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Kähler manifolds

Let (M, J) be a complex manifold, n = dimCM

J ∈ End(TM), J2 = −Id, + “integrability condition”

A Riemannian metric g on (M, J) is Kähler if g(J−, J−) = g(−, −)
and ∇gJ = 0

In this case, the metric information is entirely encoded by the Kähler
form ω = g(J−,−) which is a closed two-form

We can introduce local complex coordinates (z1, . . . , zn) in which

ω = igαβ̄ dzα ∧ dz̄β̄, (gαβ̄) = positive-definite hermitian matrix

Ricci form ρω = Ric(g)(J−, −) is a closed two-form.Locally,

ρω = −i∂∂̄ (log det(gk ¯̀)) = −i ∂2

∂zα∂z̄β̄
(log det(gk ¯̀)) dzα ∧ dz̄β̄

(M, ω) compact and Kähler =⇒ [ρω] = c1(M)
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Ricci Solitons

Definition

A Ricci soliton is a triple (M, g , X ), where M is a Riemannian manifold
with a complete Riemannian metric g and a complete vector field X
satisfying

Ric(g) +
1

2
LXg = λg (1)

for some λ ∈ R. The vector field X is called the soliton vector field.
If X = ∇g f for some smooth f : M → R, then we say that (M, g , X ) is
gradient,in which case (1) becomes

Ric(g) + Hessg (f ) = λg ,

and we call f the soliton potential.

Ric(g) + Hessg (f )︸ ︷︷ ︸
Bakry-Emery tensor
of (M, e−f volg )R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
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Kähler-Ricci Solitons

Definition

Let (M, g , X ) be a Ricci soliton. If g is Kähler and X is real holomorphic
(i.e., LX J = 0), then we say that (M, g , X ) is a Kähler-Ricci soliton.

Let ω denote the Kähler form of g . If X = ∇g f , then the soliton equation
becomes

ρω + i∂∂̄f = λω, (2)

where ρω is the Ricci form of ω.

Definition

A soliton is called expanding if λ < 0, steady if λ = 0, and shrinking if
λ > 0.

R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
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Why do we care?

Recall:

Ric(g) +
1

2
LXg = λg , λ ∈ R.

Generalisation of Einstein metrics

X = 0 =⇒ Ric(g) = λg ⇐⇒ g is Einstein

In the Kähler world:

Shrinking Kähler-Ricci solitons  KE Fano manifolds (c1 > 0)

Steady Kähler-Ricci solitons  CY manifolds (c1 = 0)

Expanding Kähler-Ricci solitons  KE manifolds with < 0

scalar curvature (c1 < 0)
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Why do we care?

“Self-similar” solutions of the Ricci flow

Ric(g) +
1

2
LXg = λg  

{
• σ(t) = 1− 2λt
• ψt = flow of 1

σ(t)X

=⇒ g̃(t) := σ(t) · ψ∗t (g) 

{
• ∂g̃(t)

∂t = −2 Ric(g̃(t))
• g̃(0) = g .

Shrinking λ > 0  t ∈
(
−∞, 1

2λ

)
ancient solution

Steady λ = 0  t ∈ (−∞, +∞) eternal solution

Expanding λ < 0  t ∈
(

1

2λ
, +∞

)
immortal solution
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Why do we care?

Model finite time singularities of the Ricci flow

Song-Tian “Kähler-Ricci flow through singularities” on compact Kähler
manifolds

Finite time “Type I” singularity modelled on a non-flat shrinking soliton
(Naber, Enders-Muller-Topping)
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Examples of Ricci solitons

1 Bryant expanding solitons on Rn, n ≥ 3 (2005)

SO(n)-invariant  ODE method
asymptotically conical

2 Bryant steady soliton on Rn, n ≥ 3 (2005)

SO(n)-invariant  ODE method
Rm > 0

3 Lai’s Riemannian flying wings on Rn, n ≥ 3 (2020) collapsing
method

Rm > 0
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We now focus on steady gradient Kähler-Ricci solitons
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Examples of steady Kähler-Ricci solitons

