Collapsed Manifolds With Local Ricci Bounded Covering Geometry

Xiaochun Rong
Abstract

Collapsed manifolds with local bounded covering geometry (i.e., sectional curvature bounded in absolute value) has been well-studied; the basic discovery by Cheeger-Fukaya-Gromov is the existence of a compatible local nilpotent symmetry structures whose orbits point to collapsed directions.

In this talk, we generalize the structural result to collapsed manifolds with local Ricci bounded covering geometry. Our construction of local nilpotent symmetry structures does not reply on the work of Cheeger-Fukaya-Gromov; which also gives an alternative approach to the structural results.
Abstract

Collapsed manifolds with local bounded covering geometry (i.e., sectional curvature bounded in absolute value) has been well-studied;
Abstract

Collapsed manifolds with local bounded covering geometry (i.e., sectional curvature bounded in absolute value) has been well-studied; the basic discovery by Cheeger-Fukaya-Gromov is the existence of a compatible local nilpotent symmetry structures.
Abstract

Collapsed manifolds with local bounded covering geometry (i.e., sectional curvature bounded in absolute value) has been well-studied; the basic discovery by Cheeger-Fukaya-Gromov is the existence of a compatible local nilpotent symmetry structures whose orbits point to collapsed directions.
Abstract

Collapsed manifolds with local bounded covering geometry (i.e., sectional curvature bounded in absolute value) has been well-studied; the basic discovery by Cheeger-Fukaya-Gromov is the existence of a compatible local nilpotent symmetry structures whose orbits point to collapsed directions.

In this talk, we generalize the structural result to collapsed manifolds with local Ricci bounded covering geometry.
Abstract

Collapsed manifolds with local bounded covering geometry (i.e., sectional curvature bounded in absolute value) has been well-studied; the basic discovery by Cheeger-Fukaya-Gromov is the existence of a compatible local nilpotent symmetry structures whose orbits point to collapsed directions.

In this talk, we generalize the structural result to collapsed manifolds with local Ricci bounded covering geometry. Our construction of local nilpotent symmetry structures does not reply on the work of Cheeger-Fukaya-Gromov;
Abstract

Collapsed manifolds with local bounded covering geometry (i.e., sectional curvature bounded in absolute value) has been well-studied; the basic discovery by Cheeger-Fukaya-Gromov is the existence of a compatible local nilpotent symmetry structures whose orbits point to collapsed directions.

In this talk, we generalize the structural result to collapsed manifolds with local Ricci bounded covering geometry. Our construction of local nilpotent symmetry structures does not reply on the work of Cheeger-Fukaya-Gromov; which also gives an alternative approach to the structural results.
Motivation and Questions

• A sequence Calabi-Yau or G_2-manifolds, $M_n \to X$, $\text{vol}(M_n) \to 0$.

• Conjecture?: \exists manifold, $X_0 \subseteq X$ (of large measure), and $U_i \subseteq M_i$ s.t \exists a torus/nilpotent fibration, $f_i: U_i \to X_0$.

• Questions: How to identify X_0? Why torus/nilpotent fibration?
Motivation and Questions

• A sequence Calabi-Yau or G_2-manifolds,

$$M_i^n \xrightarrow{GH} X,$$

• Conjecture?

$$\exists \text{manifold, } X_0 \subseteq X \text{(of large measure), and}$$

$$U_i \subseteq M_i \text{s.t } \exists \text{a torus/nilpotent fibration, } f_i: U_i \to X_0.$$

• Questions:

How to identify X_0?

Why torus/nilpotent fibration?
Motivation and Questions

• A sequence Calabi-Yau or G_2-manifolds,

$$M_i^n \xrightarrow{GH} X, \quad \text{vol}(M_i) \to 0.$$
Motivation and Questions

• A sequence Calabi-Yau or G_2-manifolds,

$$M^n_i \xrightarrow{GH} X, \quad \text{vol}(M_i) \to 0.$$

• Conjecture?:

• Questions:

 How to identify X_0?

 Why torus/nilpotent fiberation?
Motivation and Questions

• A sequence Calabi-Yau or G_2-manifolds,

$$M_i^n \xrightarrow{GH} X, \quad \text{vol}(M_i) \to 0.$$

• Conjecture?: \exists manifold, $X_0 \subseteq X$ (of large measure), and $U_i \subseteq M_i$ s.t
Motivation and Questions

• A sequence Calabi-Yau or G_2-manifolds,

\[M_i^n \xrightarrow{GH} X, \quad \text{vol}(M_i) \to 0. \]

• Conjecture?: \(\exists \) manifold, \(X_0 \subseteq X \) (of large measure), and \(U_i \subseteq M_i \) s.t. \(\exists \) a torus/nilpotent fibration,

\[f_i : U_i \to X_0. \]
Motivation and Questions

• A sequence Calabi-Yau or G_2-manifolds,

$$M_i^n \xrightarrow{GH} X, \quad \text{vol}(M_i) \to 0.$$

• Conjecture?: \exists manifold, $X_0 \subseteq X$ (of large measure), and $U_i \subseteq M_i$ s.t \exists a torus/nilpotent fibration,

$$f_i : U_i \to X_0.$$

• Questions:

How to identify X_0?
Motivation and Questions

- A sequence Calabi-Yau or G_2-manifolds,

$$M_i^n \xrightarrow{GH} X, \quad \text{vol}(M_i) \to 0.$$

- Conjecture?: \exists manifold, $X_0 \subseteq X$ (of large measure), and $U_i \subseteq M_i$ s.t \exists a torus/nilpotent fibration,

$$f_i : U_i \to X_0.$$

- Questions:

 How to identify X_0? Why torus/nilpotent fibration?
Collapsible with Bounded Sectional Curvature

- M is ϵ-collapsed $\iff \forall x \in M, \text{vol}(B_1(x)) < \epsilon$, a bound on 'curvature'.

- (Scaling) All compact flat manifolds can collapse to a point.

- (Berger, 80's) Let $S_1 \to S_3 \to S_2$ be the Hopf fibration. \Rightarrow one parameter family of metrics, $g = \epsilon^2 ds^2 + (ds^2)_{\perp}$, satisfies $\epsilon^2 \leq \sec g \leq 4 - 3\epsilon^2$, $\text{vol}(S_3, g) \to 0$, $d_{GH}(S_3, g, S_2) \to 0$.

- (Gromov) (Inhomogeneous scaling) A nilpotent manifold, N/Γ, with $N, N_1, \cdots, N_k, e, N_i + 1 = [N, N_i]$. Construct an inhomogeneous scaling g, by $\epsilon, \epsilon^2, \cdots, \epsilon^k$, $|\sec g| \leq 1$, $\text{diam}(g) \to 0$.

Duke University Workshop on The Structure of Collapsed Special Holonomy Space, April 11, 2018
Collapsed with Bounded Sectional Curvature

• M is ϵ-collapsed \iff

\[\forall x \in M, \ vol(B_1(x)) < \epsilon,\]

a bound on 'curvature'.

• (Scaling) All compact flat manifolds can collapse to a point.

• (Berger, 80's) Let $S^1 \to S^3 \to S^2$ be the Hopf fibration.

\Rightarrow one parameter family of metrics, $g_{\epsilon} = \epsilon^2 ds^2 + (ds^2)_\perp$, satisfies

\[\epsilon^2 \leq \sec g_{\epsilon} \leq 4 - 3\epsilon^2,\]

\[\text{vol}(S^3, g_{\epsilon}) \to 0,\]

\[d_{GH}(S^3, g_{\epsilon}, S^2) \to 0.\]

• (Gromov) (Inhomogeneous scaling) A nilpotent manifold, N/Γ, with $N_1 \cdot \ldots \cdot N_k$, $N_i + 1 = [N_i, N_i]$. Construct an inhomogeneous scaling g_{ϵ}, by $\epsilon, \epsilon^2, \ldots, \epsilon^k$, $|\sec g_{\epsilon}| \leq 1$, $\text{diam}(g_{\epsilon}) \to 0$.

