Getting High On Gluing Orbifolds (Introduction)

Jonathan J. Heckman

University of Pennsylvania

Plan For The Talks:

• JJH's Talk: Introduction to Ethan's Talk

• Ethan's Talk: Compute 0-form, 1-form, 2-group for 5D SCFTs via $\mathbb{C}^3/\Gamma_{SU(3)}$

• Mirjam's Talk: Introduction to Max's Talk

• Max's Talk: "..." for non-cpct Elliptic CY_3 , G_2 and some cpct examples

Based On:

Main Focus:

```
hep-th/2203.10102 w/ Cvetič, Hübner, Torres
```

hep-th/???????? w/ Cvetič, Hübner, Torres

Background:

hep-th/1503.04806 w/ Del Zotto, Park, Rudelius

hep-th/2201.08372 w/ Del Zotto, Moscrop, Meynet, Zhang

Physics Motivation

Main Aim:

• Use M-theory to Construct New QFTs

• Use M-theory to Study Old and New QFTs

"Geometric Engineering"

JJH Review Talks: https://scgp.stonybrook.edu/archives/25133 Go to "Videos" Menu...

Quantum Field Theory

A Universal Language Used By Theorists

Broadly Encompasses Many Physical Situations

- Subatomic Particles
- Cosmology
- Condensed Matter Systems

Many Applications To Pure Math As Well

In QFT...

Main Players:

- A Hilbert Space \mathcal{H} / \mathbb{C} \mathbb{C} -Linear Operators $\mathcal{O} : \mathcal{H} \to \mathcal{H}$
- Local Operators $\mathcal{O}(x)$ (supported at points $x \in \text{Spacetime}$)
- Line Operators $\mathcal{O}(L)$ (supported at lines $L \subset \text{Spacetime}$)

Locals & Lines

Local: •

Line:

Higher-Form Symmetry

(For our purposes today, general enough...)

0-form Symm: $\mathcal{O}(x) \mapsto \mathcal{O}'(x)$ linear group action on local operators

1-form Symm: $\mathcal{O}(L) \mapsto \mathcal{O}'(L)$ linear group action on line operators

lacktriangle

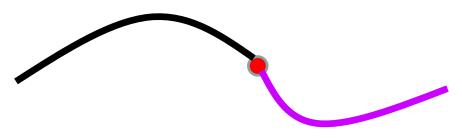
ullet

Locals & Lines

Local: •

Line Ending on Local:

Line Changing Via Local:



2-Group

(For our purposes today, general enough...)

(see e.g. Kapustin Thorngren '13; Benini Cordova Hsin '18)

4-tuple: $(G_{0-form}, \mathcal{A}_{1-form}, \rho, P)$

Hom $\rho: G \to \operatorname{Aut}(\mathcal{A})$

 $P \in H^3(BG, (\mathcal{A})_{\rho})$

Main Aim:

• Use M-theory to Construct New QFTs

• Use M-theory to Study Old and New QFTs

• Focus Today: Higher Symmetries

"Topological Data"

Philosophy

• Metric Data is Important (But Difficult)

• Topological Data Also Important (And Easier)

• Topology: Also Protected From Quantum Effects

What is M-Theory?

Full definition of M-theory: Unknown...

But at Long Distances, 11D supergravity

Key Objects: Graviton (metric) and "Branes"

 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$

M2-Brane \times \times \times

M5-Brane \times \times \times \times \times

Building QFTs

Product Space: $\mathbb{R}^{D-1,1} \times X_{11-D}$

Physically, $WE\ WANT$ Singularities on X!

QFT Limit (no Gravity) $\Rightarrow X$ Non-Compact

Examples: X_7 Local G_2 Space

 X_6 Local Calabi-Yau threefold

 X_4 Local Calabi-Yau twofold

Example: $\mathbb{C}^3/\mathbb{Z}_3$

Consider M-th on $\mathbb{R}^{4,1} \times \mathbb{C}^3/\mathbb{Z}_3$

Blowup: M-th on $\mathbb{R}^{4,1} \times \mathcal{O}_{\mathbb{P}^2}(-3)$

 $Vol(\mathbb{P}^2) \to 0$ Limit:

Example of a "Non-Lagrangian"

5D Superconformal Field Theory

More Generally:

5D SCFTs via M-th on CY_3 canonical singularities

Objects in $\mathbb{C}^3/\mathbb{Z}_3$ Model

Definition: Defect Group

$$\mathbb{D} = \bigoplus_{n} \mathbb{D}^{(n)} \qquad \mathbb{D}^{(n)} = \bigoplus_{\text{p-branes}} \left(\bigoplus_{p-k+1=n} \frac{H_k(X, \partial X)}{H_k(X)} \right)$$



