Special Holonomy Metrics, Degenerate Limits and Intersecting Branes

Nipol Chaemjumrus and CH:

[arXiv:1907.04040] Degenerations of K3, Orientifolds and Exotic Branes

1. Degenerate Limit of K3

2. Gibbons-Hawking Metrics

3. Ooguri-Vafa Metrics

4. Special Holonomy Generalisations

5. Intersecting Brane Duals

6. Applications to String Theory and Dualities: Type I’ string, D8-branes and orientifolds
Degenerate Limit of K3

Hein, Sun, Viaclovsky and Zhang [HSVZ]

- Family of K3 Metrics $g(t)$, limit $t=0$ is line interval
- Long Neck Region at small t
- Segment of neck is nilfold fibred over a line.
- Nilfold is S^1 bundle over T^2, with degree (Chern number) m. Different values of m in different segments.
- Jump in m: insertion of gravitational instanton (Kaluza Klein monopole)
- Ends of neck capped by Tian-Yau spaces: complete non-compact hyperkahler manifolds asymptotic to nilfold fibred over a line
Figure 1. The vertical arrows represent collapsing to a one-dimensional interval. The red circles represent the S^1 fibers and the blue curves represent the base T^2's of the nilmanifolds. The \times's are the monopole points in the neck region \mathcal{N}. The gray regions are in the “damage zones”.
Gibbons-Hawking Metric

Hyperkahler metric with S^1 symmetry

$$ g = V (d\tau^2 + dx^2 + dz^2) + V^{-1} (dy + \omega)^2 $$

$V(\tau, x, z)$ a harmonic function on \mathbb{R}^3

$$ \vec{\nabla} \times \vec{\omega} = \vec{\nabla} V $$

Delta-function sources at points (m an integer)

$$ V = a + \sum_i \frac{m}{|\vec{r} - \vec{r}_i|} $$

S^1 Bundle on $\mathbb{R}^3 - \{\text{points}\}$

Regular at sources if $m=1$: multi-Taub-NUT

Orbifold singularities for $m>1$
Smeared GH Metrics

\[V(\tau, x, z) \text{ a harmonic function on } \mathbb{R}^3 \]

“Smeared” solutions: \(V \) independent of one or more coordinates

Can then take those coordinates to be periodic
Metric typically singular

Smear on \(x, y \):
\[V(\tau) = m\tau + c \]

or
\[V(\tau) = \begin{cases}
 c + m'\tau, & \tau \leq 0 \\
 c + m\tau, & \tau > 0.
\end{cases} \]

Singular at kink at \(\tau = 0 \)

Domain wall: 2-plane dividing space into 2 parts

\(N=m-m' \): energy density (tension) of domain wall (2-brane)
Piecewise linear:
multi-wall solution with domain walls at $\tau = \tau_1, \tau_2, \ldots \tau_n$

$$V(\tau) = \begin{cases}
 c_1 + m_1 \tau, & \tau \leq \tau_1 \\
 c_2 + m_2 \tau, & \tau_1 < \tau \leq \tau_2 \\
 \vdots \\
 c_n + m_n \tau, & \tau_{n-1} < \tau \leq \tau_n \\
 c_{n+1} + m_{n+1} \tau, & \tau > \tau_n
\end{cases}$$

The charge of the domain wall at τ_r is the integer

$$N_r = m_{r+1} - m_r$$

$$ds^2 = V(\tau)(d\tau^2 + dx^2 + dz^2) + \frac{1}{V(\tau)}(dy + M(\tau)x dz)^2$$

$$M(\tau) \equiv V'(\tau)$$

Can take x,y,z **periodic**

Single-sided domain wall

$$V = c + m |\tau|$$

Quotient by reflection $\tau \rightarrow -\tau$ gives

“single-sided” wall at $\tau = 0$
\[V(\tau) = m\tau + c \]
\[ds^2 = V(\tau)(d\tau^2 + dx^2 + dz^2) + \frac{1}{V(\tau)}(dy + mxdz)^2 \]

