) =
a0(ζ)

s3
+

a1(ζ)

s2
+ . . . (11)

Now a0 is proportional to the volume of Sasaki-Einstein manifold.
It is also inverse proportional to the central charge a of the field
theory. If the automorphism group of X is more than one
dimensional, MSY proves that a maximization procedure is just
equivalent to the minimization of the volume!



The volume minimization can be understood from the K stability
point of view, namely, consider trivial test configuration where the
central fibre X0 is the same as X (Collins-Szekelyhidi). This
suggests that the use of Futaki invariant in more general context
might be related to a generalized volume minimization or a
maximization.

The resolution comes from that the fact that the Reeb field ζ in
pair (X , ζ) should be a candidate U(1)R symmetry, and this forces
ζ to be normalized ζ ∈ ΣR . Recall that for a normalized test
configuration generated by η the Futaki invariant has a very simple
form:

Fut(X , ζ, η) =
d

ds

∣∣∣∣
s=0

a0(ζ + sη).



The meaning of Futaki invariant should be clear from the following
graphs:

Fut<0

p

a
0
(p) a

0
(p)

Fut>0Fut=0

a
0
(p)



The interpretation of Futaki invariant is:

I In the case a, a0 achieves its minimum at p > 0.

I In the case b, if X0 is different from X , a0 achieves its
minimum at p = 0, but X0 has more symmetries.

I In the case c , a0 achieves its minimum at p < 0.

The destabilizing configuration gives less a0 and therefore more
central charge in case a. For case b, X and X0 gives same central
charge, but X0 has more symmetry! We interpret this as the
generalized a maximization, or a generalized volume minimization.



Unitarity bound

Example: There is a very general test configuration for every
singularity X , which is to make one of the coordinate of X free.
Physically, the Futaki invariant is to check whether the operator
violate the unitarity bound. A scalar operator of a 4d N = 1 SCFT
has a bound on scaling dimension

∆ ≥ 1. (12)

For chiral operator, its scaling dimension is determined by U(1)R
symmetry: ∆ = 3

2 r . The elements in ring X is identified with
scalar chiral operators of the field theory, so if we know ζ and its
charge on the generators of X , we can check wether the generator
satisfies the unitarity bound. In fact, Martelli-Sparks-Yau used this
constraint to give obstruction to the existence of SE metric.



New obstruction

In the physics literature, there is very few known obstruction to the
stability of chiral ring. K stability actually gives new obstruction.
Consider a singularity x21 + x22 + xp3 + x3x

q
4 = 0, and the unitarity

bound gives the constraint:

p < 2q + 1 and q < 2p − 2. (13)

However, one can consider a test configuration whose central fibre
is x21 + x22 + x3x

q
4 = 0, and the bound is (Collins-Székelyhidi)

q >
p2 − 1

2p − 1
. (14)

Sometimes this bound is stronger than the unitarity bound.



Concluding remarks

I K stability is equivalent to generalized a maximization, and
the new input is that one should consider new rings besides
the given ring. Geometrically, it is a generalized volume
minimization. Physically, K stability unifies many important
concepts in field theory: a maximization, chiral ring, unitarity
violation, etc.



I A crucial question is the reduction of number of test
configurations. Some immediate physical inputs suggest that

1. The central fibre has to have more automorphism groups, as
the central charge is related to the anomaly of U(1)R
symmetries, and if X0 has more central charges, it must have
more symmetries, this explains the use of test configuration
generated by a symmetry group.

2. It seems that the flatness in the definition of test configuration
is related to supersymmetry preserving deformation.

3. The a maximization is only sensible to the abelian symmetries
(Intriligator, Wecht), so for a toric singularity, there is no
nontrivial test configurations.

4. The central fibre should be normal, as a non-normal singularity
can not be the chiral ring of a N = 1 SCFT. This has been
proven by Collins-Szekelyhidi, Chen-Donaldson-Sun and Li-Xu.

The hope is that the field theory inputs can further reduce the
number of nontrivial test configurations. For the complete
intersection singularities, known results suggest that we only
need to check finite number of non-trivial test configurations
associated with the defining equation of f . Is it possible to
prove it?



I The field theory analysis is actually very general, so it can be
generalized to other geometric contexts involving cones with
special holonomy, and we have an analog of K stability. A
straightforward generalization is the four dimensional
canonical singularity and seven dimensional Sasaki-Einstein
manifolds. A more interesting context is G2 and Spin7 cones.



Relation to G2 manifolds

There is a general method to produce complete non-compact G2

manifolds starting from a six dimensional cone with Ricci-flat
conical metric (Foscolo, Haskins, Nordstrom). An interesting class
involves the terminal singularity with crepant resolutions. On the
one hand, using the existence of Ricci-flat conical metric on
terminal singularity shown in table 1 (which is not completely
solved), and the study of crepant resolution (not very difficult),
one can produce many new G2 manifolds. The relation between 6d
cones and G2 manifold might be interpreted from renormalization
group flow of the field theory on D3 branes, and this is currently
under study.

On the other hand, since not very three dimensional cone X
admits a Ricci-flat conical metric, and it appears that there is also
a K stability notion in this G2 context too.


