Introduction, Part 2: Getting High on Gluing Orbifolds

Mirjam Cvetič
Motivation/Goals

• Motivation: M-theory on (non-)compact special holonomy spaces X and higher form symmetries:
 - non-compact spaces \rightarrow superconformal quantum field theories (SCFTs) \rightarrow
 higher-form symmetries global (``flavor'' branes)
 - compact spaces \rightarrow
 quantum field theory (QFT) w/ gravity \rightarrow
 higher-form symmetries gauged or broken

• Goals: Identify geometric origin of higher-form symmetries in non-compact special holonomy spaces X

Part II: beyond orbifolds & compact examples

Based on M. C., J. J. Heckman, M. Hübner and E. Torres,``0-Form, 1-Form and 2-Group Symmetries via Cutting and Gluing of Orbifolds,” 2203.10102 & work to appear
I. Introduction

Defect Group for M-theory on non-compact X

- Defect Group for extended p-dim operators associated with M2 and M5 branes:

$$\mathcal{D}_p = \mathcal{D}_p^{M2} \oplus \mathcal{D}_p^{M5}$$

- M2, M5 in X live on relative cycles:

$$\mathcal{D}_p^{M2} = \frac{H_{3-p}(X, \partial X)}{H_{3-p}(X)} \cong H_{3-p-1}(\partial X)|_{\text{triv}}$$

$$\mathcal{D}_p^{M5} = \frac{H_{6-p}(X, \partial X)}{H_{6-p}(X)} \cong H_{6-p-1}(\partial X)|_{\text{triv}}$$

- Defect pairing $\langle \cdot, \cdot \rangle$ in X ↔ Linking Pairing $\ell(\cdot, \cdot)$ in ∂X
Example: non-compact K3

[M.C., Dierigl, Lin, Zhang, 2021, 2022]

- Local elliptically fibered K3: \(E \hookrightarrow X \rightarrow \mathbb{C} \)

- Singular fiber of Kodaira type \(\phi \) at \(z \in \mathbb{C} \) w/ monodromy \(M \)

\[
D_1^{M^2} = D_4^{M^5} = H_2(X, \partial X)/H_2(X) \cong \text{Tor} \text{Coker}(M - 1) = \langle \Sigma \rangle
\]

- \(X \) engineers 7D SYM w/ gauge algebra \(g_\phi \) w/ Defect group \(D = \langle \Sigma \rangle_1^{M^2} \oplus \langle \Sigma \rangle_4^{M^5} \)

\(\Sigma \) - ``Kodaira Thimble''

\(\rightarrow \) Max's talk
Example (continued):

- Non-trivial self-linking/intersection: \(\ell(\partial \mathcal{I}, \partial \mathcal{I}) = \mathcal{I} \cdot \mathcal{I} \neq 0 \)

- Elements of \(\mathcal{D}_1^{M2} , \mathcal{D}_4^{M5} \) typically mutually non-local

- Choose electric polarization \(\mathcal{D}_1^{M2} \) [for the rest of the talk]

- Gauge group is simply connected \(G_\phi \) w/ algebra \(g_\phi \) (ADE)

- Resulting 7D SYM theory w/ gauge group \(G_\phi \)

- (Wilson) Line operators \(\mathcal{D}_1^{M2} \) acted on by 1-form symmetry \(Z_{G_\phi} \) [fix group topology]
Now, turn to higher-form structures for non-compact spaces X in higher dimensions ($D \geq 6$)

→ leads to new phenomena

c.f., talks by Jonathan & Ethan
Outline for the rest of the talk:

II. Summary of key points in Jonathan’s & Ethan’s talks

III. Application to elliptically fibered Calabi-Yau n-folds

IV. M-theory on G_2 spaces:
 Circle fibered G_2 &
 Type IIA on Calabi-Yau three-fold w/ D6 branes

IV. Compact examples
Summary of key points in Jonathan’s & Ethan’s talks

- **Geometries**: Singular non-compact space X w/ ADE singularities K extending to the asymptotic boundary ∂X and $\partial X^o = \partial X \setminus K$

- **Key Mayer-Vietoris Sequence in homology (wrt ∂X^o & T_K)**:

$$0 \rightarrow \ker(\iota_1) \rightarrow H_1(\partial X^o \cap T_K) \xrightarrow{\iota_1} H_1(\partial X^o) \oplus H_1(T_K) \rightarrow H_1(\partial X) \rightarrow 0$$

 - $\ker(\iota_1)$: flavor center
 - $H_1(\partial X^o \cap T_K)$: naive flavor center
 - $H_1(\partial X^o)$: naive 1-form symmetry
 - $H_1(T_K)$: 1-form symmetry

- **Motivated by orbifold homology**: $H_1(\partial X^o) = H_1^{\text{orb}}(\partial X)$
Summary (continued)

- M2 branes on non-compact two-cycles \rightarrow charged operators

- Symmetries, Pontryagin dual to charge operators nested as

 $$0 \rightarrow A \rightarrow \tilde{A} \rightarrow \mathbb{Z}_{\tilde{G}_F} \rightarrow \mathbb{Z}_{G_F} \rightarrow 0$$