Duke University Workshop on The Structure of Collapsed Special Holonomy Space, April 11, 2018
Collapsed with Bounded Sectional Curvature

• M is ε-collapsed $\iff \forall x \in M,$
 \[
 \text{vol}(B_1(x)) < \varepsilon,
 \]
Collapsed with Bounded Sectional Curvature

- \(M \) is \(\epsilon \)-collapsed \iff \(\forall x \in M \),
 \[\text{vol}(B_1(x)) < \epsilon, \] a bound on ‘curvature’.
Collapsed with Bounded Sectional Curvature

- M is ϵ-collapsed \iff $\forall x \in M$, $\text{vol}(B_1(x)) < \epsilon$, a bound on ‘curvature’.

- (Scaling) All compact flat manifolds can collapse to a point.
Collapsed with Bounded Sectional Curvature

- \(M \) is \(\varepsilon \)-collapsed \(\iff \forall x \in M, \)
 \[\text{vol}(B_1(x)) < \varepsilon, \] a bound on ‘curvature’.

- (Scaling) All compact flat manifolds can collapse to a point.

- (Berger, 80’s) Let \(S^1 \rightarrow S^3 \rightarrow S^2_1/2 \) be the Hopf fibration.
Collapsed with Bounded Sectional Curvature

- M is ϵ-collapsed \iff $\forall x \in M$, $\text{vol}(B_1(x)) < \epsilon$, a bound on ‘curvature’.

- (Scaling) All compact flat manifolds can collapse to a point.

- (Berger, 80’s) Let $S^1 \to S^3 \to S^2_{1/2}$ be the Hopf fibration. \Rightarrow one parameter family of metrics,
Collapsed with Bounded Sectional Curvature

• M is ϵ-collapsed $\iff \forall x \in M$,
 \[\text{vol}(B_1(x)) < \epsilon, \]
a bound on ‘curvature’.

• (Scaling) All compact flat manifolds can collapse to a point.

• (Berger, 80’s) Let $S^1 \to S^3 \to S^2_{1/2}$ be the Hopf fibration. \Rightarrow
 one parameter family of metrics, $g_{\epsilon} = \epsilon^2 ds^2 + (ds^2)^\perp$, satisfies

• (Gromov) (Inhomogeneous scaling)
 A nilpotent manifold, N/Γ, with $N. N. N. \cdots. N_k. e, N_i + 1 = [N_i, N_i]$.
 Construct an inhomogeneous scaling g_{ϵ}, by $\epsilon, \epsilon^2, \ldots, \epsilon_k$, $|\text{sec} g_{\epsilon}| \leq 1$
 \Rightarrow diam $(g_{\epsilon}) \to 0$.

Duke University Workshop on The Structure of Collapsed Special Holonomy Space, April 11, 2018
Collapsed with Bounded Sectional Curvature

- M is ϵ-collapsed \iff $\forall \ x \in M$, $\text{vol}(B_1(x)) < \epsilon$, a bound on ‘curvature’.

- (Scaling) All compact flat manifolds can collapse to a point.

- (Berger, 80’s) Let $S^1 \to S^3 \to S^2_{1/2}$ be the Hopf fibration. \implies one parameter family of metrics, $g_\epsilon = \epsilon^2 ds^2 + (ds^2)^\perp$, satisfies $\epsilon^2 \leq \sec_{g_\epsilon} \leq 4 - 3\epsilon^2$.
Collapsed with Bounded Sectional Curvature

- \(M \) is \(\epsilon \)-collapsed \(\iff \forall x \in M, \)
 \[\text{vol}(B_1(x)) < \epsilon, \quad \text{a bound on ‘curvature’}. \]

- (Scaling) All compact flat manifolds can collapse to a point.

- (Berger, 80’s) Let \(S^1 \to S^3 \to S^{1/2} \) be the Hopf fibration. \(\implies \)
 one parameter family of metrics, \(g_\epsilon = \epsilon^2 ds^2 + (ds^2)_{\perp}, \)
 satisfies \(\epsilon^2 \leq \sec_{g_\epsilon} \leq 4 - 3\epsilon^2, \)
 \(\text{vol}(S^3, g_\epsilon) \to 0, \)
Collapsed with Bounded Sectional Curvature

- M is ϵ-collapsed $\iff \forall x \in M$,
 \[\text{vol}(B_1(x)) < \epsilon, \quad \text{a bound on 'curvature'} \]

- (Scaling) All compact flat manifolds can collapse to a point.

- (Berger, 80's) Let $S^1 \to S^3 \to S^2_{1/2}$ be the Hopf fibration. \implies one parameter family of metrics, $g_\epsilon = \epsilon^2 ds^2 + (ds^2)^\perp$, satisfies
 \[\epsilon^2 \leq \text{sec}_{g_\epsilon} \leq 4 - 3\epsilon^2, \quad \text{vol}(S^3, g_\epsilon) \to 0, \quad d_{GH}((S^3, g_\epsilon), S^2_{1/2}) \to 0. \]
Collapsed with Bounded Sectional Curvature

- M is ε-collapsed $\iff \forall x \in M$,
 \[\text{vol}(B_1(x)) < \varepsilon, \]
 a bound on ‘curvature’.

- (Scaling) All compact flat manifolds can collapse to a point.

- (Berger, 80’s) Let $S^1 \to S^3 \to S^2_{1/2}$ be the Hopf fibration. \Rightarrow one parameter family of metrics, $g_\varepsilon = \varepsilon^2 ds^2 + (ds^2)_{\perp}$, satisfies \(\varepsilon^2 \leq \text{sec}_{g_\varepsilon} \leq 4 - 3\varepsilon^2 \), \(\text{vol}(S^3, g_\varepsilon) \to 0 \), \(d_{GH}((S^3, g_\varepsilon), S^2_{1/2}) \to 0 \).

- (Gromov) (Inhomogeneous scaling)
Collapsed with Bounded Sectional Curvature

• M is ϵ-collapsed \iff $\forall x \in M$, $\text{vol}(B_1(x)) < \epsilon$, a bound on ‘curvature’.

• (Scaling) All compact flat manifolds can collapse to a point.

• (Berger, 80’s) Let $S^1 \rightarrow S^3 \rightarrow S^2_{1/2}$ be the Hopf fibration. \Rightarrow one parameter family of metrics, $g_\epsilon = \epsilon^2 ds^2 + (ds^2)^\perp$, satisfies $\epsilon^2 \leq \text{sec}_{g_\epsilon} \leq 4 - 3\epsilon^2$, $\text{vol}(S^3, g_\epsilon) \rightarrow 0$, $d_{GH}((S^3, g_\epsilon), S^2_{1/2}) \rightarrow 0$.

• (Gromov) (Inhomogeneous scaling) A nilpotent manifold, N/Γ, with

$$N \triangleright N_1 \triangleright \cdots \triangleright N_k \triangleright e, \quad N_{i+1} = [N, N_i].$$
Collapsed with Bounded Sectional Curvature

- M is ϵ-collapsed $\iff \forall x \in M$, $\text{vol}(B_1(x)) < \epsilon$, a bound on 'curvature'.

- (Scaling) All compact flat manifolds can collapse to a point.

- (Berger, 80's) Let $S^1 \to S^3 \to S^2_{1/2}$ be the Hopf fibration. \implies one parameter family of metrics, $g_\epsilon = \epsilon^2 ds^2 + (ds^2)\perp$, satisfies $\epsilon^2 \leq \sec_{g_\epsilon} \leq 4-3\epsilon^2$, $\text{vol}(S^3, g_\epsilon) \to 0$, $d_{GH}((S^3, g_\epsilon), S^2_{1/2}) \to 0$.

- (Gromov) (Inhomogeneous scaling) A nilpotent manifold, N/Γ, with

 $N \succ N_1 \succ \cdots \succ N_k \succ e$, $N_{i+1} = [N, N_i]$.

 Construct an inhomogeneous scaling g_ϵ, by $\epsilon, \epsilon^2, \ldots, \epsilon^k$,

 $|\sec_{g_\epsilon}| \leq 1$, $\text{diam}(g_\epsilon) \to 0$.
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies } |\text{sec } M| \leq 1, \text{ diam}(M) < \epsilon(n), \Rightarrow M \text{ is diffeo. to an infra-nilmanifold } N/\Gamma, \Gamma < N \rtimes \text{Aut}(N), [\Gamma, \Gamma] \cap N \leq c(n). \]

• (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let \(M_i \) GH \(\to Y \) s.t. \(|\text{sec } M_i| \leq 1 \) and \(\text{diam}(M_i) \leq d \).