Defect Group of $\mathbb{C}^3/\mathbb{Z}_3$

$$\mathbb{D}^{(n)} = \bigoplus_{\text{p-branes}} \left(\bigoplus_{p-k+1=n} \frac{H_k(X, \partial X)}{H_k(X)} \right)$$

From M2:
$$\mathbb{D}^{(1)} = \frac{H_2(X, \partial X)}{H_2(X)} \simeq H_1(S^5/\mathbb{Z}_3) \simeq \mathbb{Z}_3^{(1)}$$
 "electric"

From M5:
$$\mathbb{D}^{(2)} = \frac{H_4(X,\partial X)}{H_4(X)} \simeq H_3(S^5/\mathbb{Z}_3) \simeq \mathbb{Z}_3^{(2)}$$
 "magnetic"

D and Higher Symmetries

Our Defects are acted on by higher-form symms.

Split \mathbb{D} to elec. and mag. Polarization

$$\Rightarrow \mathcal{A}^{\text{elec}} \subset \mathbb{D}^{\vee} \text{ (dual: } \mathbb{D}^{\vee} = \text{Hom}(\mathbb{D} \to U(1)))$$

Aharony Witten '98; Belov Moore '05 '06; Kapustin Saulina '10; Tachikawa '14; Del Zotto JJH Park Rudelius '15; Garcia Etxebarria Heidenreich Regalado '19; Morrison Schafer-Nameki Willett '20; Albertini Del Zotto Garcia-Etxebarria Hosseini '20

Higher-Form Symmetry

(For our purposes today, general enough...)

0-form Symm: $\mathcal{O}(x) \mapsto \mathcal{O}'(x)$ linear group action on local operators

Group = $G_{0-\text{form}}$ can be non-abelian

1-form Symm: $\mathcal{O}(L) \mapsto \mathcal{O}'(L)$ linear group action on line operators

Group = $A_{1-\text{form}}$ always abelian

Main Claim

Cvetic JJH Hubner Torres '22

related: Del Zotto Garcia-Etxebarria Schafer-Nameki '22

Compute 0-form, 1-form, 2-group via topology

$$Z_{0\text{-Form}}: 0 \to \mathcal{C} \to Z_{\widetilde{G}} \to Z_G \to 0$$

1-Form:
$$0 \to \mathcal{A} \to \widetilde{\mathcal{A}} \to \mathcal{C} \to 0$$

2-group:
$$0 \to \mathcal{A} \to \widetilde{A} \to Z_{\widetilde{G}} \to Z_G \to 0$$

Extension problem: $H^3(BZ_G, \mathcal{A})$

$$\pi_1(S^5/\Gamma)$$
 Approach to $\mathbb{D}^{(1)}_{\mathrm{elec}}$

Del Zotto JJH Moscrop Nadir Maynet Zhang '22

$$\mathbb{D}_{\text{elec}}^{(1)} = \text{Ab}[\pi_1(S^5/\Gamma_{SU(3)})]$$

Consider $X = \mathbb{C}^3/\Gamma_{SU(3)}$, local CY_3

$$\mathbb{D}_{\text{elec}}^{(1)} = \frac{H_2(X, \partial X)}{H_2(X)}$$

$$= H_1(\partial X)$$

$$= \text{Ab}[\pi_1(S^5/\Gamma_{SU(3)})]$$

Works even if $\Gamma_{SU(3)}$ Is NOT fixed pt. free

Computing $\pi_1(S^5/\Gamma)$

Armstrong 1968: $\pi_1(S^5/\Gamma) = \Gamma/N_{\text{fixed}}$

 $N_{\text{fixed}} = \text{Normal Subgroup Gen}^{\text{ed}} \text{ by elts}$ which leave some points of S^5 fixed

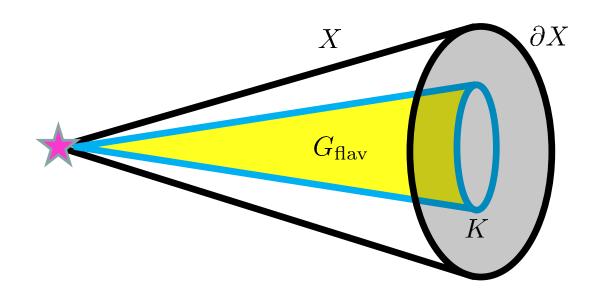
Computing $\mathbb{D}_{\text{elec}}^{(1)}$

$$\mathbb{D}_{\text{elec}}^{(1)} = H_1(S^5/\Gamma) = \text{Ab}[\pi_1(S^5/\Gamma)] = \text{Ab}[\Gamma/N_{\text{fixed}}]$$

