Gradient flows, iterated logarithms, and semistability

Pranav Pandit

joint work with Fabian Haiden, Ludmil Katzarkov, and Maxim Kontsevich

University of Vienna

June 7, 2018
This talk is based on:
- arXiv:1706.01073
- arXiv:1802.04123

Goals:
- Describe the asymptotic behavior of the flows discussed in the previous talk (in special cases)
- Describe a canonical refinement of the Harder-Narasimhan filtration, and its relation to the asymptotic behavior of the flow
<table>
<thead>
<tr>
<th>Category</th>
<th>Fuk(X, ω)</th>
<th>Rep(Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object</td>
<td>Lag upto isotopy</td>
<td>(${E_v}v, {T\alpha}_{\alpha \in \text{Arr}(Q)}$)</td>
</tr>
<tr>
<td>Metrized object</td>
<td>Lagrangian</td>
<td>(E_v, h_v), h_v hermitian metric</td>
</tr>
<tr>
<td>Kähler data</td>
<td>(\Omega)</td>
<td>(P := \sum z_v \text{pr}v + \sum [T^*\alpha, T_\alpha])</td>
</tr>
<tr>
<td></td>
<td>hol vol form</td>
<td>(z_v \in \mathbb{H}; v \in Q_0)</td>
</tr>
<tr>
<td>Flow (\mathcal{F})</td>
<td>(\dot{L} = \text{Arg} \Omega_L)</td>
<td>(h^{-1}h = \text{Arg}P)</td>
</tr>
<tr>
<td>Mass (M)</td>
<td>(M(L) = \int_L</td>
<td>\Omega</td>
</tr>
<tr>
<td>Central charge</td>
<td>(Z(L) = \int_L \Omega)</td>
<td>(Z = \sum z_v \chi(E_v))</td>
</tr>
<tr>
<td>Kähler potential</td>
<td>(dS_C(f) = \int_L \Omega f)</td>
<td>(S_C = \sum \log \det h_v + \sum T^*\alpha T\alpha)</td>
</tr>
<tr>
<td>Harmonic metric</td>
<td>Fixed points of (\mathcal{F}) = Crit((S_C)) = special Lagrangian</td>
<td>Fixed points of (\mathcal{F}/\text{rescaling}) = Crit((S_C))</td>
</tr>
<tr>
<td>Amplitude</td>
<td>(\sup / \inf \text{Arg} \Omega</td>
<td>_L)</td>
</tr>
<tr>
<td>DUY theorem</td>
<td>??</td>
<td>King’s theorem</td>
</tr>
</tbody>
</table>

Good features (some proven): (i) Mass, Amp decrease with flow; (ii) BPS inequality \(|Z| \leq M\) and (iii) “properness” of mass.
Recall:

- There is a flow on the space of “metrized objects”.
- Fixed points of the flow on metrics upto rescaling are harmonic metrics. The underlying objects should be polystable.
- The “speed” of the rescaling action gives the slope/phase of the polystable object.
- For general objects, the flow should “decompose” the object into its polystable constituents, equipped with harmonic metrics.

The Harder-Narasimhan filtration only decomposes an object into semistable constituents.

Basic problem: Describe the decomposition (induced by the flow) of a semistable object into polystable pieces.
\mathcal{C} stable ∞-category equipped with Bridgeland stability condition
$\{C^{ss}_\theta\}_{\theta \in \mathbb{R}}$, $Z : K_0(\mathcal{C}) \to \mathbb{C}$.

For each $\theta \in \mathbb{R}$, C^{ss}_θ is an Artinian abelian category equipped with a homomorphism

$$X := \exp(-i\theta)Z : K_0(C^{ss}_\theta) \to \mathbb{R}$$

which is positive on non-zero objects.
Natural filtrations

A Artinian abelian category; $E \in \mathcal{E}$
$0 = E_0 \subset E_1 \subset E_2 \subset \ldots E_n = E$ filtration.

1. Socle: E_k is maximal containing E_{k-1} such that E_k/E_{k-1} is semisimple (one extreme).

Pranav Pandit (U Vienna)
Gradient flows and iterated logs
June 7, 2018 6 / 16
Natural filtrations

A Artinian abelian category; $E \in \mathcal{E}$

$0 = E_0 \subset E_1 \subset E_2 \subset \ldots E_n = E$ filtration.