1) If \(X \) is a Riem., \(\exists \) a fibration, \(f_i: M_i \to X \), s.t. \(f_i \) is \(\epsilon_i \)-GHA, \(f_i \)-fiber is infra-nilmanifold.

2) If \(X \) is not Riem., \(\exists \) a singular fibration, \(f_i: M_i \to X \), s.t. \(f_i \) is \(\epsilon_i \)-GHA, \(f_i \)-fiber is infra-nilmanifold.

\[\text{Be} - c(n) r(f_i(x_i)) \subseteq f_i(Br(x_i)) \subseteq \text{Be} c(n) r(f_i(x_i)). \]
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t.} \]
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies} \]

\[|\text{sec} M| \leq 1, \text{diam}(M) < \epsilon(n), \Rightarrow M \text{ is diffeo. to an infra-nilmanifold } N/\Gamma, \Gamma < N \rtimes \text{Aut}(N), [\Gamma, \Gamma] \leq c(n). \]
Nilpotent Fibrations on Collapsed Manifolds

- (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies} \]
\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]

\[\text{(Fukaya, Cheeger-Fukaya-Gromov, 86, 91).} \]
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

∃ \epsilon(n), c(n) > 0 \ s.t. \ if \ a \ compact \ n\text{-manifold} \ M \ satisfies

|\text{sec}_M| \leq 1, \ diam(M) < \epsilon(n),

\Rightarrow \ M \ is \ diffeo. \ to \ an \ infra-nilmanifold
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies} \]
\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]

\[\Rightarrow M \text{ is diffeo. to an infra-nilmanifold i.e., } N/\Gamma, \]
\[\Gamma < N \rtimes \text{Aut}(N), [\Gamma, \Gamma \cap N] \leq c(n). \]
Nilpotent Fibrations on Collapsed Manifolds

- (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies} \]
\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]
\[\Rightarrow M \text{ is diffeo. to an infra-nilmanifold i.e., } N/\Gamma, \]
\[\Gamma < N \rtimes \text{Aut}(N), [\Gamma, \Gamma \cap N] \leq c(n). \]

- (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let \(M_i \xrightarrow{GH} Y \) s.t. \(|\text{sec}_{M_i}| \leq 1 \) and \(\text{diam}(M_i) \leq d \).
Nilpotent Fibrations on Collapsed Manifolds

- (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies } \]
\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]

\[\Rightarrow M \text{ is diffeo. to an infra-nilmanifold i.e., } N/\Gamma, \]
\[\Gamma < N \rtimes \text{Aut}(N), [\Gamma, \Gamma \cap N] \leq c(n). \]

- (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let \(M_i \xrightarrow{GH} Y \) s.t. \(|\text{sec}_{M_i}| \leq 1 \) and \(\text{diam}(M_i) \leq d \).

(1) If \(X \) is a Riem.,
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies} \]
\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]
\[\Rightarrow M \text{ is diffeo. to an infra-nilmanifold i.e., } N/\Gamma, \]
\[\Gamma < N \ltimes \text{Aut}(N), [\Gamma, \Gamma \cap N] \leq c(n). \]

• (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let \(M_i \stackrel{GH}{\to} Y \) s.t. \(|\text{sec}_{M_i}| \leq 1 \) and \(\text{diam}(M_i) \leq d. \)

(1) If \(X \) is a Riem., \(\Rightarrow \exists \) a fibration, \(f_i : M_i \to X, \) s.t.

...
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies } \]
\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]
\[\Rightarrow M \text{ is diffeo. to an infra-nilmanifold i.e., } N/\Gamma, \]
\[\Gamma < N \rtimes \text{Aut}(N), \quad [\Gamma, \Gamma \cap N] \leq c(n). \]

• (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let \(M_i \overset{GH}{\to} Y \) s.t. \(|\text{sec}_{M_i}| \leq 1 \) and \(\text{diam}(M_i) \leq d \).

(1) If \(X \) is a Riem., \(\Rightarrow \exists \) a fibration, \(f_i : M_i \to X \), s.t.

\[f_i \text{ is } \epsilon_i\text{-GHA}, \]
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies } \]
\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]

\[\Rightarrow M \text{ is diffeo. to an infra-nilmanifold i.e., } N/\Gamma, \]
\[\Gamma < N \rtimes \text{Aut}(N), \quad [\Gamma, \Gamma \cap N] \leq c(n). \]

• (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let \(M_i \overset{GH}{\to} Y \) s.t. \(|\text{sec}_{M_i}| \leq 1 \) and \(\text{diam}(M_i) \leq d \).

(1) If \(X \) is a Riem., \(\Rightarrow \exists \) a fibration, \(f_i : M_i \to X \), s.t.

. \(f_i \) is \(\epsilon_i \)-GHA,

. \(f_i \)-fiber is infra-nilmanifold,
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

∃ ε(n), c(n) > 0 s.t. if a compact n-manifold M satisfies

|sec_M| ≤ 1, diam(M) < ε(n),

⇒ M is diffeo. to an infra-nilmanifold i.e., N/Γ, Γ < N ⋊ Aut(N), [Γ, Γ ∩ N] ≤ c(n).

• (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let $M_i \xrightarrow{GH} Y$ s.t. $|sec_{M_i}| \leq 1$ and $diam(M_i) \leq d$.

(1) If X is a Riem., ⇒ ∃ a fibration, $f_i : M_i \rightarrow X$, s.t.

. f_i is ϵ_i-GHA,
. f_i-fiber is infra-nilmanifold, $|ll_{f_i}| \leq c(n)$.
Nilpotent Fibrations on Collapsed Manifolds

- (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies } \]

\[| \text{sec}_M | \leq 1, \quad \text{diam}(M) < \epsilon(n), \]

\[\Rightarrow M \text{ is diffeo. to an infra-nilmanifold i.e., } N/\Gamma, \]

\[\Gamma < N \rtimes \text{Aut}(N), [\Gamma, \Gamma \cap N] \leq c(n). \]

- (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let \(M_i \overset{GH}{\to} Y \) s.t. \(| \text{sec}_{M_i} | \leq 1 \) and \(\text{diam}(M_i) \leq d. \)

1. If \(X \) is a Riem., \[\Rightarrow \exists \text{ a fibration, } f_i : M_i \to X, \text{ s.t. } \]

\[f_i \text{ is } \epsilon_i\text{-GHA, } f_i\text{-fiber is infra-nilmanifold, } |L_{f_i}| \leq c(n). \]

2. If \(X \) is not Riem.,
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

∃ε(n), c(n) > 0 s.t. if a compact n-manifold M satisfies

\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]

⇒ M is diffeo. to an infra-nilmanifold i.e., N/Γ, Γ < N ⋉ Aut(N), [Γ, Γ \cap N] ≤ c(n).

• (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let \(M_i \xrightarrow{GH} Y \) s.t. \(|\text{sec}_{M_i}| \leq 1 \) and \(\text{diam}(M_i) \leq d \).