 N_{fixed} Locus: Locations of "Flavor 6-Branes"

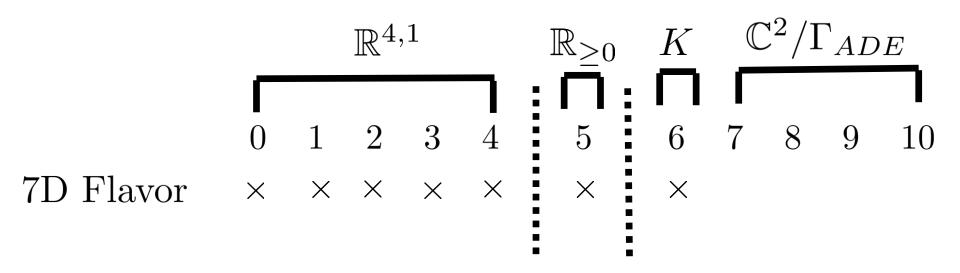
Singularities on ∂X

Often Interpretable as "Flavor Branes"



Flavor Branes (in M-theory)

Focus: $\mathbb{C}^2/\Gamma_{ADE}$ singularity \Rightarrow 7D Gauge Theory ;Gauge Group?



Main Claim

Cvetic JJH Hubner Torres '22

related: Del Zotto Garcia-Etxebarria Schafer-Nameki '22

Compute 0-form, 1-form, 2-group via topology

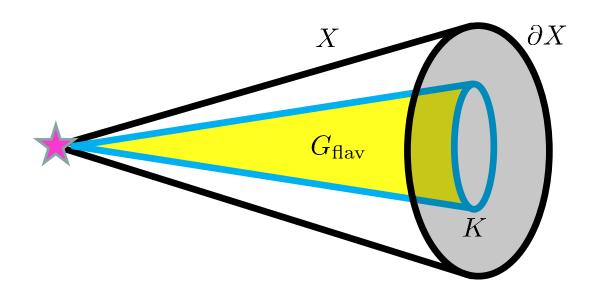
$$Z_{0\text{-Form}}: 0 \to \mathcal{C} \to Z_{\widetilde{G}} \to Z_G \to 0$$

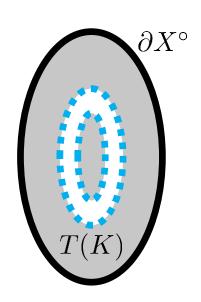
1-Form:
$$0 \to \mathcal{A} \to \widetilde{\mathcal{A}} \to \mathcal{C} \to 0$$

2-group:
$$0 \to \mathcal{A} \to \widetilde{A} \to Z_{\widetilde{G}} \to Z_G \to 0$$

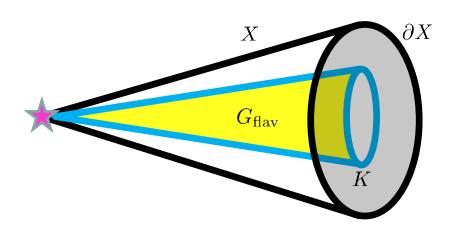
Extension problem: $H^3(BZ_G, \mathcal{A})$

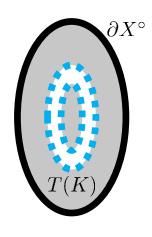
"Boundary of Boundary"





Mayer-Vietoris





$$\xrightarrow{\partial_{k+1}} H_k(\partial X^{\circ} \cap T(K)) \xrightarrow{\iota_k} H_k(\partial X^{\circ}) \oplus H_k(T(K)) \to H_k(\partial X)$$

$$\partial_k$$

$$H_{k-1}(\partial X^{\circ} \cap T(K)) \xrightarrow{\iota_{k-1}} H_{k-1}(\partial X^{\circ}) \oplus H_{k-1}(T(K)) \to \cdots$$

Plan For The Talks:

• JJH's Talk: Introduction to Ethan's Talk

• Ethan's Talk: Compute 0-form, 1-form, 2-group for 5D SCFTs via $\mathbb{C}^3/\Gamma_{SU(3)}$

• Mirjam's Talk: Introduction to Max's Talk

• Max's Talk: "..." for non-cpct Elliptic CY_3, G_2 and some cpct examples