1. **Socle**: E_k is maximal containing E_{k-1} such that E_k/E_{k-1} is semisimple (one extreme).

2. **Cosocle**: E_k is minimal contained in E_{k+1} such that E_{k+1}/E_k is semisimple (another extreme).
Natural filtrations

A Artinian abelian category; \(E \in \mathcal{E} \)

\[0 = E_0 \subset E_1 \subset E_2 \subset \ldots E_n = E \] filtration.

1. **Socle:** \(E_k \) is maximal containing \(E_{k-1} \) such that \(E_k/E_{k-1} \) is semisimple (one extreme).

2. **Cosocle:** \(E_k \) is minimal contained in \(E_{k+1} \) such that \(E_{k+1}/E_k \) is semisimple (another extreme).

3. Let \(\mathcal{A} \) be the category of pairs \((V, N)\) consisting of a vector space \(V \) and a nilpotent endomorphism \(N \). Then there is a unique filtration labelled by half-integers such that

\[N^k : \text{Gr}_{k/2} V \to \text{Gr}_{-k/2} V \]

is an isomorphism for all \(k \). (Balanced; this is the weight/Lefschetz filtration from mixed Hodge theory).
Balanced filtration

Theorem (Haiden-Katzarkov-Kontsevich-P.)

\(\mathcal{A} \) Artinian abelian category, \(X : \mathbb{K}_0(\mathcal{A}) \to \mathbb{R} \), positive on non-zero objects, \(E \in \mathcal{A} \). Then there exists a unique \(\mathbb{R} \)-filtration

\[
0 = E_0 \subset E_1 \subset \ldots \subset E_n = E
\]

labelled by

\[
\lambda_1 < \lambda_2 < \ldots < \lambda_n
\]
Balanced filtration

Theorem (Haiden-Katzarkov-Kontsevich-P.)

An Artinian abelian category, $X : K_0(A) \to \mathbb{R}$, positive on non-zero objects, $E \in A$. Then there exists a unique \mathbb{R}-filtration

$$0 = E_0 \subset E_1 \subset \ldots \subset E_n = E$$

labelled by

$$\lambda_1 < \lambda_2 < \ldots < \lambda_n$$

characterized by

1. Paracomplementedness: E_j/E_{k-1} is semisimple whenever $\lambda_j - \lambda_k < 1$.
Balanced filtration

Theorem (Haiden-Katzarkov-Kontsevich-P.)

A Artinian abelian category, $\mathcal{X} : K_0(\mathcal{A}) \to \mathbb{R}$, positive on non-zero objects, $E \in \mathcal{A}$. Then there exists a unique \mathbb{R}-filtration

$$0 = E_0 \subset E_1 \subset \ldots \subset E_n = E$$

labelled by

$$\lambda_1 < \lambda_2 < \ldots < \lambda_n$$

characterized by

1. **Paracomplementedness:** E_j/E_{k-1} is semisimple whenever $\lambda_j - \lambda_k < 1$.
2. **Balancing condition:** $\sum_j \lambda_j X(E_j/E_{j-1}) = 0$
Balanced filtration

Theorem (Haiden-Katzarkov-Kontsevich-P.)

A Artinian abelian category, $X : K_0(A) \to \mathbb{R}$, positive on non-zero objects, $E \in A$. Then there exists a unique \mathbb{R}-filtration

$$0 = E_0 \subset E_1 \subset \ldots \subset E_n = E$$

labelled by

$$\lambda_1 < \lambda_2 < \ldots < \lambda_n$$

classified by

1. **Paracomplementedness**: E_j / E_{k-1} is semisimple whenever $\lambda_j - \lambda_k < 1$.
2. **Balancing condition**: $\sum \lambda_j X(E_j / E_{j-1}) = 0$
3. For any F_j with $E_{j-1} \subset F_j \subset E_j$ such that F_j / F_k is semisimple for $\lambda_j - \lambda_k \leq 1$, we have
 $$\sum_{j} \lambda_j X(F_j / E_{j-1}) \leq 0$$
Iterated balanced filtration and asymptotics

The last condition can be formulated as stability of the filtration $F^\lambda E$ considered as an object in an auxiliary abelian category.

Theorem (Haiden-Katzarkov-Kontsevich-P.)

- Iterating the construction of the previous theorem gives a canonical filtration of E labelled by \mathbb{R}^∞ equipped with the lexicographic order.