(1) If \(X \) is a Riem., ⇒ ∃ a fibration, \(f_i : M_i \rightarrow X \), s.t.

\[f_i \text{ is } \epsilon_i\text{-GHA}, \quad f_i\text{-fiber is infra-nilmanifold,} \quad |\text{ll}_f| \leq c(n). \]

(2) If \(X \) is not Riem., ⇒ ∃ a singular fibration, \(f_i : M_i \rightarrow X \), s.t.

\[f_i \text{ is } \epsilon_i\text{-GHA}, \]
Nilpotent Fibrations on Collapsed Manifolds

• (Gromov, 78), also (Ruh, 82)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies} \]

\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]

\[\Rightarrow M \text{ is diffeo. to an infra-nilmanifold i.e., } N/\Gamma, \]

\[\Gamma < N \rtimes \text{Aut}(N), [\Gamma, \Gamma \cap N] \leq c(n). \]

• (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let \(M_i \xrightarrow{GH} Y \) s.t. \(|\text{sec}_{M_i}| \leq 1 \) and \(\text{diam}(M_i) \leq d. \)

1. If \(X \) is a Riem., \(\Rightarrow \exists \) a fibration, \(f_i : M_i \to X \), s.t.

\[f_i \text{ is } \epsilon_i\text{-GHA, } f_i\text{-fiber is infra-nilmanifold, } |\text{II}_{f_i}| \leq c(n). \]

2. If \(X \) is not Riem., \(\Rightarrow \exists \) a singular fibration, \(f_i : M_i \to X \), s.t.

\[f_i \text{ is } \epsilon_i\text{-GHA, } f_i\text{-fiber is infra-nilmanifold,} \]
Nilpotent Fibrations on Collapsed Manifolds

- (Gromov, 78), also (Ruh, 82)

∃ ϵ(n), c(n) > 0 s.t. if a compact n-manifold M satisfies

|sec_M| ≤ 1, diam(M) < ϵ(n),

⇒ M is diffeo. to an infra-nilmanifold i.e., N/Γ,

Γ < N ⋊ Aut(N), [Γ, Γ ∩ N] ≤ c(n).

- (Fukaya, Cheeger-Fukaya-Gromov, 86, 91).

Let M_i \xrightarrow{GH} Y s.t. |sec_{M_i}| ≤ 1 and diam(M_i) ≤ d.

(1) If X is a Riem., ⇒ ∃ a fibration, f_i : M_i → X, s.t.

f_i is ϵ_i-GHA, f_i-fiber is infra-nilmanifold, |II_{f_i}| ≤ c(n).

(2) If X is not Riem., ⇒ ∃ a singular fibration, f_i : M_i → X, s.t.

f_i is ϵ_i-GHA, f_i-fiber is infra-nilmanifold,

\[B_{e^{-c(n)}r}(f_i(x_i)) \subseteq f_i(B_r(x_i)) \subseteq B_{e^{c(n)}r}(f_i(x_i)). \]
Collapsed with Weak Curvature Conditions?

• (Yamaguchi, 92) If \(M_i \xrightarrow{GH} N \) s.t. \(\sec M_i \geq -1 \) and \(\text{diam}(M_i) \leq d \), \(\exists \) fibration maps, \(f_i : M_i \to N \), s.t. \(f_i \) is \(\epsilon_i \)-GHA, \(f_i \)-fiber is almost non-negatively curved.

• (Anderson, 90) \((M_n, g_i) \xrightarrow{GH} T_{n-1} \) s.t. \(|\text{Ric} g_i| \leq \delta \) (no fibration!)

• (Dai-Wei-Ye (96), Petersen-Wei-Ye (99), Naber-Zhang (16), Huang-Kong-Rong-Xu (18)) A collapsed manifold with bounded Ricci curvature + 'various' conditions, \(\Rightarrow \) either \(M \) satisfies \(|\sec M| \leq 1 \), or \(\exists \) a nearby metric \(g \epsilon \) with \(|\sec g \epsilon| \leq 1 \).

• Soothing methods: local covering (Abrusch) or (Ricci flows), apply the structural results of Cheeger-Fukaya-Gromov.
Collapsed with Weak Curvature Conditions?

• (Yamaguchi, 92)

If \(M_i \xrightarrow{GH} N \) s.t. \(\text{sec}_{M_i} \geq -1 \) and \(\text{diam}(M_i) \leq d \),

• (Anderson, 90)

\((M_n, g_i) \xrightarrow{GH} T_{n-1} \) s.t. \(|\text{Ric}_{g_i}| \leq \delta \) (no fibration!)

• (Dai-Wei-Ye (96), Petersen-Wei-Ye (99), Naber-Zhang (16), Huang-Kong-Rong-Xu (18))

A collapsed manifold \(M \) with bounded Ricci curvature + 'various' conditions, \(\Rightarrow \) either \(M \) satisfies \(|\text{sec}_M| \leq 1 \), or \(\exists \) a nearby metric \(g \epsilon \) with \(|\text{sec}_g| \leq 1 \).

• Soothing methods: local covering (Abrusch) or (Ricci flows), apply the structural results of Cheeger-Fukaya-Gromov.
Collapsed with Weak Curvature Conditions?

• (Yamaguchi, 92)

If $M_i \xrightarrow{GH} N$ s.t. $\sec_{M_i} \geq -1$ and $\text{diam}(M_i) \leq d$, $\Rightarrow \exists$ fibration maps, $f_i: M_i \to N$, s.t.

• (Anderson, 90) $(M_n, g_i) \xrightarrow{GH} T^{n-1}$ s.t. $|\text{Ric}_{g_i}| \leq \delta$ (no fibration!)

• (Dai-Wei-Ye (96), Petersen-Wei-Ye (99), Naber-Zhang (16), Huang-Kong-Rong-Xu (18)) A collapsed manifold M with bounded Ricci curvature curvature $+\text{'various'}$ conditions, \Rightarrow either M satisfies $|\sec_M| \leq 1$, or \exists a nearby metric g_ϵ with $|\sec_{g_\epsilon}| \leq 1$.

• Soothing methods: local covering (Abrusch) or (Ricci flows), apply the structural results of Cheeger-Fukaya-Gromov.
Collapsed with Weak Curvature Conditions?

- (Yamaguchi, 92)

If $M_i \xrightarrow{GH} N$ s.t. $\text{sec}_{M_i} \geq -1$ and $\text{diam}(M_i) \leq d$, $\Rightarrow \exists$ fibration maps, $f_i : M_i \rightarrow N$, s.t.

f_i is ϵ_i-GHA,
Collapsed with Weak Curvature Conditions?

• (Yamaguchi, 92)

If \(M_i \xrightarrow{GH} N \) s.t. \(\sec_{M_i} \geq -1 \) and \(\text{diam}(M_i) \leq d \), \(\Rightarrow \exists \) fibration maps, \(f_i : M_i \rightarrow N \), s.t.

\(f_i \) is \(\epsilon_i \)-GHA, \(f_i \)-fiber is almost non-negatively curved,
Collapsed with Weak Curvature Conditions?

- (Yamaguchi, 92)

If $M_i \overset{GH}{\to} N$ s.t. $\sec_{M_i} \geq -1$ and $\text{diam}(M_i) \leq d$, $\Rightarrow \exists$ fibration maps, $f_i : M_i \to N$, s.t.

- f_i is ϵ_i-GHA,
- f_i-fiber is almost non-negatively curved,
- f_i is ϵ_i-submetry.
Collapsed with Weak Curvature Conditions?

- (Yamaguchi, 92)

If \(M_i \xrightarrow{GH} N \) s.t. \(\sec_{M_i} \geq -1 \) and \(\text{diam}(M_i) \leq d \), \(\Rightarrow \) \(\exists \) fibration maps, \(f_i : M_i \rightarrow N \), s.t.

- \(f_i \) is \(\epsilon_i \)-GHA, \(f_i \)-fiber is almost non-negatively curved, \(f_i \) is \(\epsilon_i \)-submetry.

- (Anderson, 90) \((M^n, g_i) \xrightarrow{GH} T^{n-1} \) s.t. \(|\text{Ric}_{g_i}| \leq \delta \)
Collapsed with Weak Curvature Conditions?

- (Yamaguchi, 92)

If $M_i \xrightarrow{GH} N$ s.t. $\sec_{M_i} \geq -1$ and $\text{diam}(M_i) \leq d$, $\Rightarrow \exists$ fibration maps, $f_i : M_i \rightarrow N$, s.t.

f_i is ϵ_i-GHA, f_i-fiber is almost non-negatively curved, f_i is ϵ_i-submetry.

- (Anderson, 90) $(M^n, g_i) \xrightarrow{GH} T^{n-1}$ s.t. $|\text{Ric}_{g_i}| \leq \delta$ (no fibration!)

- Soothing methods: local covering (Abrusch) or (Ricci flows), apply the structural results of Cheeger-Fukaya-Gromov.
Collapsed with Weak Curvature Conditions?

- (Yamaguchi, 92)

If $M_i \xrightarrow{GH} N$ s.t. $\text{sec}_{M_i} \geq -1$ and $\text{diam}(M_i) \leq d$, $\Rightarrow \exists$ fibration maps, $f_i : M_i \rightarrow N$, s.t.

f_i is ϵ_i-GHA, f_i-fiber is almost non-negatively curved, f_i is ϵ_i-submetry.