1 Hamilton 1980s, “cigar” soliton on C
U(1)-invariant  ODE method
positive scalar curvature
linear volume growth
asymptotically cylindrical

2 Cao, Koiso 1990s, on Cn

U(n)-invariant ODE method
positive sectional curvature
volume growth ∼ O(tn)
curvature ∼ O(t−1)

3 Yang 2008, Dancer-Wang 2011, on KM , M KE Fano  ODE method
4 Macbeth-Bicquard 2017, on crepant resolutions of Cn/Γ, Γ ⊂ SU(n)

finite gluing method
5 Schäfer 2020, on KM , (M, ω), ρω ≥ 0 has constant eigenvalues 

ODE method
6 C.-Deruelle 2020, every Kähler class of a crepant resolution of a CY

cone PDE method
R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
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5 Schäfer 2020, on KM , (M, ω), ρω ≥ 0 has constant eigenvalues 

ODE method
6 C.-Deruelle 2020, every Kähler class of a crepant resolution of a CY

cone PDE method
R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
10 / 25



Examples of steady Kähler-Ricci solitons

1 Hamilton 1980s, “cigar” soliton on C
U(1)-invariant  ODE method
positive scalar curvature
linear volume growth
asymptotically cylindrical

2 Cao, Koiso 1990s, on Cn

U(n)-invariant ODE method
positive sectional curvature
volume growth ∼ O(tn)
curvature ∼ O(t−1)

3 Yang 2008, Dancer-Wang 2011, on KM , M KE Fano  ODE method
4 Macbeth-Bicquard 2017, on crepant resolutions of Cn/Γ, Γ ⊂ SU(n)

finite gluing method
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4 Macbeth-Bicquard 2017, on crepant resolutions of Cn/Γ, Γ ⊂ SU(n)

finite gluing method
5 Schäfer 2020, on KM , (M, ω), ρω ≥ 0 has constant eigenvalues 

ODE method
6 C.-Deruelle 2020, every Kähler class of a crepant resolution of a CY

cone PDE method
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5 Schäfer 2020, on KM , (M, ω), ρω ≥ 0 has constant eigenvalues 

ODE method
6 C.-Deruelle 2020, every Kähler class of a crepant resolution of a CY

cone PDE method
R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
10 / 25



Examples of steady Kähler-Ricci solitons

7 Schäfer 2021, ACyl  PDE method

8 Apostolov-Cifarelli 2023, continuous families on Cn using Hamiltonian
two-forms and toric geometry ODE method
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Motivating conjecture

Recall:

Theorem (Cao 1996)

There exists a U(n)-invariant steady gradient Kähler-Ricci soliton on Cn

with positive sectional curvature.

Conjecture (Cao 1996)

This is the unique steady gradient Kähler-Ricci soliton on Cn with positive
curvature.

True for n = 1 the soliton is Hamilton’s cigar soliton

False for n = 2 U(1)× U(1)-invariant examples constructed on C2

by Apostolov-Cifarelli ’23

n ≥ 3 open
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Results

Theorem A (Chan-C.-Lai ’24)

For n ≥ 2, there exists a family of U(1)× U(n − 1)-invariant, but
non-U(n)-invariant, steady gradient Kähler-Ricci solitons on Cn with
Rm1,1

op > 0.

This answers Cao’s conjecture in the negative for all dimensions

κ-collapsed

vol(Br (x)) ≥ crn

Zero AVR

Not isometric to examples of Apostolov-Cifarelli
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Strategies for proof

ODE methods

PDE methods

Collapsing methods (Lai ’20)
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Collapsing methods

Lemma (Collapsing lemma; Lai ’20)

A sequence of expanding gradient Ricci solitons (Mi , gi , pi ) with

Rm(gi ) > 0, scal(pi ) = 1, and AVR(gi ) := lim
r→∞

Bgi (x , r)

ωn−1rn
→ 0 as

i →∞ =⇒ (Mi , gi , pi )→pCG (M, g , p) = a steady gradient Ricci
soliton with scal(p) = 1.

Proof.