Take \(x, y, z\) periodic

Fixed \(\tau\): nilfold

\[ds^2_{\mathcal{N}} = dx^2 + (dy + mxdz)^2 + dz^2 \]

\(S^1\) Bundle over \(T^2\)

\[F = mdx \wedge dz \]

Quotient of the group manifold of the Heisenberg group by a cocompact discrete subgroup

4-d space: nilfold fibred over a line
1st approximation to HSVZ K3

Interval $\tau \in [0, \pi]$

Multi-domain wall solution with domain walls at $\tau = \tau_1, \tau_2, \ldots \tau_n$

Single-sided domain walls at $\tau = 0, \pi$

$$ds^2 = V(\tau)(d\tau^2 + dx^2 + dz^2) + \frac{1}{V(\tau)}(dy + M(\tau)xdz)^2$$

$$V(\tau) = \begin{cases}
 c_1 + m_1\tau, & 0 \leq \tau \leq \tau_1 \\
 c_2 + m_2\tau, & \tau_1 < \tau \leq \tau_2 \\
 \vdots \\
 c_n + m_n\tau, & \tau_{n-1} < \tau \leq \tau_n \\
 c_{n+1} + m_{n+1}\tau, & \tau_n < \tau \leq \pi
\end{cases}$$

HSVZ resolve singularities:

- Resolve domain walls with Ooguri-Vafa construction
- Resolve single-sided domain walls with Tian-Yau spaces
Ooguri-Vafa Metric

Want Gibbons-Hawking metric, \mathbb{R}^3 replaced with $\mathbb{R} \times T^2$

1st approximation: smear over T^2

Ooguri-Vafa:

- On \mathbb{R}^3, take periodic array of sources in (x,z) plane
- Regularised sum of potentials gives harmonic function
- Can now periodically identify x,z directions, to get single source on $\mathbb{R} \times T^2$
- Near source, non-singular, looks like Taub-NUT
- Can then take superpositions to get multiple sources on $\mathbb{R} \times T^2$
- Solutions regular on finite interval in \mathbb{R}
Resolve GH metric with

\[V(\tau) = \begin{cases}
 c + m'\tau, & \tau \leq 0 \\
 c + m\tau, & \tau > 0.
\end{cases} \]

Charge \(N = m - m' \)

by OV metric with \(V \) harmonic on \(\mathbb{R} \times T^2 \)

Monopole charge \(N \)

Near sources, \(N \)-centre multi Taub-NUT, or one source of charge \(N \), orbifold singularity: bubbling limit to Taub-NUT

For \(N \) sources, regular hyperkahler metric for some interval

\[-T < \tau < T' \]

Far enough away from \(\tau = 0 \), tends to GH with

\[V(\tau) = \begin{cases}
 c + m'\tau, & \tau \leq 0 \\
 c + m\tau, & \tau > 0.
\end{cases} \]
Tian-Yau Spaces

• Complete non-singular non-compact hyperkähler space
• Asymptotic to a nilfold bundle over a line.
• Of the form \(M \setminus D \), where \(M \) is a del Pezzo surface, \(D \subset M \) is a smooth anticanonical divisor
• Del Pezzo surfaces are complex surfaces classified by their degree \(b \), where \(b = 1, 2, \ldots, 9 \)
• The del Pezzo surface of degree nine is \(\mathbb{CP}^2 \)
• A degree \(b \) del Pezzo surface can be constructed from blowing up \(9 - b \) points in \(\mathbb{CP}^2 \)
• A 2nd del Pezzo surface of degree 8 is \(\mathbb{CP}^1 \times \mathbb{CP}^1 \)
• The TY space \(M_b \) of degree \(b \) is constructed from del Pezzo of degree \(b \)
• \(M_b \) is asymptotic to GH metric on \(N_b \times \mathbb{R} \) where \(N_b \) is nilfold of degree \(b \)
• Degree zero: Take \(M \) to be rational elliptic surface, \(N_0 = T^3 \), \(M_0 \) is ALH, asymptotic to cylinder given by \(T^3 \times \mathbb{R} \)
1st approximation to HSVZ K3