Meta-principle: The asymptotic dynamics of geometric flows (e.g., mean curvature flow, Yang-Mills flow) can be reduced to the finite dimensional quiver situation using the theory of center manifolds.
Iterated balanced filtration and asymptotics

The last condition can be formulated as stability of the filtration $F^\lambda E$ considered as an object in an auxiliary abelian category \Rightarrow

Theorem (Haiden-Katzarkov-Kontsevich-P.)

- Iterating the construction of the previous theorem gives a canonical filtration of E labelled by \mathbb{R}^∞ equipped with the lexicographic order.
- When $A = \text{Rep}(Q)$ this filtration controls the asymptotic behavior of the gradient flow on the space of metrics

$$
\log |h(t)| = \lambda_1 \log t + \lambda_2 \log \log t + \ldots + \lambda_n \log^{(n)} t + O(1)
$$

on the $(\lambda_1, \lambda_2, \ldots, \lambda_n)$ piece of the filtration.
Iterated balanced filtration and asymptotics

The last condition can be formulated as stability of the filtration $F^\lambda E$ considered as an object in an auxiliary abelian category \rightarrow

Theorem (Haiden-Katzarkov-Kontsevich-P.)

- Iterating the construction of the previous theorem gives a canonical filtration of E labelled by \mathbb{R}^∞ equipped with the lexicographic order.
- When $A = \text{Rep}(Q)$ this filtration controls the asymptotic behavior of the gradient flow on the space of metrics

$$\log|h(t)| = \lambda_1 \log t + \lambda_2 \log \log t + \ldots + \lambda_n \log^{(n)} t + O(1)$$

on the $(\lambda_1, \lambda_2, \ldots, \lambda_n)$ piece of the filtration.

Meta-principle: The asymptotic dynamics of geometric flows (e.g., mean curvature flow, Yang-Mills flow) can be reduced to the finite dimensional quiver situation using the theory of center manifolds.
Dynamical systems from quiver representations

\(Q = (Q_0, Q_1) \) quiver; \(Q_0 \) vertices, \(Q_1 \) arrows.

Quiver representation:
Vertex \(i \) \(\mapsto \) \(E_i \) vector space.
Arrow \(\alpha : i \to j \mapsto T_\alpha : E_i \to E_j \) operator.

Metrized quiver representation: hermitian metric \(h_i \) on \(E_i \)
\(\mapsto \) adjoint operator \(T_{\alpha}^* : E_j \to E_i \).

Choosing “masses” \((m_i)_{i \in Q_0} \mapsto \) flow on the space of metrics.

\[
m_i h_i^{-1} \dot{h}_i = \sum_{\alpha : i \to j} h_i^{-1} T_{\alpha}^* h_j T_\alpha - \sum_{\alpha : k \to i} T_\alpha h_j^{-1} T_{\alpha}^* h_i
\]

This is asymptotic to the previous flow when the central charge takes values in a ray (the positive reals).
X compact Riemann surface, Kähler form ω, E finite dimensional holomorphic vector bundle on X, and h a hermitian metric on E. Consider the flow:

$$h^{-1} \partial_t h = -2i(\Lambda F - \lambda)$$

Theorem (Haiden-Katzarkov-Kontsevich-P.)

There is a canonical filtration $F^k E =: E_k$ on E labelled by

$$\beta_k \in \mathbb{R} t \oplus \mathbb{R} \log t \oplus \mathbb{R} \log \log t \oplus \cdots \cong \mathbb{R}^\infty$$

such that

$$\| \log h(t) \|_{E_k} = \beta_k + O(1)$$

E_k / E_{k-1} is a sum of stable bundles of slope μ_k given by

$$\beta_k = 4\pi \left(\int_X \omega \right)^{-1} (\mu_k - \mu(E)) t + \ldots$$
Iterated Logarithms from a dynamical system

\[\log^{(1)}(t) := \log t \]
\[\log^{(n)}(t) := \log(\log^{(n-1)} t) \]
Iterated Logarithms from a dynamical system

\[
\log^{(1)}(t) := \log t \\
\log^{(n)}(t) := \log(\log^{(n-1)} t)
\]

\[
\dot{x}_1 = e^{-x_1} \Rightarrow x_1 = \log t
\]
Iterated Logarithms from a dynamical system