- (Anderson, 90) $(M^n, g_i) \xrightarrow{GH} T^{n-1}$ s.t. $|\text{Ric}_{g_i}| \leq \delta$ (no fibration!)

- (Dai-Wei-Ye (96), Petersen-Wei-Ye (99), Naber-Zhang (16), Huang-Kong-Rong-Xu (18))
Collapsed with Weak Curvature Conditions?

- (Yamaguchi, 92)
 If $M_i \rightarrow^{GH} N$ s.t. $\text{sec}_{M_i} \geq -1$ and $\text{diam}(M_i) \leq d$, $\Rightarrow \exists$ fibration maps, $f_i : M_i \rightarrow N$, s.t.

 f_i is ϵ_i-GHA, f_i-fiber is almost non-negatively curved, f_i is ϵ_i-submetry.

- (Anderson, 90) $(M^n, g_i) \rightarrow^{GH} T^{n-1}$ s.t. $|\text{Ric}_{g_i}| \leq \delta$ (no fibration!)

- (Dai-Wei-Ye (96), Petersen-Wei-Ye (99), Naber-Zhang (16), Huang-Kong-Rong-Xu (18))

A collapsed manifold M with bounded Ricci Curvature curvature $+$ ‘various’ conditions,
Collapsed with Weak Curvature Conditions?

- (Yamaguchi, 92)

If $M_i \xrightarrow{GH} N$ s.t. $\sec_{M_i} \geq -1$ and $\text{diam}(M_i) \leq d$, $\Rightarrow \exists$ fibration maps, $f_i : M_i \rightarrow N$, s.t.

f_i is ϵ_i-GHA, f_i-fiber is almost non-negatively curved, f_i is ϵ_i-submetry.

- (Anderson, 90) $(M^n, g_i) \xrightarrow{GH} T^{n-1}$ s.t. $|\text{Ric}_{g_i}| \leq \delta$ (no fibration!)

- (Dai-Wei-Ye (96), Petersen-Wei-Ye (99), Naber-Zhang (16), Huang-Kong-Rong-Xu (18))

A collapsed manifold M with bounded Ricci Curvature curvature + ‘various’ conditions, \Rightarrow either M satisfies $|\sec_{M}| \leq 1$, or \exists a nearby metric g_{ϵ} with $|\sec_{g_{\epsilon}}| \leq 1$.

Soothing methods: local covering (Abrusch) or (Ricci flows), apply the structural results of Cheeger-Fukaya-Gromov.
Collapsed with Weak Curvature Conditions?

- (Yamaguchi, 92)

If \(M_i \overset{GH}{\to} N \) s.t. \(\sec_{M_i} \geq -1 \) and \(\text{diam}(M_i) \leq d \), ⇒ \(\exists \) fibration maps, \(f_i : M_i \to N \), s.t.

\(f_i \) is \(\epsilon_i \)-GHA, \(f_i \)-fiber is almost non-negatively curved, \(f_i \) is \(\epsilon_i \)-submetry.

- (Anderson, 90)

\((M^n, g_i) \overset{GH}{\to} T^{n-1} \) s.t. \(|\text{Ric}_{g_i}| \leq \delta \) (no fibration!)

- (Dai-Wei-Ye (96), Petersen-Wei-Ye (99), Naber-Zhang (16), Huang-Kong-Rong-Xu (18))

A collapsed manifold \(M \) with bounded Ricci Curvature curvature + ‘various’ conditions, ⇒ either \(M \) satisfies \(|\sec_M| \leq 1 \), or \(\exists \) a nearby metric \(g_\epsilon \) with \(|\sec_{g_\epsilon}| \leq 1 \).

- Soothing methods: local covering (Abrusch) or (Ricci flows),
Collapsed with Weak Curvature Conditions?

- (Yamaguchi, 92)

If \(M_i \xrightarrow{GH} N \) s.t. \(\text{sec}_{M_i} \geq -1 \) and \(\text{diam}(M_i) \leq d \), \(\Rightarrow \exists \) fibration maps, \(f_i : M_i \to N \), s.t.

\(f_i \) is \(\epsilon_i\)-GHA, \(f_i\)-fiber is almost non-negatively curved, \(f_i \) is \(\epsilon_i\)-submetry.

- (Anderson, 90) \((M^n, g_i) \xrightarrow{GH} T^{n-1} \) s.t. \(|\text{Ric}_{g_i}| \leq \delta \) (no fibration!)

- (Dai-Wei-Ye (96), Petersen-Wei-Ye (99), Naber-Zhang (16), Huang-Kong-Rong-Xu (18))

A collapsed manifold \(M \) with bounded Ricci Curvature curvature + ‘various’ conditions, \(\Rightarrow \) either \(M \) satisfies \(|\text{sec}_M| \leq 1 \), or \(\exists \) a nearby metric \(g_\epsilon \) with \(|\text{sec}_{g_\epsilon}| \leq 1 \).

- Soothing methods: local covering (Abrusch) or (Ricci flows), apply the structural results of Cheeger-Fukaya-Gromov.
Local Rewinding Volume of Balls

Local rewinding of a r-ball, $B_r(x) \subseteq M$, is $\tilde{B}_r(\tilde{x})$, where $\pi: (\tilde{B}_r(x), \tilde{x}) \to (B_r(x), x)$ denotes the Riemannian universal cover.

We call $\text{vol}(B_r(\tilde{x}))$ the local rewinding volume of $B_r(x)$, denoted $\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x))$.

We call the C_α-Harmonic radius of $B_r^2(\tilde{x})$ the local rewinding C_α-Harmonic radius of $B_r(x)$, denoted by $\tilde{r}_{\alpha h}(B_r(x)) = \inf\{r_{\alpha h}(y), y \in B_r^2(\tilde{x})\}$.

$\tilde{r}_{\alpha h}(B_r(x)) \geq r_0 > 0 \Rightarrow \tilde{\text{vol}}(B_r(x)) \geq \delta(r_0) > 0$; (⇒).
Local Rewinding Volume of Balls

- (Local rewinding of $B_r(x)$)

\[\text{Local Rewinding Volume of Balls} \]

- (Local rewinding of $B_r(x)$)
Local Rewinding Volume of Balls

- (Local rewinding of $B_r(x)$)

A local rewinding of an r-ball, $B_r(x) \subseteq M$,

\[\pi : (\tilde{B}_r(x), \tilde{x}) \rightarrow (B_r(x), x) \text{ denotes the Riemannian universal cover.} \]

- \(\tilde{\text{vol}}(B_r(\tilde{x})) \) the local rewinding volume of $B_r(x)$, denoted $\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x))$.

- \(\tilde{r}_{\alpha h}(B_r(x)) \geq r_0 > 0 \Rightarrow \tilde{\text{vol}}(B_r(x)) \geq \delta(r_0) > 0 \);

\[(\Leftarrow) \]
Local Rewinding Volume of Balls

- (Local rewinding of $B_r(x)$)

A local rewinding of an r-ball, $B_r(x) \subseteq M$, is $B_r(\tilde{x})$.
Local Rewinding Volume of Balls

- (Local rewinding of $B_r(x)$)

A local rewinding of an r-ball, $B_r(x) \subseteq M$, is $B_r(\tilde{x})$, where

$\pi : (\tilde{B}_r(x), \tilde{x}) \to (B_r(x), x)$

denotes the Riemannian universal cover.

We call $\tilde{\text{vol}}(B_r(\tilde{x}))$ the local rewinding volume of $B_r(x)$, denoted

$\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x))$.

- \(\tilde{r}_{\alpha_h}(B_r(x)) \geq r_0 > 0 \Rightarrow \tilde{\text{vol}}(B_r(x)) \geq \delta(r_0) > 0\);

\leftarrow.\)
Local Rewinding Volume of Balls

- **(Local rewinding of \(B_r(x)\))**

A local rewinding of an \(r\)-ball, \(B_r(x) \subseteq M\), is \(B_r(\tilde{x})\), where \(\pi : (B_r(x), \tilde{x}) \rightarrow (B_r(x), x)\) denotes the Riemannian universal cover.