Interval $\tau \in [0,\pi]$

Multi-domain wall solution with domain walls at $\tau = \tau_1, \tau_2, \ldots \tau_n$

Single-sided domain walls at $\tau = 0, \pi$

$$ds^2 = V(\tau)(d\tau^2 + dx^2 + dz^2) + \frac{1}{V(\tau)}(dy + M(\tau)xdz)^2$$

$$V(\tau) = \begin{cases}
 c_1 + m_1\tau, & 0 \leq \tau \leq \tau_1 \\
 c_2 + m_2\tau, & \tau_1 < \tau \leq \tau_2 \\
 \vdots \\
 c_n + m_n\tau, & \tau_{n-1} < \tau \leq \tau_n \\
 c_{n+1} + m_{n+1}\tau, & \tau_n < \tau \leq \pi
\end{cases}$$

$M(\tau) \equiv V'(\tau)$

HSVZ resolve singularities:
Glue together Ooguri-Vafa spaces, Tian-Yau spaces to get complete K3 metric

Tian-Yau spaces of degree b_-, b_+

$$b_- = -m_1, b_+ = m_{n+1} \quad 0 \leq b_\pm \leq 9$$

$$N_i = m_{i+1} - m_i$$

$$\sum_{i=1}^{n} N_i = b_- + b_+ \leq 18$$
Special Holonomy Generalisations

- Replace 3-d nilfold with higher dim nilmanifold
- Quotient of nilpotent Lie group by discrete subgroup
- T^n bundle over T^m
- Special holonomy metrics on nilmanifold fibred over a line
 Gibbons, Lu, Pope and Stelle [GLPS]
<table>
<thead>
<tr>
<th>Dimension</th>
<th>Nilmanifold: torus bundle over torus</th>
<th>Holonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>S^1 over T^2</td>
<td>SU(2)</td>
</tr>
<tr>
<td>6</td>
<td>S^1 over T^4</td>
<td>SU(3)</td>
</tr>
<tr>
<td>6</td>
<td>T^2 over T^3</td>
<td>SU(3)</td>
</tr>
<tr>
<td>7</td>
<td>T^2 over T^4</td>
<td>G_2</td>
</tr>
<tr>
<td>7</td>
<td>T^3 over T^3</td>
<td>G_2</td>
</tr>
<tr>
<td>8</td>
<td>S^1 over T^6</td>
<td>SU(4)</td>
</tr>
<tr>
<td>8</td>
<td>T^3 over T^4</td>
<td>Spin(7)</td>
</tr>
</tbody>
</table>
Nilmanifold: S^1 bundle over T^4

5-dimensional nilpotent Lie algebra T_i

Only non-vanishing commutators are

$$[T_2, T_3] = mT_1, \quad [T_4, T_5] = mT_1$$

Metric

$$ds^2 = \left(dz^1 + m(z^3dz^2 + z^5dz^4) \right)^2 + (dz^2)^2 + (dz^3)^2 + (dz_4)^2 + (dz^5)^2.$$

