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1. Introduction

Calabi conjecture:  There is a unique Ricci flat Kahler metric 
on a Kahler manifold of vanishing first Chern class for 

each choice of the Kahler form. 

Proved by Yau.

The result is famously non-constructive.



String theorists are interested because these spaces 
solve the vacuum Einstein equations relevant in 

superstring compactification.

Concretely one studies, for instance, a non-linear 
sigma model with target a Calabi-Yau M.



S =

Z
d2z gij(X)@Xi@̄Xj + · · ·

Then the most basic questions about observables in 
string compactification on M are decided by facts 

about the geometry of M.

(Strictly this is only true in a large-volume expansion, 
but the case we’ll study is a bit better.)



Upshot:  It would be nice to know the Ricci flat metric on M.

Today, I’ll describe a conceptually new approach to this 
problem; its relations to other ideas; and the kinds of  

formulas it leads to.

Quick summary:   One can determine an exact K3 metric 
given knowledge of the spectrum of BPS states of an 

auxiliary supersymmetric theory.

Our approach applies to metrics 
on the simplest compact CY 

manifold, K3.



II.  Little string theories and their moduli spaces

A.  Simple new theories without gravity

One of the discoveries of the mid 1990s was a zoo 
of novel theories not previously expected to exist.

Tools of discovery:

Study the low-energy theories on  
p-branes embedded in the 10d 

string theory.



Study a singular Calabi-Yau  
and focus on “local physics” 

at the singularity.

A simple Calabi-Yau singularity is an A-D-E singularity 
of a K3 surface.  

It has a dual description in 
terms of so-called “NS 5 

branes.”



By carefully studying the physics of the singular K3 
or on the branes, one finds several new theories.

— Famously, there is a (2,0) supersymmetric field theory 
in 5+1 dimensions.  It can be used to explain S-duality.

— Slightly less famously, there is also a theory which 
reduces this to low energies but is smaller than the full 
string theory.  It is a so-called “little string theory” living 

on the NS 5-branes.

The latter is not a quantum field theory, and comes  
with a scale: the scale of its strings.



The simplest (2,0) NS 5 brane theory 
has many interesting properties.

— Compactified on a 2-torus, it gives rise to a theory  
which looks - at low energy - like a U(1) gauge theory.

— The (Coulomb branch) moduli space of this theory 
is the (dual of the) mirror torus. 



Compactifying on an additional circle, one gets 
two additional scalars:

— The abelian gauge field present on the Coulomb branch 
gives a Wilson line on the circle, which is periodic.

— This leaves a 3d photon.  But in 3d, via

fµ⌫ = ✏µ⌫⇢@
⇢�

one can dualize this to a scalar.

From the M theory picture, you see this theory has a moduli 
space given by a four-torus.



We review this because we will use an analogous, 
but more complicated, system where there is a  
little string theory whose moduli space is K3.

B.  A theory with K3 as its moduli space

The theory we were talking about has 16 supercharges, 
or the equivalent of 4d N=4 supersymmetry.

The one we’re interested in is a cousin — the first one 
discovered — that has 4d N=2 supersymmetry.



We will review how to “geometrically engineer” it later. 
The salient properties are:

— it arises on NS 5-branes in the heterotic string, 
or on D5-branes in the type I string.

— when compactified on a two-torus, it is (at low energies) a 
rank 1 N=2 field theory; but its Coulomb branch is a sphere.

— one description:  6d SU(2) gauge theory with 16 doublet 
hypermultiplets (SO(32) global symmetry).

This sphere has 24 marked 
points on it; in a dual picture, 

think of D3-branes moving 
on base of elliptic K3.



Now, when one compactifies this theory on an additional 
circle, one gets a 3d theory whose moduli space is a 

K3 surface!  

The Wilson line of the gauge field, together with the 
3d dual photon, give the elliptic fiber above each  

point on the base sphere.



III.  Hyperkahler metrics from N=2 theories

Let us leave this story for a moment, and discuss 
some generalities about 4d N=2 field theories.

Multiplets:

Q, Q̃, Q,  ̃Q̃

�, ,�, AµVector:

Hyper:



Moduli space of vacua:

Coulomb branch: special Kahler 
Higgs branch: hyperKahler



On compactification to 3d, the Coulomb branch  
becomes hyperKahler too.

* fibers arise from Wilson line and dual gauge field in 3d

e.g. for a one-dimensional (complex) 4d Coulomb branch:

* For F-theory D3 probe, fibers degenerate at D7 branes  
 due to “light electrons”



How does one find the metric on the 4d and 3d 
Coulomb branch?