\[\log^{(1)}(t) := \log t \]
\[\log^{(n)}(t) := \log(\log^{(n-1)} t) \]

\[\dot{x}_1 = e^{-x_1} \Rightarrow x_1 = \log t \]

\[\dot{x}_2 = e^{-(x_1+x_2)} \Rightarrow \dot{x}_2 = \frac{1}{t} e^{-x_2} \]
Iterated Logarithms from a dynamical system

\[\log^{(1)}(t) := \log t \]
\[\log^{(n)}(t) := \log(\log^{(n-1)} t) \]

\[\dot{x}_1 = e^{-x_1} \Rightarrow x_1 = \log t \]

\[\dot{x}_2 = e^{-(x_1+x_2)} \Rightarrow \dot{x}_2 = \frac{1}{t} e^{-x_2} \Leftrightarrow \frac{d}{d \log t} x_2 = e^{-x_2} \]
Iterated Logarithms from a dynamical system

\[
\log^{(1)}(t) := \log t \\
\log^{(n)}(t) := \log(\log^{(n-1)} t)
\]

\[
\dot{x}_1 = e^{-x_1} \Rightarrow x_1 = \log t \\
\dot{x}_2 = e^{-(x_1+x_2)} \Rightarrow \dot{x}_2 = \frac{1}{t} e^{-x_2} \Leftrightarrow \frac{d}{d \log t} x_2 = e^{-x_2} \Rightarrow x_2 = \log^{(2)} t
\]
Iterated Logarithms from a dynamical system

\[
\log^{(1)}(t) := \log t \\
\log^{(n)}(t) := \log(\log^{(n-1)} t)
\]

\[
\dot{x}_1 = e^{-x_1} \Rightarrow x_1 = \log t
\]

\[
\dot{x}_2 = e^{-(x_1+x_2)} \Rightarrow \dot{x}_2 = \frac{1}{t} e^{-x_2} \iff \frac{d}{d\log t} x_2 = e^{-x_2} \Rightarrow x_2 = \log^{(2)} t
\]

\[
\dot{x}_3 = e^{-(x_1+x_2+x_3)} \iff \frac{d}{d\log t} x_3 = e^{-(x_2+x_3)}
\]
Iterated Logarithms from a dynamical system

\[
\log^{(1)}(t) := \log t \\
\log^{(n)}(t) := \log(\log^{(n-1)} t)
\]

\[
\dot{x}_1 = e^{-x_1} \Rightarrow x_1 = \log t
\]

\[
\dot{x}_2 = e^{-(x_1+x_2)} \Rightarrow \dot{x}_2 = \frac{1}{t} e^{-x_2} \iff \frac{d}{d \log t} x_2 = e^{-x_2} \Rightarrow x_2 = \log^{(2)} t
\]

\[
\dot{x}_3 = e^{-(x_1+x_2+x_3)} \iff \frac{d}{d \log t} x_3 = e^{-(x_2+x_3)} \Rightarrow x_3 = \log^{(3)} t
\]

\[
\vdots
\]

\[
\dot{x}_n = e^{-(x_1+x_2+\ldots+x_n)}
\]
Iterated Logarithms from a dynamical system

\[
\log^{(1)}(t) := \log t \\
\log^{(n)}(t) := \log(\log^{(n-1)} t)
\]

\[
\dot{x}_1 = e^{-x_1} \Rightarrow x_1 = \log t
\]

\[
\dot{x}_2 = e^{-(x_1+x_2)} \Rightarrow \dot{x}_2 = \frac{1}{t} e^{-x_2} \iff \frac{d}{d \log t} x_2 = e^{-x_2} \Rightarrow x_2 = \log^{(2)} t
\]

\[
\dot{x}_3 = e^{-(x_1+x_2+x_3)} \iff \frac{d}{d \log t} x_3 = e^{-(x_2+x_3)} \Rightarrow x_3 = \log^{(3)} t
\]

\[
\vdots
\]

\[
\dot{x}_n = e^{-(x_1+x_2+\ldots+x_n)} \iff \frac{d}{d \log t} x_n = e^{-(x_2+\ldots+x_n)}
\]
Iterated Logarithms from a dynamical system

\[\log^{(1)}(t) := \log t \]
\[\log^{(n)}(t) := \log(\log^{(n-1)} t) \]