Fibre coord: z^1

Nilmanifold fibred over line: SU(3) holonomy

$$ds^2 = V^2(\tau)(d\tau)^2 + V(\tau)\left((dz^2)^2 + (dz^3)^2 + (dz^4)^2 + (dz^5)^2 \right)$$

$$+ V^{-2}(\tau) \left(dz^1 + M(\tau)(z^3dz^2 + z^5dz^4) \right)^2$$

$$M(\tau) \equiv V'(\tau)$$

V Piecewise linear
Nilmanifold: T^3 bundle over T^4

7-dimensional nilpotent Lie algebra T_i

Only non-vanishing commutators are

$$[T_4, T_5] = mT_1, \quad [T_6, T_7] = mT_1, \quad [T_4, T_6] = mT_2$$

$$[T_5, T_7] = -mT_2, \quad [T_4, T_7] = mT_3, \quad [T_5, T_6] = mT_3$$

Metric

$$ds^2 = \left(dz^1 + m(z^5 dz^4 + z^7 dz^6) \right)^2 + \left(dz^2 + m(z^6 dz^4 - z^7 dz^5) \right)^2$$

$$+ \left(dz^3 + m(z^7 dz^4 + z^6 dz^5) \right)^2 + (dz^4)^2 + (dz^5)^2 + (dz^6)^2 + (dz^7)^2$$

Fibre coords: $z^1 z^2 z^3$

Nilmanifold fibred over line: Spin(7) holonomy

$$ds^2 = V_6^2(\tau)(d\tau)^2 + V_3^2(\tau)\left((dz^4)^2 + (dz^5)^2 + (dz^6)^2 + (dz^7)^2 \right)$$

$$+ V^{-2}(\tau) \left(dz^1 + M(z^5 dz^4 + z^7 dz^6) \right)^2$$

$$+ V^{-2}(\tau) \left(dz^2 + M(z^6 dz^4 - z^7 dz^5) \right)^2 + V^{-2}(\tau) \left(dz^3 + M(z^7 dz^4 + z^6 dz^5) \right)^2$$

$$M(\tau) \equiv V'(\tau)$$
Further Nilmanifolds

Extends to further examples with more general nilmanifolds. The previous case are from 2-step nilpotent Lie groups giving a torus bundle over a torus.

p-step nilpotent Lie groups
\[[X_1, [X_2, \cdots [X_p, Y] \cdots]] = 0\]
Torus bundle over a torus bundle over a torus…..

Chiossi and Salamon:
For any 6-dimensional nilmanifold with half-flat SU(3) structure, fibration over a line interval gives a G_2 metric
24 cases.

SU(3) structure: almost complex 6-manifold, with $(1,1)$ form ω, $(3,0)$ form Ω
Half-flat: $\omega \wedge d\omega$ and $Re(\Omega)$ closed
T-duality

Taub-NUT \rightarrow NS 5-brane [CH+Townsend]

ALF Multi-instanton \rightarrow Multi 5-brane

GLPS Special Holonomy \rightarrow Intersecting 5-brane solution with one function [Chaemjumrus and CH]

Special Holonomy with several functions \rightarrow Intersecting 5-brane solution with several functions

Semi-local solution
Nilmanifold: S^1 bundle over T^4

Nilmanifold fibred over line: SU(3) holonomy

$$ds^2 = V^2(\tau)(d\tau)^2 + V(\tau)\left((dz^2)^2 + (dz^3)^2 + (dz^4)^2 + (dz^5)^2\right)$$

$$+ V^{-2}(\tau)\left(dz^1 + M(\tau)(z^3dz^2 + z^5dz^4)\right)^2 \quad M(\tau) \equiv V'(\tau)$$

2-function generalisation, SU(3) holonomy

$$ds^2 = V_1(\tau)V_2(\tau)d\tau^2 + \frac{1}{V_1(\tau)V_2(\tau)}\left(dz^1 + M_1(\tau)z^3dz^2 + M_2(\tau)z^5dz^4\right)^2$$

$$+ V_1(\tau)\left((dz^2)^2 + (dz^3)^2\right) + V_2(\tau)\left((dz^4)^2 + (dz^5)^2\right)$$

