Strong G_2 -structures with torsion

Anna Fino

Universitá di Torino & Florida International University

13 May 2024

イロン 不同 とうほう 不同 とう

크

Question

Why Geometries with torsion?

Metric connections having totally skew-symmetric torsion and special holonomy have strong relations with

- supersymmetric string theories and supergravity;
- generalized Ricci flow and generalized geometry.

Remark

In particular, the geometry of NS-5 brane solutions of type II supergravity theories is generated by a metric connection with skew-symmetric torsion.

 (M^n, g) Riemannian manifold

abla any connection on $M \hookrightarrow$ we can write

 $\nabla_X Y = \nabla^{LC}_X Y + A(X, Y).$

Question

If ∇ is a metric connection, what we can say about A?

Remark

 $\nabla \text{ is metric } \iff g(A(X,Y),Z) + g(A(X,Z),Y) = 0, \quad \forall X,Y,Z$ $\iff A \in \mathcal{A}^g := \mathbb{R}^n \otimes \Lambda^2 \mathbb{R}^n$

(本部) (本語) (本語) (二語

Since a metric connection ∇ is uniquely determined by its torsion

$$T(X,Y) := \nabla_X Y - \nabla_Y X - [X,Y],$$

we have:

$A \in \mathcal{A}^g \longleftrightarrow T \in \mathcal{T} \cong \mathcal{A}^g.$

The space $\mathcal{T} \cong \mathbb{R}^n \otimes \Lambda^2(\mathbb{R}^n)$ has dimension $\frac{n^2(n-1)}{2}$ and for $n \ge 3$ decomposes under the action of O(n) as

 $\mathbb{R}^n \oplus \Lambda^3(\mathbb{R}^n) \oplus \mathcal{T}',$

where

$$\mathcal{T}' = \{ \mathcal{T} \in \mathcal{T} | \sigma_{X,Y,Z} \mathcal{T}(X,Y,Z) = 0, \sum_{i=1}^{n} \mathcal{T}(e_i,e_i,X) = 0, \forall X,Y,Z \}.$$

[E. Cartan, 1925].

Remark For n = 2 the space $\mathbb{R}^2 \otimes \Lambda^2(\mathbb{R}^2) \cong \mathbb{R}^2$ is irreducible.

Definition

If $A \in \Lambda^3(\mathbb{R}^n)$, ∇ is called connection with skew-symmetric torsion.

Proposition (Cartan, 1926; Agricola, 2006)

A connection ∇ is metric and geodesic preserving $\iff T$ is a 3-form. In this case 2A = T and the ∇ -Killing vector fields coincide with the Riemannian Killing fields.

$$\hookrightarrow \nabla_X Y = \nabla^{LC}_X Y + \frac{1}{2}T(X,Y,\cdot).$$

G/H reductive homogeneous space

 $\hookrightarrow \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ (as vector space) and \mathfrak{m} is an Ad(H)-invariant subspace, i.e. $Ad(H)(\mathfrak{m}) \subseteq \mathfrak{m}$.

A positive definite scalar product $\langle \cdot, \cdot \rangle$ on \mathfrak{m} is naturally reductive if

 $\langle [X, Y]_{\mathfrak{m}}, Z \rangle + \langle Y, [X, Z]_{\mathfrak{m}} \rangle = 0, \quad \forall X, Y, Z \in \mathfrak{m}.$

 \hookrightarrow On a naturally reductive homogeneous space the (canonical) connection ∇^1 with torsion $\mathcal{T}^1(X, Y, Z) = -\langle [X, Y]_{\mathfrak{m}}, Z \rangle$ is a metric connection with skew symmetric torsion.

・ロッ ・回 ・ ・ ヨ ・ ・

Remark

- $\nabla^1 T^1 = 0$, $\nabla^1 R^1 = 0$.
- $T^1 = 0$ for a symmetric space.
- ∇^1 belongs to a family of metric connections ∇^t with skew-symmetric torsion $\mathcal{T}^t(X, Y) = -\langle t[X, Y]_{\mathfrak{m}}, Z \rangle$.