Ric(gi ) + Hessgi (fi ) =
1

Ci
gi

Show that Ci → 0 as i →∞.
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Reduction to construction of metric on links

Recall:

Definition

Let (L, g) be a compact connected Riemannian manifold. The Riemannian
cone C with link L is defined to be R>0 × L with metric g0 = dr2 + r2g .

General strategy

For a sequence of collapsing metrics on the links satisfying condition A,
the corresponding cone metric satisfies condition B.We can then lift these
to expanding Ricci solitons satisfying condition C.Then by the
compactness lemma, the sequence of expanding solitons degenerates to a
steady Ricci soliton satisfying condition C.
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Reduction to construction of metric on links

We construct Kähler metrics on Pn−1 with Rm1,1
op > 2.The corresponding

Kähler cone metric on Cn satisfies Rm1,1
op ≥ 0.By C.-Deruelle ’16, we can

lift these to expanding Kähler-Ricci solitons on Cn satisfying Rm1,1
op > 0.
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Byproduct: Almost rigidity of Pn

Theorem (Li-Wang ’05)

A Kähler manifold with bisectional curvature BK ≥ 2 must satisfy
diam(M, g) ≤ π

2 = diam(Pn, 1
2ωFS).

Theorem (Diameter Rigidity; Datar-Seshadri ’23)

If a Kähler manifold has bisectional curvature BK ≥ 2 and
diam(M, g) = π

2 , then the Kähler manifold is holomorphically isometric to
(Pn, 1

2ωFS).

Is this theorem almost rigid?
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diam(M, g) = π

2 , then the Kähler manifold is holomorphically isometric to
(Pn, 1

2ωFS).
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Byproduct: Almost rigidity of Pn

Theorem B (Chan-C.-Lai ’24)

Let n ≥ 1. Then for all ε > 0, there exists a U(n)-invariant Kähler metric
g on Pn with Rm1,1

op ≥ 2 (in particular, the holomorphic bisectional
curvature BK ≥ 2) such that

dGH
(
(Pn, dg ), [0, π2 ]

)
≤ ε.

• This implies Theorem A by the general strategy.
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Doubly warped product metrics

(M, g , η, ξ) = Sasaki manifold
ξ = Reeb vector field
η = contact form
dη = gT = transverse metric
g = η ⊗ η + gT

Consider M̂ = M × (0, L),together with the doubly-warped product metric

ĝ = dr2 + a2(r)η ⊗ η + b2(r)gT , a(r), b(r) > 0

Ĵ(a(r)∂r ) = ξ  M̂ is a complex manifold
ĝ Kähler⇐⇒ a = bb′

Example (Fubini-Study metric on Pn)

1

2
ωFS = dr2 +

sin2(2r)

4
η ⊗ η + sin2(r)gT on S2n−1 ×

(
0,
π

2

)
Note: Rm1,1

op ≥ 2.
R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
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ĝ Kähler⇐⇒ a = bb′

Example (Fubini-Study metric on Pn)

1

2
ωFS = dr2 +

sin2(2r)

4
η ⊗ η + sin2(r)gT on S2n−1 ×

(
0,
π

2

)
Note: Rm1,1

op ≥ 2.
R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
20 / 25



Doubly warped product metrics

(M, g , η, ξ) = Sasaki manifold
ξ = Reeb vector field
η = contact form
dη = gT = transverse metric
g = η ⊗ η + gT

Consider M̂ = M × (0, L),together with the doubly-warped product metric
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ĝ Kähler⇐⇒ a = bb′

Example (Fubini-Study metric on Pn)

1

2
ωFS = dr2 +

sin2(2r)

4
η ⊗ η + sin2(r)gT on S2n−1 ×

(
0,
π

2

)
Note: Rm1,1

op ≥ 2.
R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
20 / 25



Doubly warped product metrics

(M, g , η, ξ) = Sasaki manifold
ξ = Reeb vector field
η = contact form
dη = gT = transverse metric
g = η ⊗ η + gT

Consider M̂ = M × (0, L),together with the doubly-warped product metric
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Sketch of Proof of Theorem B

Step 1 (The model metrics from Fubini-Study on Pn−1):For any
k ≥ 1, consider the metric

hk := dr2 +
sin2(2r)

4k2
η ⊗ η +

sin2(r)

k
gT , r ∈ [0, π2 ].