\[\dot{x}_1 = e^{-x_1} \Rightarrow x_1 = \log t \]
\[\dot{x}_2 = e^{-(x_1+x_2)} \Rightarrow \dot{x}_2 = \frac{1}{t} e^{-x_2} \Leftrightarrow \frac{d}{d\log t} x_2 = e^{-x_2} \Rightarrow x_2 = \log^{(2)} t \]
\[\dot{x}_3 = e^{-(x_1+x_2+x_3)} \Leftrightarrow \frac{d}{d\log t} x_3 = e^{-(x_2+x_3)} \Rightarrow x_3 = \log^{(3)} t \]
\[\vdots \]
\[\dot{x}_n = e^{-(x_1+x_2+\ldots+x_n)} \Leftrightarrow \frac{d}{d\log t} x_n = e^{-(x_2+\ldots+x_n)} \Rightarrow x_n = \log^{(n)} t \]

The original system of n differential equations reduces to an identical system of n-1 equations in one less variable upon passing to logarithmic time \(x_1 = s := \log t \).
1 dim representations

Input:

1. Directed acyclic graph $G = (G_0, G_1)$
1 dim representations

Input:

1. Directed acyclic graph $G = (G_0, G_1)$
2. Masses $(m_i)_{i \in G_0} \in \mathbb{R}^{G_0}_{>0}$
1 dim representations

Input:

1. Directed acyclic graph $G = (G_0, G_1)$
2. Masses $(m_i)_{i \in G_0} \in \mathbb{R}^{G_0}_{>0} \leadsto$ metric $\sum m_i (dx_i)^2$ on \mathbb{R}^{G_0}.
1 dim representations

Input:

1. Directed acyclic graph $G = (G_0, G_1)$
2. Masses $(m_i)_{i \in G_0} \in \mathbb{R}^{G_0}_{>0}$ \leadsto metric $\sum m_i (dx_i)^2$ on \mathbb{R}^{G_0}.
3. Weights $(c_\alpha)_{\alpha \in G_1} \in \mathbb{R}^{G_1}_{>0}$
1 dim representations

Input:

1. Directed acyclic graph $G = (G_0, G_1)$
2. Masses $(m_i)_{i \in G_0} \in \mathbb{R}_{>0}^{G_0} \leadsto$ metric $\sum m_i (dx_i)^2$ on \mathbb{R}^{G_0}.
3. Weights $(c_\alpha)_{\alpha \in G_1} \in \mathbb{R}_{>0}^{G_1} \leadsto$ action functional $S : \mathbb{R}^{G_0} \to \mathbb{R}$

$$S(x) := \sum_{\alpha : i \to j} c_\alpha e^{x_j - x_i}$$
1 dim representations

Input:

1. Directed acyclic graph $G = (G_0, G_1)$
2. Masses $(m_i)_{i \in G_0} \in \mathbb{R}_{>0}^{G_0} \rightsquigarrow$ metric $\sum m_i(dx_i)^2$ on \mathbb{R}^{G_0}.
3. Weights $(c_\alpha)_{\alpha \in G_1} \in \mathbb{R}_{>0}^{G_1} \rightsquigarrow$ action functional $S : \mathbb{R}^{G_0} \to \mathbb{R}$

$$S(x) := \sum_{\alpha:i \to j} c_\alpha e^{x_j - x_i}$$

\rightsquigarrow gradient flow of S with respect to metric

$$m_i \dot{x}_i = \sum_{\alpha:i \to j} c_\alpha e^{x_j - x_i} - \sum_{\alpha:k \to i} c_\alpha e^{x_i - x_k}$$

Claim: The asymptotic behavior of these dynamical systems is controlled by iterated logarithms.
An example

$m_1 \bullet \frac{c}{\bullet} m_2$

Gradient flow:

$m_1 \dot{x}_1 = ce^{x_2 - x_1}$

$m_2 \dot{x}_2 = -ce^{x_2 - x_1}$

Solution:

$x_1(t) = \frac{m_2}{m_1 + m_2} \log t + \log c_1$

$x_2(t) = -\frac{m_1}{m_1 + m_2} \log t + \log c_2$

Where

\[
\frac{c_2}{c_1} = \frac{m_1 m_2}{c(m_1 + m_2)}
\]
General case

Ansatz: \(x_i = v_i \log t + b_i; \quad v_i, b_i \in \mathbb{R}. \)

\[\sim \sim \frac{m_i v_i}{t} = \sum_{\alpha : i \to j} c_{\alpha} t^{v_j - v_i} e^{b_j - b_i} - \sum_{\alpha : k \to i} c_{\alpha} t^{v_i - v_k} e^{b_i - b_k} \]
General case