Example

Lie group G with a bi-invariant metric g, i.e.

$$g(ad_XY,Z) + g(Y,ad_XZ) = 0, \quad \forall X,Y,Z \in \mathfrak{g}.$$

 $\hookrightarrow \nabla_X^{LC} Y = \frac{1}{2}[X, Y]$ and the connections $\nabla_X^{\lambda} Y = \lambda[X, Y]$ are metric and with skew-symmetric torsion

$$T^{\nabla^{\lambda}}(X,Y) = (2\lambda - 1)[X,Y].$$

Note that $R^{\nabla^{\lambda}}(X, Y)Z = \lambda(1 - \lambda)[Z, [X, Y]] \hookrightarrow$ ∇^{λ} is flat for $\lambda = 0, 1$ (± connection) [Cartan, Schouten, 1926]. (M^n, g, ∇, T) with T a 3-form

$$\hookrightarrow$$
 $g(\nabla_X Y, Z) = g(\nabla^{LC}_X Y, Z) + \frac{1}{2}T(X, Y, Z).$

As a consequence

 $dT(X, Y, Z, V) = \sigma_{X,Y,Z}(\nabla_X T)(Y, Z, V)$ $-(\nabla_V T)(X, Y, Z) + 2\sigma^T(X, Y, Z, V),$

where $\sigma^T(X, Y, Z, V) = \frac{1}{2} \sum_{i=1}^n (i_{e_i} T) \wedge (i_{e_i} T)(X, Y, Z, V).$

$$R^{LC}(X, Y, Z, V) = R^{\nabla}(X, Y, Z, V) - \frac{1}{2}(\nabla_X T)(Y, Z, V) \\ \frac{1}{2}(\nabla_Y T)(X, Z, V) - \frac{1}{4}g(T(X, Y), T(Z, V)) \\ -\frac{1}{4}\sigma^T(X, Y, Z, V).$$

As a consequence

$$\operatorname{Ric}^{g}(X,Y) = \operatorname{Ric}^{\nabla}(X,Y) + \frac{1}{2}\delta_{g}T(X,Y) - \frac{1}{4}\sum_{i=1}^{n}g(T(e_{i},X),T(Y,e_{i})),$$

where $\delta_g(T)$ is the co-differential of T with respect to g.

Remark

In particular, the skew-symmetric part of $\operatorname{Ric}^{\nabla}$ is given by

$$\operatorname{\mathsf{Ric}}^
abla(X,Y) - \operatorname{\mathsf{Ric}}^
abla(Y,X) = -\delta_g T(X,Y).$$

Theorem (Cartan, Schouten, 1926; Agricola, Friedrich, 2010)

Let (M, g) be Riemannian manifold admitting a flat metric connection ∇ with torsion $T \in \Omega^3(M)$. Then

 $3dT = 2\sigma_T, \quad \nabla^{1/3}T = 0, \quad \nabla^{1/3}\sigma_T = 0,$

where $\nabla^{1/3}$ is the metric connection with torsion $\frac{1}{3}T$. Moreover, ||T|| and Scal^{∇} are both constant and the sectional curvature satisfy $K(X, Y) \ge 0$, for every X, Y.

Corollary

If (M, g) is a simply connected, complete and irreducible Riemannian manifold admitting a flat metric connection ∇ with totally skew-symmetric torsion $T \neq 0 \hookrightarrow M$ is a compact irreducible symmetric space and g is Einstein with $Scal^g = \frac{3}{2} ||T||^2$.

イロト イヨト イヨト イヨト

臣

Since σ^T is $\nabla^{\frac{1}{3}}$ -parallel there are two cases:

• $\sigma_T \equiv 0 \hookrightarrow (M,g)$ is isometric to a simple compact Lie group;

• $\sigma_T \neq 0$ (i.e. $dT \neq 0$) $\hookrightarrow (M, g)$ is isometric to S^7 [Cartan, Schouten, 1926].

Remark

• The proof by Agricola and Friedrich uses

 $\operatorname{Lie}\{i_X T \mid X \in T_p M\} \subset \mathfrak{so}(T_p M), \quad \forall p \in M.$

• A different proof has been given by D'Atri, Nickerson and Wolf using the classification of irreducible compact symmetric spaces with vanishing Euler characteristic.