- Split the homology sequence (physically motivated):

 $$0 \rightarrow \ker(\nu_1) \rightarrow H_1(\partial X^0 \cap T_K) \xrightarrow{\nu_1} \frac{H_1(\partial X^0 \cap T_K)}{\ker(\nu_1)} \rightarrow 0,$$

 $$0 \rightarrow \frac{H_1(\partial X^0 \cap T_K)}{\ker(\nu_1)} \rightarrow H_1(\partial X^0) \oplus H_1(T_K) \rightarrow H_1(\partial X) \rightarrow 0$$

- When the bottom sequence does not split \rightarrow 2-group mixing 0-form and 1-form (flavor) symmetries
III. Elliptically fibered Calabi-Yau n-folds

- : $\mathbb{E} \leftrightarrow X_n \rightarrow B_{n-1}$

 - Non-compact discriminant locus Δ

 [Hübner, Morrison, Schäfer-Nameki, Wang, 2022]

 - Homology groups of ∂X, ∂X^o, $\partial X_F = \partial X \setminus \{\text{singular fibers}\}$

 - Deformation retractions of $\partial B \setminus \Delta$ lift to ∂X_F

 - Glue singular fibers back in

 $\text{Tor } H_1(\partial X^o) = \text{Tor } H_1(\partial X_F) \oplus \text{Tor } H_1(\partial B)$

 \[\rightarrow \text{More details, including explicit examples in Max’s talk} \]
IV. M-theory on circle fibered G_2 & Type IIA on Calabi-Yau threefold w/D6 branes

- M-theory on circle S^1 fibered G_2 holonomy space

- As size of $S^1 \to 0$:
 Type IIA string theory on Calabi-Yau three-fold w/ D6 branes

- Co-dimension 4 singularities in $G_2 \leftrightarrow$ D6 branes in Calabi-Yau three-fold
 source gauge and flavor symmetries; detailed map c.f.,
 [M.C., Shiu, Uranga 2001]

- Metric hard, but topological issues can be addressed
Boundary Topology

Type IIA on CY3 w/D6-branes:
• Flavor Branes source RR $F = dC_1$
• Excise Flavor Branes $\partial X_6 \rightarrow \partial X_6^\circ$
• Expand Poincaré dual of F in 2-cycles of ∂X_6°

M-theory on G_2:
• Construct circle fibration ∂X_7° with Euler class F
• Gysin sequence
• Glue orbifold loci back in

More details → Max’s talk
SQCD-Like Geometries

- Supersymmetric three-spheres in Calabi-Yau threefold
 [Feng, He, Kennaway, Vafa, 2008],
 [Del Zotto, Oh, Zhou, 2021]
- Local geometry of color three-sphere gives 4D SQCD-like
 Type IIA on local CY3 w/ D6-branes
- Topology matches two glued Acharya-Witten cones
 M-theory on Local G₂

More details → Max’s talk
V. Compact Models

- Compact singular space $X \rightarrow$ theory that includes quantum gravity & global symmetries gauged or broken

- What is M-theory gauge group?

- Elliptically fibered geometries:
 - Non-Abelian group algebras – ADE Kodaira classification
 Group topology \rightarrow Mordell-Weil torsion

 \[
 \frac{U(1)^r \times G_{non-ab}}{\prod_{i=1}^{r} \mathbb{Z}_{m_i} \times \prod_{j=1}^{r} \mathbb{Z}_{k_j}}
 \]
 [Aspinwall, Morrison, 1998], [Mayrhofer, Morrison, Till, Weigand, 2014], [M.C., Lin, 2017]

 - Abelian groups \rightarrow Mordell-Weil \textquotedblleft free\textquotedblright part
 [Morrison, Park 2012], [M.C., Klevers, Piragua, 2013],
 [Borchmann, Mayrhofer, Palti, Weigand, 2013]…

 - Total group topology \rightarrow Shoida map of Mordell-Weil
 [M.C., Lin, 2017]
Compact Geometries (continued):

- Decompose $X = \bigcup_n X_n$ into local models X_n
 Converse:

 \[
 \text{Glue } \{X_n\} \text{ to } X \iff \text{Couple } \{\text{SQFT}_n\} \text{ to resulting one}
 \text{ & includes gravity}
 \]

- Relative Cycles in X_n compactify \Rightarrow
 (some) defects in SQFT_n become dynamical - ``gauged''
Compact Geometries (continued):

- **Mayer-Vietoris Sequence for covering \(\{X_n\} \):**
 \[
 \partial_2 : H_2(X) \rightarrow \bigoplus_n H_1(\partial X_n)
 \]

- **Decomposition of compact two-cycles into a sum of relative cycles associated with each local model**

- **Elliptically fibered geometries:**
 torsional cycles associated with Mordell-Weil group decomposition into relative cycles of \(\{X_n\} \)

- **Arguments extend beyond elliptically fibered models,** e.g., \(T^4 / \mathbb{Z}_2 \)
→ Max’s talk
Thank you!