Functions $V_1(\tau), V_2(\tau)$ piecewise linear,

$M_1 = V_1, M_2 = V'_2$

[Chaemjumrus and CH]
Nilmanifold: T^3 bundle over T^4

Nilmanifold fibred over line: Spin(7) holonomy

$$ds^2 = V^6(\tau)(d\tau)^2 + V^3(\tau)\left((dz^4)^2 + (dz^5)^2 + (dz^6)^2 + (dz^7)^2\right)$$

$$+ V^{-2}(\tau)\left(dz^1 + M(z^5dz^4 + z^7dz^6)\right)^2$$

$$+ V^{-2}(\tau)\left(dz^2 + M(z^6dz^4 - z^7dz^5)\right)^2 + V^{-2}(\tau)\left(dz^3 + M(z^7dz^4 + z^6dz^5)\right)^2$$

6-function generalisation, Spin(7) holonomy

$$ds^2 = V_1(\tau)V_2(\tau)V_3(\tau)V_4(\tau)V_5(\tau)V_6(\tau)d\tau^6 + \frac{1}{V_1(\tau)V_2(\tau)}\left(dz^1 + M_1z^5dz^4 + M_2z^7dz^6\right)^2$$

$$+ \frac{1}{V_3(\tau)V_4(\tau)}\left(dz^2 + M_3z^6dz^4 - M_4z^7dz^5\right)^2 + \frac{1}{V_5(\tau)V_6(\tau)}\left(dz^3 + M_5z^7dz^4 + M_6z^6dz^5\right)^2$$

$$+ V_1(\tau)V_3(\tau)V_5(\tau)(dz^4)^2 + V_1(\tau)V_4(\tau)V_6(\tau)(dz^5)^2$$

$$+ V_2(\tau)V_3(\tau)V_6(\tau)(dz^6)^2 + V_2(\tau)V_4(\tau)V_5(\tau)(dz^7)^2$$

Functions $V_1(\tau), \ldots, V_6(\tau)$ piecewise linear,
$M_1 = V_1, M_2 = V_2, \ldots$
Nilmanifold: S^1 bundle over T^4

2-function solution, SU(3) holonomy

\[
\begin{align*}
 ds^2 &= V_1(\tau)V_2(\tau)d\tau^2 + \frac{1}{V_1(\tau)V_2(\tau)}\left(d\tau^1 + M_1(\tau)\tau^3 dz^2 + M_2(\tau)\tau^5 dz^4\right)^2 \\
 &+ V_1(\tau)\left((dz^2)^2 + (dz^3)^2\right) + V_2(\tau)\left((dz^4)^2 + (dz^5)^2\right)
\end{align*}
\]

If $V_2 = 1, M_2 = 0$, (Gibbons-Hawking)$\times \mathbb{R}^2$

GH: $\tau, \tau, \tau^2, \tau^3$ \quad $\mathbb{R}^2: \tau^4, \tau^5$

If $V_1 = 1, M_1 = 0$, (Gibbons-Hawking)$\times \mathbb{R}^2$

GH: $\tau, \tau^1, \tau^4, \tau^5$ \quad $\mathbb{R}^2: \tau^2, \tau^3$

"Overlap" or "intersection" of smeared Kaluza-Klein monopole solutions

Singular at kinks in $V_1(\tau), V_2(\tau)$

Can this be generalised to overlap of localised Kaluza-Klein monopole solutions?

Solution with functions on \mathbb{R}^3: $V_1(\tau, \tau^2, \tau^3), V_2(\tau, \tau^4, \tau^5)$
Localised Solutions?

\[ds^2 = V_1 V_2 d\tau^2 + \frac{1}{V_1 V_2} (dz + \omega)^2 \]

\[+ V_1 \left((dx^1)^2 + (dx^2)^2 \right) + V_2 \left((dy^1)^2 + (dy^2)^2 \right) \]

Solution with local functions?

\[V_1(\tau, x^1, x^2), \ V_2(\tau, y^1, y^2) \]