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem

What we can say about Riemannian manifolds (M, g) admitting a metric connection ∇ with skew-symmetric torsion T satisfying

dT = 0 and $Ric^{\nabla} = 0$?

In general, given (M, g, T) with T a 3-form we can define a "Bismut connection" ∇^B given by

$$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2}T(X, Y, Z).$$

If dT = 0, the pair (g, T) is called a generalized metric, since it is associated to generalized metrics on exact Courant algebroids.

イロト イヨト イヨト イヨト

Remark

In general $\operatorname{Ric}^B := \operatorname{Ric}(\nabla^B)$ is not symmetric.

Proposition

If dT = 0, then

$$\operatorname{Ric}^B = \operatorname{Ric}^g - rac{1}{4}T_g^2 - rac{1}{2}\delta_g T, \quad \operatorname{Scal}^B = \operatorname{Scal}^g - rac{1}{4}|T|^2,$$

where T_g^2 is the non-negative definite symmetric 2-tensor given by $T_g^2(X, Y) := g(i_X T, i_Y T).$

As a consequence

- the symmetric part of Ric^B is $\operatorname{Ric}^g \frac{1}{4}T_g^2$;
- the skew-symmetric part of Ric^{B} is $-\frac{1}{2}\delta_{g}T$.

 $\operatorname{Ric}^{B} = 0$ if and only if $\delta_{g}T = 0$ (T is harmonic) and $\operatorname{Ric}^{g} = \frac{1}{4}T^{2}$.

Definition

The generalized metric (g, T) such that $\operatorname{Ric}^{B} = 0$ is called Bismut Ricci flat (BRF).

Remark

BRF metrics are also called generalized Einstein and they are the fixed points of the generalized Ricci flow

$$\begin{cases} \partial_t g(t) = -2\operatorname{Ric}^{g(t)} + \frac{1}{2}(T(t))_{g(t)}^2, \\ \partial_t T(t) = -d\delta_{g(t)}T(t). \end{cases}$$

Theorem (Agricola, Friedrich; Garcia-Fernandez, Streets)

The only compact simply connected Riemannian manifolds admitting a flat ∇^B with closed torsion are compact semisimple Lie groups (G, g_b, T_b) , where g_b is a bi-invariant metric and $T_b := g_b([\cdot, \cdot], \cdot)$ (the Cartan 3-form).

Question (Generalized Alekseevsky-Kimefield)

M homogeneous Riemannian manifold with an invariant generalized metric (g, T). If $\text{Ric}(\nabla^{B}) = 0$, is ∇^{B} flat?

The answer is no!

Example (Podestá, Raffero, 2022)

There exists a family of compact homogeneous spaces $M_{p,q} = SU(2) \times SU(2)/K_{p,q}$, $p \ge q$, gcd(p,q) = 1, where

 $\mathcal{K}_{p,q} = \{ \operatorname{diag}(z^p, z^{-p}), \operatorname{diag}(z^q, z^{-q}) \in SU(2) \times SU(2) \} \cong S^1.$

admitting an invariant non-flat BRF (g, T).

Remark

- The metric g on $M_{p,q}$ is not Einstein and $\nabla^B T \neq 0$.
- $M_{p,q}$ are principal bundles over $SU(2)/T^2 \cong S^2 \times S^2$ and they are diffeomorphic to $S^3 \times S^2$.

• There exist infinitely many compact homogeneous spaces admitting an invariant non-flat BRF. They are given by $G \times G/K_{diag}$ where G is a compact semisimple Lie group and (G, K) is a symmetric pair of inner type.

• No examples are known in dimension 6 and 7.

Examples (Lauret, Will, 2022)

M = G/K with G a product of two compact simple Lie groups satisfying $b_3(M) > 0$ and some technical hypothesis. The lowest dimensional example is $M^{10} = \frac{SU(2) \times SU(3)}{S^1}$.

イロト イヨト イヨト イヨト

In case of an *H*-structure?