1 hk is U(n − 1)-invariant;

2 hk satisfies Rm1,1
op > 2 on the smooth part;

3 hk collapses to [0, π2 ] as k →∞;

4 has a Kähler cone singularity at r = 0:

Conek = dr2 +
r2

k2
η ⊗ η +

r2

k
gT , r ∈ [0,∞).
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Sketch of Proof of Theorem B

Step 2 (Use Kähler expander to smooth out the cone singularity):

Theorem (Cao ’96)

There is a U(n − 1)-invariant expanding Kähler-Ricci soliton on Cn−1

asymptotic to Conek , k > 1.

Gluing:Cut off the conical singularity of hk and glue in a suitable
expanding soliton in Cao’s family at a small scale δi > 0.
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Sketch of Proof of Theorem B

So we obtain:

1 a smooth Kähler metric close to the singular metric;

2 smooths out the Kähler conical singularity;

3 Rm1,1
op > 0 everywhere and Rm1,1

op > 2 holds outside a tiny region.

Letting the gluing scale δi → 0, we obtain a sequence of such metrics hk,i
converging to hk .

R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
23 / 25



Sketch of Proof of Theorem B

So we obtain:

1 a smooth Kähler metric close to the singular metric;

2 smooths out the Kähler conical singularity;

3 Rm1,1
op > 0 everywhere and Rm1,1

op > 2 holds outside a tiny region.

Letting the gluing scale δi → 0, we obtain a sequence of such metrics hk,i
converging to hk .

R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
23 / 25



Sketch of Proof of Theorem B

So we obtain:

1 a smooth Kähler metric close to the singular metric;

2 smooths out the Kähler conical singularity;

3 Rm1,1
op > 0 everywhere and Rm1,1

op > 2 holds outside a tiny region.

Letting the gluing scale δi → 0, we obtain a sequence of such metrics hk,i
converging to hk .

R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
23 / 25



Sketch of Proof of Theorem B

So we obtain:

1 a smooth Kähler metric close to the singular metric;

2 smooths out the Kähler conical singularity;

3 Rm1,1
op > 0 everywhere and Rm1,1

op > 2 holds outside a tiny region.

Letting the gluing scale δi → 0, we obtain a sequence of such metrics hk,i
converging to hk .

R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
23 / 25



Sketch of Proof of Theorem B

So we obtain:

1 a smooth Kähler metric close to the singular metric;

2 smooths out the Kähler conical singularity;

3 Rm1,1
op > 0 everywhere and Rm1,1

op > 2 holds outside a tiny region.

Letting the gluing scale δi → 0, we obtain a sequence of such metrics hk,i
converging to hk .

R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
23 / 25



Sketch of Proof of Theorem B

So we obtain:

1 a smooth Kähler metric close to the singular metric;

2 smooths out the Kähler conical singularity;

3 Rm1,1
op > 0 everywhere and Rm1,1

op > 2 holds outside a tiny region.

Letting the gluing scale δi → 0, we obtain a sequence of such metrics hk,i
converging to hk .

R. Conlon (UT Dallas) Kähler-Ricci solitons

May 15th 2024 (joint with Pak-Yeung Chan and Yi Lai)
23 / 25



Sketch of Proof of Theorem B

Step 3 (Run Ricci flow and take limits): Let hk,i (t) be a Kähler-Ricci
flow coming out of each hk,i .These converge to a smooth Kähler-Ricci
flow hk(t) coming out of hk .

In the curvature evolution equation

∂t Rm = ∆gt Rm +Q(Rm),

Q(Rm) ≥ 0 if Rm ≥ 0 =⇒ Rm1,1
hk,i (t) ≥ 2− δi =⇒ Rm1,1

hk (t) ≥ 2.

Let k →∞. This implies Theorem B.
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Thank you for your attention!
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