Ansatz: \(x_i = v_i \log t + b_i; \) \(v_i, b_i \in \mathbb{R} \).

\[
\Rightarrow \quad \frac{m_i v_i}{t} = \sum_{\alpha:i \to j} c_\alpha t^{v_j-v_i} e^{b_j-b_i} - \sum_{\alpha:k \to i} c_\alpha t^{v_i-v_k} e^{b_i-b_k}
\]

Interested in asymptotic behavior of \(x_i \) upto \(O(1) \), so look for solutions \(x_i(t) \) of the differential equation correct upto terms in \(L^1(\mathbb{R}) \).

\[\Rightarrow \text{ only powers } t^{\leq -1} \text{ in RHS} \]
General case

Ansatz: \(x_i = v_i \log t + b_i; \quad v_i, b_i \in \mathbb{R}. \)

\[
\sim \quad \frac{m_i v_i}{t} = \sum_{\alpha : i \to j} c_{\alpha} t^{v_j - v_i} e^{b_j - b_i} - \sum_{\alpha : k \to i} c_{\alpha} t^{v_i - v_k} e^{b_i - b_k}
\]

Interested in asymptotic behavior of \(x_i \) upto \(O(1) \), so look for solutions \(x_i(t) \) of the differential equation correct upto terms in \(L^1(\mathbb{R}) \).

\[
\implies \text{only powers } t^{\leq -1} \text{ in RHS}
\]

\[
\implies v_i - v_j \geq 1 \text{ if } \exists \alpha : i \to j \iff (v_i)_i \text{ is an admissible grading (defn)}
\]
General case

Ansatz: \(x_i = v_i \log t + b_i; \quad v_i, b_i \in \mathbb{R}. \)

\[
\frac{m_i v_i}{t} = \sum_{\alpha : i \to j} c_\alpha t^{v_j - v_i} e^{b_j - b_i} - \sum_{\alpha : k \to i} c_\alpha t^{v_i - v_k} e^{b_i - b_k}
\]

Interested in asymptotic behavior of \(x_i \) upto \(O(1) \), so look for solutions \(x_i(t) \) of the differential equation correct upto terms in \(L^1(\mathbb{R}) \).

\[\implies \text{only powers } t^{\leq -1} \text{ in RHS} \]
\[\implies v_i - v_j \geq 1 \text{ if } \exists \alpha : i \to j \iff (v_i)_i \text{ is an admissible grading (defn)} \]

Comparing coefficients

\[\implies m_i v_i = \sum_{\alpha : i \to j} c_\alpha u_\alpha - \sum_{\alpha : k \to i} c_\alpha u_\alpha, \text{ and } u_\alpha = 0 \text{ if } v_i - v_j > 1. \]

Here \(u_\alpha := e^{b_j - b_i} \in \mathbb{R}_{>0} \) for \(\alpha : i \to j \).
General case

Ansatz: \(x_i = v_i \log t + b_i; \quad v_i, b_i \in \mathbb{R}. \)

\[
\sum_{\alpha: i \to j} m_i v_i \frac{t^{v_i - v_j} e^{b_j - b_i}}{t} - \sum_{\alpha: k \to i} c_{\alpha} t^{v_i - v_k} e^{b_i - b_k}
\]

Interested in asymptotic behavior of \(x_i \) upto \(O(1) \), so look for solutions \(x_i(t) \) of the differential equation correct upto terms in \(L^1(\mathbb{R}) \).