M oriented manifold of dimension n $\mathcal{F}(M)$ frame bundle

Remark

If the structure group of $\mathcal{F}(M)$ has a reduction to a closed subgroup $H \subset SO(n) \hookrightarrow$ an *H*-structure $\mathcal{R} \subset \mathcal{F}(M)$.

The existence of an *H*-connection ∇ with totally skew-symmetric torsion can be characterized in terms of the intrinsic torsion

 $\xi_X Y = \nabla_X^{LC} Y - \nabla_X Y$

which measures the defect for ∇^{LC} to be an *H*-connection [Friedrich, Ivanov, 2002].

Remark In particular, $\xi = 0 \Leftrightarrow hol(\nabla^{LC}) \subseteq H$. Anna Fino Strong C2-structures with torsion

G_2 case

 (M^7, φ) 7-manifold with a G_2 -structure Poinwise: $\varphi = e^{127} + e^{347} + e^{135} - e^{245} - e^{146} - e^{236} + e^{567}$.

Theorem (Friedrich, Ivanov, 2002)

 (M^7, φ) has a G₂-connection ∇ with totally skew-symmetric torsion if and only if $d(*\varphi) = \theta \wedge *\varphi$, where θ is a 1-form called the Lee form. Moreover, ∇ is unique.

If there exists such ∇ we will say that φ is a G_2 T-structure.

Remark

In general for a G_2 -structure φ we have

 $d\varphi = \tau_0 * \varphi + 3\tau_1 \wedge \varphi + *\tau_3, \quad d(*\varphi) = 4\tau_1 \wedge *\varphi + \tau_2 \wedge \varphi.$

So (M^7, φ) is $G_2 T$ if and only if $\tau_2 = 0$.

イロン イヨン イヨン ・

Remark

Since $g_{\varphi}(X, Y)dV_{\varphi} = \frac{1}{6}i_X\varphi \wedge i_Y\varphi \wedge \varphi \hookrightarrow \nabla g_{\varphi} = 0$, so ∇ is a metric connection with totally skew-symmetric torsion.

The 3-form $T = \frac{1}{6} * (d\varphi \wedge \varphi)\varphi - *d\varphi + *(\theta \wedge \varphi)$ is the torsion of ∇ and the Lee form is given by $\theta = -\frac{1}{3} * (*d\varphi \wedge \varphi)$.

Remark

In terms of the intrinsic torsion forms τ_i :

$$T = rac{1}{6} au_0 arphi + *(au_1 \wedge arphi) - au_3, \quad heta = 4 au_1.$$

In particular:

$$T = 0 \iff \nabla^{LC} \varphi = 0 \iff d\varphi = 0 \text{ and } d(*\varphi) = 0.$$

 $\theta = \mathbf{0} \Longleftrightarrow \varphi$ is coclosed.

< ロ > < 同 > < 回 > < 回 >

Relation with the Hull-Strominger system

 (M^7, φ) compact spin manifold, *P* principal *G*-bundle over M^7

The Hull-Strominger system is given by

$$\begin{array}{l} \left(\begin{array}{l} d\varphi \wedge \varphi = 0, \quad d(*\varphi) = -4df \wedge *\varphi, \\ F_A \wedge *\varphi = 0, \quad R_{\nabla} \wedge *\varphi = 0, \\ d*(-d\varphi - 4df \wedge \varphi) = \frac{\alpha'}{4} \left(\operatorname{tr}(F_A \wedge F_A) - \left(\operatorname{tr}(R_{\nabla} \wedge R_{\alpha}) \right), \end{array} \right) \end{array}$$

where $f \in C^{\infty}(M^7)$, ∇ and A are connections respectively on TM and P and $\alpha' > 0$ is the square of the string lenght.

Remark

• If φ is a solution, then $d(*\varphi) = \theta \wedge *\varphi$, with $\theta = -4df$ and $d\varphi \wedge \varphi = 0$, $T = -*(d\varphi + 4df \wedge \varphi)$.

• If additionally dT = 0, then $f = const \hookrightarrow T = 0 \hookrightarrow \varphi$ is parallel [Gauntlett, Martelli, Parkis, Waldram; Clarke, Garcia-Fernandez, Tipler].

Twisted G₂-equations

If we have only $d\theta = 0$, this is not anymore true!