A.   The 4d story

Calling the Coulomb branch modulus “a,” for each point 
on the “a”-plane one has an auxiliary structure: a 

Seiberg-Witten curve.  

The periods of a preferred meromorphic differential on 
this curve then determine the geometry:

In our case of interest, it is of genus 1.
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The central object is the prepotential F.

⌧ =
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@a2



In terms of F, the Kahler potential is:

K = Im

✓
@F

@a
ā

◆

All states satisfy a BPS bound:

M � |Z(a; qe, qm)|

States which saturate the bound are in “short” 
multiplets and are exactly stable.



B.  The 3d story

Our 4d theory has an action:

At a given point in moduli space, there is an auxiliary torus 
in the story with



Reducing to 3d, the torus becomes physical.

The Wilson line for the gauge field and the dualized 
3d gauge field have action

This gives an elliptic fiber E over the old Coulomb branch, 
with area controlled by



The leading large R metric is then given by combining 
the kinetic terms for the new scalars with those of 

the 4d Coulomb branch fields.

There are three sources of physical corrections to a naive 
classical picture:

— one loop corrections in 4d.

— corrections from 4d instantons.



— instanton corrections from BPS particles in the 4d 
theory running around the circle.

Gaiotto-Moore-Neitzke have developed a beautiful 
story for how to compute the hyperKahler metric on 

a Coulomb branch given the indices defined in  
the presence of certain massive probe particles:

The trace is taken in the presence of a massive 
probe particle of charge � .

X�(u, ✓; ⇣) = Tr(�1)F e�2⇡RHei✓Q



Here      parametrizes the choice of complex  
structure on the hyperKahler Coulomb branch;  

there is a sphere of such possible 
choices.

Now, define the triplet of two forms

The definition uses the three Kahler forms at 
the north, front, and right poles of the sphere.

“holomorphic 
symplectic form”

⇣



It follows from standard results in hyperKahler geometry 
that

And it is a result of GMN that

where

Darboux 
coordinates



Upshot:  if we can compute the       for a basis of the charge 
lattice, we are in business. 

Now lets see how this all fits together in some formulae.

IV.  Toy formulae

A.   The large radius limit

We should expect from the physics that at large radius 
of the circle, our formulae simplify.  (This is a semiclassical 

limit from the 3d point of view.)

X�



Recall that to compute a line operator index in charge 
sector    , we need to evaluate

In the large radius limit, semiclassical reasoning gives:

For the problem at hand, using the 4d formulae for the 
Coulomb branch geometry gives the known “semi-flat” metric.

�



That is, there are 24 points with a light electron (in some 
duality frame), and one finds:

Here:

u are heuristically coordinates on the 4d Coulomb branch, 
and z coordinates on the elliptic fibers:

Greene, Shapere, 
Vafa,Yau



B.  Including the instantons

To get a more complete answer, one needs to include 
the instantons.  

We can only state the answers in terms of some as 
yet unknown BPS numbers.  They are morally more 

“topological” information than a metric.

Heuristically, one expects:



Formally, the Xs solve a Riemann-Hilbert problem 
written down by GMN.   One can show that they solve 

an integral equation

where

⌦(�;u) = BPS count in charge sector �

This can be solved by an iterative technique, given  
the BPS counts.



Something rather similar to the Gross-Wilson approximation
to the metric will emerge if one works on a smooth elliptic 
K3, and includes only the instanton corrections to the U(1) 

gauge theory at each “electron point.”

The most important question is: how do we determine 
the BPS invariants?

There are models of the little string in question that suggest 
how to attack this question.  For instance, one can 
“geometrically engineer” it in F-theory on a certain 

Calabi-Yau threefold.



For instance, we can consider an elliptic 
fibration over P1 ⇥ P1

Putting an      singularity at a point on one of the spheres, 
and a        at a point on the other, we engineer the  

6d low-energy theory we started with. 

A1

D16

Going down to IIA string theory gives us the 4d N=2 theory 
whose BPS spectrum we need.  Computing the BPS 
invariants of this kind of theory is a subject of intense 
research.  The subset we need may be within reach.



Another approach could proceed via IIA duality frame: 
D4-brane wrapping elliptic fibers of an elliptic K3.

The instantons become disc instantons with  
boundary on a 1-cycle of the elliptic curve the 
D4 wraps, and ending on a degenerate fiber.

Lin

(This relates to open Gromov-Witten theory.)