- **(Local rewinding volume of \(B_r(x)\))**

\(\tilde{\text{vol}}(B_r(\tilde{x}))\) denotes the local rewinding volume of \(B_r(x)\), denoted \(\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x))\).

- **(Local rewinding Harmonic radius of \(B_r(x)\))**

We call the \(C^\alpha\)-Harmonic radius of \(B_r(\tilde{x})\), the local rewinding \(C^\alpha\)-Harmonic radius of \(B_r(x)\), denoted by \(\tilde{r}^\alpha_h(B_r(x)) = \inf\{r^\alpha_h(y), y \in B_{2r}(\tilde{x})\}\).
Local Rewinding Volume of Balls

\(\text{\bullet (Local rewinding of } B_r(x)) \)

A local rewinding of an \(r \)-ball, \(B_r(x) \subseteq M \), is \(B_r(\tilde{x}) \), where \(\pi : (\tilde{B}_r(x), \tilde{x}) \rightarrow (B_r(x), x) \) denotes the Riemannian universal cover.

\(\text{\bullet (Local rewinding volume of } B_r(x)) \)

We call \(\text{vol}(B_r(\tilde{x})) \) the local rewinding volume of \(B_r(x) \),
Local Rewinding Volume of Balls

- (Local rewinding of $B_r(x)$)
 A local rewinding of an r-ball, $B_r(x) \subseteq M$, is $B_r(\tilde{x})$, where
 $\pi : (\tilde{B}_r(x), \tilde{x}) \rightarrow (B_r(x), x)$ denotes the Riemannian universal cover.

- (Local rewinding volume of $B_r(x)$)
 We call $\tilde{\text{vol}}(B_r(\tilde{x}))$ the local rewinding volume of $B_r(x)$, denoted
 $\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x))$.

Duke University Workshop on The Structure of Collapsed Special Holonomy Space, April 11, 2018
Local Rewinding Volume of Balls

• (Local rewinding of $B_r(x)$)
A local rewinding of an r-ball, $B_r(x) \subseteq M$, is $B_r(\tilde{x})$, where $\pi : (\tilde{B_r(x)}, \tilde{x}) \rightarrow (B_r(x), x)$ denotes the Riemannian universal cover.

• (Local rewinding volume of $B_r(x)$)
We call $\text{vol}(B_r(\tilde{x}))$ the local rewinding volume of $B_r(x)$, denoted $\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x))$.

• (Local rewinding Harmonic radius of $B_r(x)$)
Local Rewinding Volume of Balls

• (Local rewinding of $B_r(x)$)
A local rewinding of an r-ball, $B_r(x) \subseteq M$, is $B_r(\tilde{x})$, where $\pi : (\tilde{B}_r(x), \tilde{x}) \to (B_r(x), x)$ denotes the Riemannian universal cover.

• (Local rewinding volume of $B_r(x)$)
We call $\text{vol}(B_r(\tilde{x}))$ the local rewinding volume of $B_r(x)$, denoted by $\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x))$.

• (Local rewinding Harmonic radius of $B_r(x)$)
We call the C^α-Harmonic radius of $B_{\frac{r}{\tilde{x}}}(\tilde{x})$ the local rewinding C^α-Harmonic radius of $B_r(x)$,
Local Rewinding Volume of Balls

- (Local rewinding of $B_r(x)$)

A local rewinding of an r-ball, $B_r(x) \subseteq M$, is $B_r(\tilde{x})$, where

$$\pi : (B_r(x), \tilde{x}) \to (B_r(x), x)$$

denotes the Riemannian universal cover.

- (Local rewinding volume of $B_r(x)$)

We call $\text{vol}(B_r(\tilde{x}))$ the local rewinding volume of $B_r(x)$, denoted

$$\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x)).$$

- (Local rewinding Harmonic radius of $B_r(x)$)

We call the C^α-Harmonic radius of $B_{\frac{r}{2}}(\tilde{x})$ the local rewinding C^α-Harmonic radius of $B_r(x)$, denoted by

$$\tilde{r}^\alpha_h(B_r(x)) = \inf\{r^\alpha_h(y), \ y \in B_{\frac{r}{2}}(\tilde{x})\}. $$
Local Rewinding Volume of Balls

• (Local rewinding of $B_r(x)$)
A local rewinding of an r-ball, $B_r(x) \subseteq M$, is $B_r(\tilde{x})$, where
\[
\pi : (\tilde{B}_r(x), \tilde{x}) \to (B_r(x), x)
\]
denotes the Riemannian universal cover.

• (Local rewinding volume of $B_r(x)$)
We call $\text{vol}(B_r(\tilde{x}))$ the local rewinding volume of $B_r(x)$, denoted
\[
\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x)).
\]

• (Local rewinding Harmonic radius of $B_r(x)$)
We call the C^α-Harmonic radius of $B_{\frac{r}{2}}(\tilde{x})$ the local rewinding C^α-Harmonic radius of $B_r(x)$, denoted by
\[
\tilde{r}^\alpha_h(B_r(x)) = \inf\{r^\alpha_h(y), \ y \in B_{\frac{r}{2}}(\tilde{x})\}.
\]

$\tilde{r}^\alpha_h(B_r(x)) \geq r_0 > 0 \Rightarrow \tilde{\text{vol}}(B_r(x)) \geq \delta(r_0) > 0$;
Local Rewinding Volume of Balls

- **(Local rewinding of \(B_r(x) \))**

 A local rewinding of an \(r \)-ball, \(B_r(x) \subseteq \mathcal{M} \), is \(B_r(\tilde{x}) \), where \(\pi : (\tilde{B}_r(x), \tilde{x}) \rightarrow (B_r(x), x) \) denotes the Riemannian universal cover.

- **(Local rewinding volume of \(B_r(x) \))**

 We call \(\text{vol}(B_r(\tilde{x})) \) the local rewinding volume of \(B_r(x) \), denoted \(\tilde{\text{vol}}(B_r(x)) = \text{vol}(B_r(x)) \).

- **(Local rewinding Harmonic radius of \(B_r(x) \))**

 We call the \(C^\alpha \)-Harmonic radius of \(B_{r_2}(\tilde{x}) \) the local rewinding \(C^\alpha \)-Harmonic radius of \(B_r(x) \), denoted by

 \[
 \tilde{r}^\alpha_h(B_r(x)) = \inf\{r^\alpha_h(y), \ y \in B_{r_2}(\tilde{x})\}.
 \]

- \(\tilde{r}^\alpha_h(B_r(x)) \geq r_0 > 0 \Rightarrow \tilde{\text{vol}}(B_r(x)) \geq \delta(r_0) > 0; \ (\Leftrightarrow) \)
Collapsing With Local Bounded Covering Geometry

∃ \epsilon(n), i(n) > 0 s.t. if an n-manifold M satisfies |\text{sec} M| \leq 1, then for any x \in M, the local rewinding of B_{\epsilon(n)}(x) satisfies injrad(B_{\epsilon(n)}(\tilde{x})) \geq i(n).

(S^3, g_{\epsilon}) \toGH [0, \pi_2], |\text{sec} g_{\epsilon}| \leq 1.