 \hookrightarrow New system of equations (twisted G_2 -equations):

 $d\varphi \wedge \varphi = 0, \quad d(*\varphi) = \theta \wedge *\varphi, \quad d\theta = 0, \quad dT = 0.$

Definition

A G_2T -structure φ such dT = 0 will be called strong.

Remark

The twisted G_2 -equations are the G_2 -analogue of the twisted CY equations for SU(n)-structures (ω, Ψ) , introduced in relation to (0, 2)-symmetry:

 $d\Psi= heta\wedge\Psi,\quad dd^c\omega=0,\quad d heta_\omega=0,$

where $\theta_{\omega} = -J\partial\omega$ is the Lee form [Garcia-Fernandez, Rubio, Shahbazi, Tipler].

Proposition (F, Merchan, Raffero, 2023)

If N^{2n} , n = 2 or 3, has a SU(n)-structure solving the twisted CY equations, then $M^7 = N^{2n} \times \mathbb{R}^{7-2n}$ has a strong G_2T -structure solving the twisted G_2 -equations with $\theta = \theta_{\omega}$ and $T = d^c \omega$.

Using the expression of the scalar curvature in terms of τ_i

Proposition (F, Merchan, Raffero, 2023)
If
$$\varphi$$
 is a strong G_2T -structure, then
 $Scal(g_{\varphi}) = 10\delta\tau_1 + \frac{49}{24}\tau_0^2 + 24|\tau_1|^2.$

- On a unimodular Lie group, if φ is a left-invariant strong G_2T -structure, then $Scal(g_{\varphi}) \ge 0$
- \hookrightarrow A 7-dim compact solvmanifold $\Gamma \setminus G$ cannot admit any invariant non-parallel strong G_2T -structure.
- For n = 2, 3 every invariant SU(n)-structures solving the twisted CY equations on 2n-dim solvmanifolds must be CY.
- If (ω, Ψ) is a SU(3)-structure on N^6 , such that

 $\varphi = \omega \wedge \eta + \operatorname{Re}(\Psi)$

is a strong $G_2 T$ -structure on $N^6 \times S^1$ with Lee form $\theta = \lambda \eta$, then $b_3(N^6) > 0$.

(ロ) (同) (E) (E) (E) (E)

Theorem (F, Merchan, Raffero, 2023)

Let M^7 be a connected compact homogeneous space of the almost effective action of a connected Lie group.

If M^7 has an invariant strong G_2T -structure, then M^7 is (up to a covering) diffeomorphic either to $S^3 \times T^4$ or to $S^3 \times S^3 \times S^1$.

For the proof we use the classification of compact homogeneous spaces admitting an invariant G_2 -structure [Lě, Munir; Reidegeld] and we apply our general results on strong G_2T -structures.

Remark

On $S^3 \times T^4 = SU(2) \times U(1)^4$, $S^3 \times S^3 \times S^1 = SU(2)^2 \times U(1)$ we also construct strong G_2T -structures solving the twisted G_2 -equations (the associated G_2 -connection ∇ is flat!).

・ロト ・回ト ・ヨト ・ヨト

Some open problems

• Do there exist 7-manifolds admitting a strong G_2T -structure inducing a non-flat G_2 -connection ∇ ?

• If φ_0 is a strong G_2T -structure on a 7-manifold M^7 , does the Laplacian coflow

 $\partial_t \psi(t) = \Delta_{\psi(t)} \psi(t), \quad \psi(0) = \psi_0 = *\varphi_0,$

preserve the strong G_2T condition? Is there any geometric flow preserving the condition $\tau_2 = 0$?

Remark

For the two examples $S^3 \times T^4$ and $S^3 \times S^3 \times S^1$ giving solutions to the twisted G_2 -equations, the solution $\psi(t)$ exists for all positive time and defines a strong G_2T -structure.

Moreover, along the flow the 7-manifolds split as a Riemannian product $Y^3 \times X^4$, with Y^3 an associative submanifold and X^4 a coassociative submanifold.

THANK YOU VERY MUCH FOR THE ATTENTION !!

ヘロア 人間 アメヨア 人間 アー

2