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Going beyond Almgren

Regularity results for calibrated integral cycles that improve
Almgren et al.

Complex cycles in Cn:
[King ’71], [Harvey-Schiffman ’74], [Siu ’74]
techiques do not extend to almost-complex.

Pseudo-holomorphic integral 2-cycles [Taubes ’00],
[Rivière-Tian ’09]: smooth except possibly at isolated points.
Special Lagrangian 3D cones in R6 [B.-Rivière ’13] Smooth
except possibly for finite number of half-lines.
Area-minimizing 3D cones [De Lellis - Spadaro - Spolaor ’16]
smooth except possibly for finite number of half-lines.
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Ideas from [B.-Rivière]

Special Lagrangian cone  slice with S5  Special Legendrian.

2-D integral cycle in S5, semi-calibrated by a (non-closed) 2-form.

Study Special Legendrian cycles in S5. Key tools to start with:

Slicing by positive transv. foliations,
multiple valued graphs.



Tangent cone
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Current caught in yellow, boundary in red



Slicing

Boundaries don’t cross ⇒ Algebraic intersection index conserved
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The 3-surfaces intersect the current positively!
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Every 3-surface meets the current in Q = 4 points



Current → Multiple Valued Graph
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Get a Q-valued graph
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unordered Q-tuples
D2 ⊂ C → (C×R)Q

∼

z → {(ϕj(z), αj(z))}Qj=1



Make sense of PDE for {(ϕj(z), αj(z))}Qj=1

Perturbation of Cauchy-Riemann
∂zϕj = ν((ϕj , αj), z) ∂zϕj + µ((ϕj , αj), z)

∇αj = h((ϕj , αj), z),

ν, µ, h small, C-valued, 0 at 0

Implement elliptic PDEs techniques, e.g. unique continuation.
How?



Proof by induction on Q, say Q = 4

Part I: prove that singularities of multiplicity 4 cannot accumulate
to 0.

Prove that the average is a W 1,2 graph (needs uniqueness of
tangent at 0) that also solves a perturbation of Cauchy-Riemann

Subtract the average and get a new 4-valued graph that satisfies a
perturbation of Cauchy-Riemann

Now the singularities of multiplicity 4 are zeros: implement unique
continuation.



Part II: prove that singularities of multiplicity ≤ 3 cannot
accumulate to 0.

Within the induction (on multiplicity), at this stage you know that
singularities of multiplicity ≤ 3 are countable and can only
accumulate to 0.

Homological argument: from the calibrating condition, produce a
notion of “positive degree” around each isolated singularity and a
notion of degree bounded from below on any ball centered at 0.

Accumulation of singularities to 0 yields a contradiction.



Any hope for more general calibrated integral cycles?

Positiveness of intersection not to be expected in general.

PDE will depend on the calibration.

“degree” argument: I don’t know...

What I expect to be true (but very hard) is the uniqueness of
tangent cones for calibrated integral cycles.



Uniqueness issue for the tangent space
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Dilating with factors r1, r2, r3, ... yields ??
Dilating with factors R1,R2,R3, ... yields ??



















Uniqueness of tangent cones

Known by “2nd order theory”

[Allard-Almgren ’76]: 1-dimensional integral currents.

[White ’83]: area-minimizing 2-dim. integral currents.

[Simon ’83]: mass minimizers, tangent cone with isolated sing. and
multiplicity 1.

Known by “1st order theory”

[Pumberger-Rivière ’10]: 2-dim. calibrated integral cycle.

ω calibration of degree 2, Ω = ωp

p! calibration of degree 2p:
[B. ’14] 2p-dim. Ω-calibrated integral cycles.



Semi-calibrations of degree 2 VS Almost complex structures

Semi-calibration: form of comass one, not necessarily closed.

Theorem (B.)

φ semi-calibration of degree 2 in (M, g). Locally inM orM× R
(whichever is even-dimensional) we can find:

ω non-degenerate 2-form (possibly dω 6= 0 even if dφ = 0)
compatible almost complex structure J
Riemannian metric gJ(·, ·) = ω(·, J·)

(ω is a semi-calibration w.r.t. gJ)

s.t. any φ-calibrated 2-plane is also ω-calibrated.

Semi-calibrated 2-dimensional integral currents have an extra
structure: they are pseudo holomorphic.

Semicalibrated by φp

p! w.r.t. g  semicalibrated by ωp

p! w.r.t. gJ .
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Make the “waste of mass” visible

Blow-up the origin of Cn (algebraic/symplectic geometry)
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Idea of proof

Implement a pseudo holomorphic blow up of a sector

0 U CP
n−1

D    C

J
~J

Ω̃, g̃ , J̃ perturbations of the standard CPn−1 × C.
y
y



Idea of proof

Push-forward a pseudo holomorphic current via singular map
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Idea of proof

Push-forward well-defined in the limit as a J̃-holomorphic cycle
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Semi-Calibrated cycle on the right!
y
y
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Further regularity problems in calibrated geometry

Gauge theory on G2 and Spin(7)-manifolds [Walpuski ’17]

Very closely related: triholomorphic maps

H = span{1, i , j , k} ≡ R4, with i2 = j2 = k2 = ijk = −1[
f : R4 ≡ H→ H satisfying(
∂
∂x1

+ i ∂
∂x2

+ j ∂
∂x3

+ k ∂
∂x4

)
f = 0

]
⇒
[
f is harmonic

∆f = 0

]
HyperKähler mfld : tangent model is Hm[
f between Compact HyperKähler mflds

satisfying analog. 1st order PDE

]
⇒
[

f is a
harmonic map

]



Triholomorphic maps

u :M4m → N 4n

i , j , k on domain, I , J,K on target (with quaternionic rule).

u ∈W 1,2(M,N )

du = I du i + J du j + K du k

N hyperKähler
M almost hyperHermitian (ωi , ωj , ωk not closed, i , j , k not
integrable).

d (u∗Ω) = 0 if Ω closed 2-form.

|∇u|2 = −Cm

(
ω4m−2

i ∧ u∗ΩI + ω4m−2
j ∧ u∗ΩJ + ω4m−2

k ∧ u∗ΩK

)
u is (almost) stationary harmonic



Compactness for triholomorphic maps

{u`}`∈N triholomorphic with equibounded Dirichlet energy.

Problem: Analyse bubbles, bubbling set Σ (dim. 4m − 2), limiting
map u (weakly harmonic, not known if stationary harmonic).

|∇u`|2dvolM ⇀ |∇u|2dvolM + Θ(x)H4m−2 Σ

Theorem (B. - Tian ’19)

Energy identity: for H4m−2-a.e. x ∈ Σ

Θ(x) =
Nx∑
s=1

∫
S2
|∇φs |2,

where φs : S2 → N are holomorphic bubbles.
(holomorphic for a complex structure depending on x)

“Usual 2D-bubbling picture in TxΣ⊥”
Energy identity not known in general for stationary harmonic.



Compactness for triholomorphic maps

Indication of more rigid behaviour than stationary harmonic maps:

Theorem (B. - Tian ’19)

If u does not develop singularity in B = B4m
R ⊂M and Σ ∩ B is

contained in a Lipschitz graph,

then

• the bubbles at points x ∈ Σ ∩ B are holomorphic for a complex
structure independent of x;
• Σ ∩ B is (pseudo)holomorphic sbmfld for a fixed almost complex
structure (with (Σ \ Σ) ∩ B = ∅).



Thanks for your attention!