Notice \tilde{\text{vol}}(B_{1/10}(x)) \geq v > 0, \text{rank}(\pi_1(B_{1/10}(x))) = 1, x \to 0.
Collapsing With Local Bounded Covering Geometry

- (Cheeger-Fukaya-Gromov, 91)

\[\exists \epsilon(n), i(n) > 0 \text{ s.t.} \]
Collapsing With Local Bounded Covering Geometry

• (Cheeger-Fukaya-Gromov, 91)

\[\exists \epsilon(n), i(n) > 0 \text{ s.t. if an } n\text{-manifold } M \text{ satisfies } |\text{sec}_M| \leq 1, \]

\[\Rightarrow \text{for any } x \in M, \text{ the local rewinding of } B_{\epsilon(n)}(x) \text{ satisfies } \text{injrad}(B_{\epsilon(n)}(\tilde{x})) \geq i(n). \]
Collapsing With Local Bounded Covering Geometry

• (Cheeger-Fukaya-Gromov, 91)

\[\exists \epsilon(n), i(n) > 0 \text{ s.t. if an } n\text{-manifold } M \text{ satisfies } |\text{sec}_M| \leq 1, \Rightarrow \]

for any \(x \in M \), the local rewinding of \(B_{\epsilon(n)}(x) \) satisfies
Collapsing With Local Bounded Covering Geometry

- (Cheeger-Fukaya-Gromov, 91)

\[\exists \epsilon(n), i(n) > 0 \text{ s.t. if an } n\text{-manifold } M \text{ satisfies } |\text{sec}_M| \leq 1, \Rightarrow \]

for any \(x \in M \), the local rewinding of \(B_{\epsilon(n)}(x) \) satisfies

\[\text{injrad}(B_{\epsilon(n)}(\tilde{x})) \geq i(n). \]
Collapsing With Local Bounded Covering Geometry

• (Cheeger-Fukaya-Gromov, 91)

\[\exists \epsilon(n), i(n) > 0 \text{ s.t. if an } n \text{-manifold } M \text{ satisfies } |\sec_M| \leq 1, \Rightarrow \]

for any \(x \in M \), the local rewinding of \(B_{\epsilon(n)}(x) \) satisfies

\[\text{injrad}(B_{\epsilon(n)}(\tilde{x})) \geq i(n). \]

•

\[(S^3, g_\epsilon) \xrightarrow{GH} \left[0, \frac{\pi}{2} \right], \quad |\sec_{g_\epsilon}| \leq 1. \]
Collapsing With Local Bounded Covering Geometry

- (Cheeger-Fukaya-Gromov, 91)

$\exists \epsilon(n), i(n) > 0$ s.t. if an n-manifold M satisfies $|\sec_M| \leq 1$, \Rightarrow for any $x \in M$, the local rewinding of $B_{\epsilon(n)}(x)$ satisfies

$$\text{injrad}(B_{\epsilon(n)}(\tilde{x})) \geq i(n).$$

- $(S^3, g_\epsilon) \xrightarrow{GH} [0, \frac{\pi}{2}], |\sec_{g_\epsilon}| \leq 1.$

Notice

$$\tilde{\text{vol}}(B_{\frac{1}{10}}(x)) \geq v > 0, \quad \text{rank}(\pi_1(B_{\frac{1}{10}}(x))) = 1, \quad x \to 0.$$
Ricci Local Bounded Covering Geometry

• M satisfies LRBCG, if there are constants, $\rho > 0$ s.t.
 \[\text{Ric}_M \geq - (n - 1), \]
 \[\tilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in M. \]

• Local bounded covering geometry \Rightarrow local Ricci bounded covering geometry, \(\Leftarrow\).

Lem 1. \(M\) complete, $\text{Ric}_M \geq - (n - 1)$. If M admits a Killing N-structure whose orbits point to all collapsed directions, \Rightarrow $\exists \rho > 0$ s.t.
 \[\tilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in M. \]

• In this talk, "$|\text{Ric}_M| \leq n - 1". Most of work can be extended to "$\text{Ric}_M \geq - (n - 1)$".
Ricci Local Bounded Covering Geometry

• (Ricci local bounded covering geometry)

M satisfies LRBCG, if there are constants, \(\rho > 0\) s.t.

\[
\text{Ric}_M \geq -(n-1), \quad \tilde{\text{vol}}(B_{\rho}(x)) \geq \delta(\rho) > 0, \quad \forall x \in M.
\]

• Local bounded covering geometry \(\Rightarrow\) local Ricci bounded covering geometry, \((\Leftarrow)\).

Lem 1. \(M\) complete, \(\text{Ric}_M \geq -(n-1)\). If \(M\) admits a Killing N-structure whose orbits point to all collapsed directions, \(\Rightarrow\) \(\exists \rho > 0\) s.t.

\[
\tilde{\text{vol}}(B_{\rho}(x)) \geq \delta(\rho) > 0, \quad \forall x \in M.
\]

• In this talk, \(|\text{Ric}_M| \leq n-1\). Most of work can be extended to \(\text{Ric}_M \geq -(n-1)\).
Ricci Local Bounded Covering Geometry

- \((\text{Ricci local bounded covering geometry}) \)

\(M \) satisfies LRBCG,
Ricci Local Bounded Covering Geometry

• (Ricci local bounded covering geometry)

\(M \) satisfies LRBCG, if there are constants, \(\rho > 0 \) s.t.
(Ricci local bounded covering geometry)

M satisfies LRBCG, if there are constants, $\rho > 0$ s.t.

$$\text{Ric}_M \geq -(n - 1), \quad \tilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall \, x \in M.$$
Ricci Local Bounded Covering Geometry

- (Ricci local bounded covering geometry)

\(M\) satisfies LRBCG, if there are constants, \(\rho > 0\) s.t.

\[\text{Ric}_M \geq -(n - 1), \quad \tilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in M.\]

- Local bounded covering geometry \(\Rightarrow\) local Ricci bounded covering geometry,
Ricci Local Bounded Covering Geometry

- (Ricci local bounded covering geometry) M satisfies LRBCG, if there are constants, $\rho > 0$ s.t.

\[\text{Ric}_M \geq -(n - 1), \quad \tilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in M. \]

- Local bounded covering geometry \Rightarrow local Ricci bounded covering geometry, ($\Leftarrow\Rightarrow$).

- In this talk, "|Ric$_M$|\leq n - 1". Most of work can be extended to "Ric$_M$ \geq -(n - 1)".
Ricci Local Bounded Covering Geometry

- (Ricci local bounded covering geometry)

M satisfies LRBCG, if there are constants, $\rho > 0$ s.t.

$$\text{Ric}_M \geq -(n - 1), \quad \widetilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in M.$$

- Local bounded covering geometry \Rightarrow local Ricci bounded covering geometry, ($\Leftarrow \Rightarrow$).

Lem 1. M complete, $\text{Ric}_M \geq -(n - 1)$. If M admits a Killing N-structure whose orbits point to all collapsed directions,
Ricci Local Bounded Covering Geometry

- (Ricci local bounded covering geometry)

M satisfies LRBCG, if there are constants, $\rho > 0$ s.t.

$$\text{Ric}_M \geq -(n - 1), \quad \widetilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in M.$$

- Local bounded covering geometry \Rightarrow local Ricci bounded covering geometry, (\Leftrightarrow).

Lem 1. M complete, $\text{Ric}_M \geq -(n - 1)$. If M admits a Killing N-structure whose orbits point to all collapsed directions, $\Rightarrow \exists \rho > 0$ s.t.
(Ricci local bounded covering geometry)

\mathcal{M} satisfies LRBCG, if there are constants, $\rho > 0$ s.t.

$$\text{Ric}_\mathcal{M} \geq -(n - 1), \quad \tilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall \ x \in \mathcal{M}.$$

Local bounded covering geometry \Rightarrow local Ricci bounded covering geometry, (\Leftarrow).

Lem 1. \mathcal{M} complete, $\text{Ric}_\mathcal{M} \geq -(n - 1)$. If \mathcal{M} admits a Killing N-structure whose orbits point to all collapsed directions, $\Rightarrow \exists \rho > 0$ s.t.

$$\tilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall \ x \in \mathcal{M}.$$

In this talk, "$|\text{Ric}_\mathcal{M}| \leq n - 1$". Most of work can be extended to "$\text{Ric}_\mathcal{M} \geq -(n - 1)$".
Ricci Local Bounded Covering Geometry

- (Ricci local bounded covering geometry) M satisfies LRBCG, if there are constants, $\rho > 0$ s.t.
 \[\text{Ric}_M \geq -(n - 1), \quad \widetilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in M. \]

- Local bounded covering geometry \implies local Ricci bounded covering geometry, (\iff).

Lem 1. M complete, $\text{Ric}_M \geq -(n - 1)$. If M admits a Killing N-structure whose orbits point to all collapsed directions, $\implies \exists \rho > 0$ s.t.
 \[\widetilde{\text{vol}}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in M. \]

- In this talk, “$|\text{Ric}_M| \leq n - 1$”.
Ricci Local Bounded Covering Geometry

- (Ricci local bounded covering geometry)
 \mathcal{M} satisfies LRBCG, if there are constants, $\rho > 0$ s.t.
 $$\text{Ric}_\mathcal{M} \geq -(n - 1), \quad \text{vol}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in \mathcal{M}.$$

- Local bounded covering geometry \Rightarrow local Ricci bounded covering geometry, (\Leftarrow).