T-dualise semi-local brane intersection solutions

OR Special case of equations of Pederesen and Poon, and Zharkov

\[\partial_\tau^2 V_1 + V_2 (\partial_{x^1}^2 + \partial_{x^2}^2) V_1 = 0 \]

\[\partial_\tau^2 V_2 + V_1 (\partial_{y^1}^2 + \partial_{y^2}^2) V_2 = 0 \]
Localised Solutions?

\[ds^2 = V_1 V_2 d\tau^2 + \frac{1}{V_1 V_2} \left(dz + \omega \right)^2 \]

\[+ V_1 \left((dx^1)^2 + (dx^2)^2 \right) + V_2 \left((dy^1)^2 + (dy^2)^2 \right) \]

Solution with local functions?

\[V_1(\tau, x^1, x^2), \; V_2(\tau, y^1, y^2) \]

T-dualise semi-local brane intersection solutions
OR Special case of equations of Pederesen and Poon, and Zharkov

\[\partial_i^2 V_1 + V_2 \left(\partial_{x^1}^2 + \partial_{x^2}^2 \right) V_1 = 0 \]

\[\partial_i^2 V_2 + V_1 \left(\partial_{y^1}^2 + \partial_{y^2}^2 \right) V_2 = 0 \]

Unfortunately, also

\[\partial_{x^i} V_1 \partial_{y^j} V_2 = 0 \]

Either \(V_1 \) independent of \(x^i \) or \(V_2 \) independent of \(y^i \)
Semi-Localised Solutions

\[ds^2 = V_1 V_2 d\tau^2 + \frac{1}{V_1 V_2} (dz + \omega)^2 + V_1 \left((dx^1)^2 + (dx^2)^2 \right) + V_2 \left((dy^1)^2 + (dy^2)^2 \right) \]

Solution with semi-local functions \(V_1(\tau, x^1, x^2), V_2(\tau) \)

\[\partial^2 \tau V_1 + V_2 (\partial^2_{x^1} + \partial^2_{x^2}) V_1 = 0 \]

\[\partial^2 \tau V_2 = 0 \]

Solution

\[V_2 = a + m\tau \quad V_1 = b + \frac{q}{\left(3m^2 x^2 + (a + m\tau)^3 \right)^{2/3}} \]

\[x^2 = (x^1)^2 + (x^2)^2 \]

\(V_1 \) localised in \(\tau, x^1, x^2 \)
Near origin: Cone over squashed sphere
SU(3) holonomy
Can add to \(V_1 \): linear \(f(\tau) \) or harmonic \(h(x^1, x^2) \)
Generalise to piecewise linear \(V_2 \), superposition of sources for \(V_1 \)
Localised Solutions and Degenerate Limits

- Are there fully localised non-singular solutions?
- Use duality to intersecting branes, brane webs to motivate ansatz
- Are these part of neck region of some compact special holonomy space, just as the hyperkahler metrics were model metrics for part of degenerate limit of K3?
- Relation to other configurations via string dualities?
T-Duality

Nilmanifold: T^n bundle over T^m
Curvature 2-forms F_a, $a=1,\ldots,n$

T-duality untwists bundle to T^{n+m}

3-form H, $dH=0$

$$H = dy^a \wedge F_a$$

Nilfold: S^1 Bundle over T^2 \longrightarrow T^3 with H-flux

$$ds^2_{T^3} = dx^2 + dy^2 + dz^2 \quad H = m dx \wedge dy \wedge dz$$

GH Metric: Nilfold fibred over a line

$$ds^2 = V(\tau)(d\tau^2 + dx^2 + dy^2 + dz^2) \quad H = M(\tau)dx \wedge dy \wedge dz$$

Product with 6-d Minkowski space: **NS5-brane**

smeared over 3 directions and wrapped on T^3
2 complex structures \(J^\pm \), \(g \) bihermitian

Connections with torsion \(\nabla^\pm = \nabla_{\text{Levi–Civita}} \pm g^{-1}H \)