\(\implies \) only powers \(t^{\leq -1} \) in RHS

\(\implies \) \(v_i - v_j \geq 1 \) if \(\exists \alpha : i \to j \iff (v_i)_i \) is an admissible grading (defn)

comparing coefficients

\(\implies m_i v_i = \sum_{\alpha: i \to j} c_{\alpha} u_{\alpha} - \sum_{\alpha: k \to i} c_{\alpha} u_{\alpha}, \) and \(u_{\alpha} = 0 \) if \(v_i - v_j > 1. \)

Here \(u_{\alpha} := e^{b_j - b_i} \in \mathbb{R}_{>0} \) for \(\alpha : i \to j. \)

Key observation: \(u_{\alpha}'s \) are Lagrange multipliers for a convex optimization problem.
Balanced weight grading

\[C := \text{set of admissible gradings} \subset \mathbb{R}^{G_0} \text{ (convex body).} \]
\[M : C \to \mathbb{R}_{\geq 0}; \quad M((v_i)_i) := \sum_i m_i v_i^2 \text{ convex function.} \]

Proposition

TFAE

1. \((v_i)_i\) minimizes \(M\).
2. \(\exists u_\alpha \geq 0 \quad \alpha \in G_1 \text{ satisfying} \)

\[m_i v_i = \sum_{\alpha : i \to j} c_\alpha u_\alpha - \sum_{\alpha : k \to i} c_\alpha u_\alpha \]
Balanced weight grading

$C := \text{set of admissible gradings } \subset \mathbb{R}^{G_0} \text{ (convex body)}.$

$M : C \rightarrow \mathbb{R}_{\geq 0}; \ M((v_i)_i) := \sum_i m_i v_i^2$ convex function.

Proposition

TFAE

1. $(v_i)_i$ minimizes M.
2. $\exists u_\alpha \geq 0 \ \alpha \in G_1$ satisfying

$$m_i v_i = \sum_{\alpha : i \rightarrow j} c_\alpha u_\alpha - \sum_{\alpha : k \rightarrow i} c_\alpha u_\alpha$$

3. (i) $\sum_i m_i v_i = 0$
Balanced weight grading

\[C := \text{set of admissible gradings} \subset \mathbb{R}^{G_0} \text{ (convex body)}. \]

\[M : C \rightarrow \mathbb{R}_{\geq 0}; \quad M((v_i)_i) := \sum_i m_i v_i^2 \text{ convex function}. \]

Proposition

TFAE

1. \((v_i)_i\) minimizes \(M\).
2. \(\exists u_\alpha \geq 0 \ \alpha \in G_1\) satisfying
 \[
 m_i v_i = \sum_{\alpha : i \rightarrow j} c_\alpha u_\alpha - \sum_{\alpha : k \rightarrow i} c_\alpha u_\alpha
 \]
3. (i) \(\sum_i m_i v_i = 0\) and (ii) \(\sum_{i \in E} m_i v_i \leq 0\) for all \(E \subset G_0\) such that \(i \in G_0\) and \(\exists \alpha : i \rightarrow j \implies j \in E\) “slope semistability”.

Unique grading satisfies (1)-(3) is called the balanced weight grading.
Iterated balanced weight grading

There are walls in the parameter space of m_i’s (recall: $(m_i)_i \in \mathbb{R}_{>0}^{|G_0|}$ parametrize certain metrics on \mathbb{R}^{G_0}) along which the some of the $u_\alpha = 0$ for $\alpha : i \to j$ with $v_i - v_j = 1$.

Simplest example:

\[
\begin{array}{c}
m_1 \bullet \\
\downarrow^{u_{12}} & \downarrow^{u_{32}} \\
m_2 \bullet & m_3 \bullet \\
\uparrow^{u_{34}} & \downarrow^{u_{34}} \\
m_4 \bullet
\end{array}
\]

It turns out $u_{32} = \frac{m_2 m_3 - m_1 m_4}{\sum_i m_i}$.

Wall: $m_2 m_3 = m_1 m_4$.
Iterated balanced weight grading

There are walls in the parameter space of m_i's (recall: $(m_i)_i \in \mathbb{R}_{>0}^G$) parametrize certain metrics on \mathbb{R}^G_0 along which the some of the $u_\alpha = 0$ for $\alpha : i \to j$ with $v_i - v_j = 1$.

Simplest example:

\[
\begin{array}{c}
m_1 \bullet \\
| | \\
\downarrow u_{12} \quad \downarrow u_{32} \quad \downarrow u_{34} \\
\bullet m_2 \quad \bullet m_3 \quad \bullet m_4
\end{array}
\]

It turns out $u_{32} = \frac{m_2 m_3 - m_1 m_4}{\sum_i m_i}$.

Wall: $m_2 m_3 = m_1 m_4$.

→ Iterate procedure along a certain subgraph → asymptotics governed by iterated logarithms along wall.