Local Product structure: complex coordinates \(z^a, w^i \)

\[
ds^2 = g_{a\bar{b}} dz^a d\bar{z}^\bar{b} + g_{ij} dw^i d\bar{w}^j
\]

Generalised Kahler potential \(K(z, \bar{z}, w, \bar{w}) \)

\[
g_{a\bar{b}} = K_{,a\bar{b}}, \quad g_{ij} = -K_{,ij}
\]

Holonomy \(\text{Hol}(\nabla^\pm) \subseteq U(r) \)
$\det(K_{ab}) = \det(-K_{ij})$

Holonomy $Hol(\nabla^\pm) \subseteq SU(r)$

T-dualising Generalised Monge Ampere gives equations of Pederesen and Poon, and Zharkov
Further Dualities

Smeared KK Monopole

NS5-brane Smeared on T^3

D8-brane Wrapped on T^3

D8-brane: domain wall in 9+1 dimensions
Type I’ String Theory

Interval $\times \mathbb{R}^{1,8}$

16 D8-branes of charge 1: N_i branes at points τ_i on interval

Orientifold 8-planes of charge -8 at end-points $\tau = 0, \pi$

$$ds^2 = V^{-1/2}d\tau^2(\mathbb{R}^{1,8}) + V^{1/2}d\tau^2$$

$$V(\tau) = \begin{cases}
 c_1 + m_1\tau, & 0 \leq \tau \leq \tau_1 \\
 c_2 + m_2\tau, & \tau_1 < \tau \leq \tau_2 \\
 \vdots \\
 c_n + m_n\tau, & \tau_{n-1} < \tau \leq \tau_n \\
 c_{n+1} + m_{n+1}\tau, & \tau_n < \tau \leq \pi
\end{cases}$$

$$N_i = m_{i+1} - m_i \quad \sum_{i=1}^{n} N_i = 16$$

Or, if at $\tau = 0$ there are N_- branes giving charge $b_- = -8 + N_-$

and at $\tau = \pi$ there are N_+ branes giving charge $b_+ = -8 + N_+$

$$b_- = -m_1, b_+ = m_{n+1} \quad 0 \leq b_\pm \leq 8$$

$$\sum_{i=1}^{n} N_i = b_- + b_+ \leq 16$$

Like K3 story, but 16, not 18!
This is correct story for *perturbative* type I’ theory

At *strong coupling*, O8 plane can emit one D8 brane to leave

O8* plane of charge -9

Then O8* planes at either end and 18 D8-branes on interval

If at $\tau = 0$ there are N_- branes giving charge $b_- = -9 + N_-$

and at $\tau = \pi$ there are N_+ branes giving charge $b_+ = -9 + N_+$

$$b_- = -m_1, \quad b_+ = m_{n+1}$$

$$\sum_{i=1}^{n} N_i = b_- + b_+ \leq 18$$

Same equations as for degenerate K3
String Dualities

IIA string on K3 dual to Heterotic string on T^4

IIA string on K3 dual to Type I’ string on (Interval) $\times T^3$

• Strong coupling in type I’ mapped to weak coupling in type IIA, so dual gives insight into mysterious I’ strong coupling regime

• KK monopoles dual to D8-branes wrapped on T^3

• Tian-Yau end caps dual to orientifold planes

• Moduli space of type I’ mapped to *subspace* of moduli space of IIA on K3

[CH+Townsend]
• D8 branes and O8 planes on interval give fully consistent background for type I’ string theory.

• Singularities of metric reflect presence of physical objects (branes)

• Dual configurations also fully consistent

• Duality taking D8-branes wrapped on T^4 to KK monopoles takes type I’ on T^3 to type IIA on K3.

• *Predicts(!)* region of K3 moduli space in which K3 looks like HSVZ

• Dualities take intersecting branes to special holonomy metrics

• Intersecting branes part of consistent string backgrounds

• *Predicts(!?)* consistent background incorporating the special holonomy solutions as part of a compact complete special holonomy space.