Lem 1. \mathcal{M} complete, $\text{Ric}_\mathcal{M} \geq -(n - 1)$. If \mathcal{M} admits a Killing N-structure whose orbits point to all collapsed directions, \Rightarrow $\exists \rho > 0$ s.t.
 $$\text{vol}(B_\rho(x)) \geq \delta(\rho) > 0, \quad \forall x \in \mathcal{M}.$$

- In this talk, “$|\text{Ric}_\mathcal{M}| \leq n - 1$”. Most of work can be extended to “$\text{Ric}_\mathcal{M} \geq -(n - 1)$”.
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)

\[\exists \epsilon(n, v), c(n) > 0 \text{s.t. if a compact } n \text{-manifold } M \text{satisfies } |\text{Ric}_M| \leq n - 1, \text{ then } \tilde{\text{vol}}(B_1(p)) \geq v > 0, \text{ then } \text{diam}(M) < \epsilon(n, v), \Rightarrow M \text{ is diffeo. to an infra-nilmanifold.} \]

\[\text{• Thm A does not hold if removing } \tilde{\text{vol}}(B_1(p)) \geq v. \]

Cor. (Gromov, 78)

\[\exists \epsilon(n), c(n) > 0 \text{s.t. if a compact } n \text{-manifold } M \text{satisfies } |\text{sec}_M| \leq 1, \text{ then } \text{diam}(M) < \epsilon(n), \Rightarrow M \text{ is diffeo. to an infra-nilmanifold.} \]
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)

$\exists \epsilon(n, v), c(n) > 0$ s.t.

$|\text{Ric}_M| \leq n - 1$, $\tilde{\text{vol}}(B_1(p)) \geq v > 0$, $\text{diam}(M) < \epsilon(n, v)$, $\Rightarrow M$ is diffeo. to an infra-nilmanifold.

• **Thm A** does not hold if removing $\tilde{\text{vol}}(B_1(p)) \geq v$.

Cor. (Gromov, 78)

$\exists \epsilon(n), c(n) > 0$ s.t. if a compact n-manifold M satisfies $|\text{sec}_M| \leq 1$, $\text{diam}(M) < \epsilon(n)$, $\Rightarrow M$ is diffeo. to an infra-nilmanifold.
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)
∃ ε(n, ν), c(n) > 0 s.t. if a compact n-manifold M satisfies
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)

\[\exists \epsilon(n, v), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies} \]
\[|\text{Ric}_M| \leq n - 1, \]
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)

\[\exists \epsilon(n, v), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies } \]
\[|\text{Ric}_M| \leq n - 1, \quad \tilde{\text{vol}}(B_1(p)) \geq v > 0, \]

• **Thm A** does not hold if removing \(\tilde{\text{vol}}(B_1(p)) \geq v > 0 \).

Cor. (Gromov, 78)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies } \]
\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \quad \Rightarrow \quad M \text{ is diffeo. to an infra-nilmanifold.} \]
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)

\[\exists \epsilon(n, v), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies } \]
\[|\text{Ric}_M| \leq n - 1, \quad \tilde{\text{vol}}(B_1(p)) \geq v > 0, \quad \text{diam}(M) < \epsilon(n, v), \]

\[\Rightarrow \quad M \text{ is diffeo. to an infra-nilmanifold.} \]

• Thm A does not hold if removing \(\tilde{\text{vol}}(B_1(p)) \geq v > 0 \).

Cor. (Gromov, 78)

\[\exists \epsilon(n), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies } \]
\[|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n), \]

\[\Rightarrow \quad M \text{ is diffeo. to an infra-nilmanifold.} \]
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)

\[\exists \epsilon(n, v), c(n) > 0 \text{ s.t. if a compact } n-\text{manifold } M \text{ satisfies} \]
\[|\text{Ric}_M| \leq n - 1, \quad \text{vol}(B_1(p)) \geq v > 0, \quad \text{diam}(M) < \epsilon(n, v), \]

\[\Rightarrow \quad M \text{ is diffeo. to an infra-nilmanifold.} \]
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)

\[\exists \epsilon(n, v), c(n) > 0 \text{ s.t. if a compact } n\text{-manifold } M \text{ satisfies} \]

\[|\text{Ric}_M| \leq n - 1, \quad \text{vol}(B_1(p)) \geq v > 0, \quad \text{diam}(M) < \epsilon(n, v), \]

\[\Rightarrow M \text{ is diffeo. to an infra-nilmanifold.} \]

- **Thm A** does not hold if removing \(\text{vol}(B_1(p)) \geq v \).
Main Results

Thm A. (Almost Ricci flat with non-collapsed universal cover)

∃ \(\epsilon(n, \nu), c(n) > 0 \) s.t. if a compact \(n \)-manifold \(M \) satisfies

\[
|\text{Ric}_M| \leq n - 1, \quad \tilde{\text{vol}}(B_1(p)) \geq \nu > 0, \quad \text{diam}(M) < \epsilon(n, \nu),
\]

\(\Rightarrow \) \(M \) is diffeo. to an infra-nilmanifold.

- **Thm A** does not hold if removing \(\tilde{\text{vol}}(B_1(p)) \geq \nu \).

Cor. (Gromov, 78)

∃ \(\epsilon(n), c(n) > 0 \) s.t. if a compact \(n \)-manifold \(M \) satisfies

\[
|\text{sec}_M| \leq 1, \quad \text{diam}(M) < \epsilon(n),
\]

\(\Rightarrow \) \(M \) is diffeo. to an infra-nilmanifold.
Main Results
Main Results

Thm B. (Fibration)

\[M_i \overset{GH}{\longrightarrow} N, \]

\[\text{diam}(f_i\text{-fiber}) \to 0. \]
Main Results

Thm B. (Fibration)

\[M_i \xrightarrow{GH} N, \quad |\text{Ric}_{M_i}| \leq n - 1, \]
Main Results

Thm B. (Fibration)

\[M_i \xrightarrow{GH} N, \quad |\text{Ric}_{M_i}| \leq n - 1, \quad \widetilde{\text{vol}}(B_{\rho}(x_i)) \geq v, \quad \forall x_i \in M_i. \]
Main Results

Thm B. (Fibration)

\[
M_i \overset{GH}{\to} N, \quad |\text{Ric}_{M_i}| \leq n - 1, \quad \tilde{\text{vol}}(B_\rho(x_i)) \geq v, \quad \forall x_i \in M_i.
\]

\[\Rightarrow \exists \text{ a fibration, } f_i : M_i \to Y, \text{ s.t.}\]
Main Results

Thm B. (Fibration)

\[M_i \xrightarrow{\text{GH}} N, \quad |\text{Ric}_{M_i}| \leq n - 1, \quad \tilde{\text{vol}}(B_\rho(x_i)) \geq v, \quad \forall x_i \in M_i. \]

\[\Rightarrow \exists \text{ a fibration, } f_i : M_i \to Y, \text{ s.t.} \]

\[f_i \text{ is } \epsilon_i\text{-GHA}, \]
Main Results

Thm B. (Fibration)

\[M_i \xrightarrow{GH} N, \quad |\text{Ric}_{M_i}| \leq n - 1, \quad \widetilde{\text{vol}}(B_\rho(x_i)) \geq v, \quad \forall x_i \in M_i. \]

\[\Rightarrow \exists \text{ a fibration, } f_i : M_i \to Y, \text{ s.t.} \]

\[f_i \text{ is } \epsilon_i\text{-GHA, } f_i\text{-fiber is infra-nilmanifold,} \]
Main Results

Thm B. (Fibration)

\[M_i \xrightarrow{GH} N, \quad |\text{Ric}_{M_i}| \leq n - 1, \quad \tilde{\text{vol}}(B_\rho(x_i)) \geq v, \quad \forall x_i \in M_i. \]

⇒ \exists a fibration, \(f_i : M_i \to Y \), s.t.

- \(f_i \) is \(\epsilon_i \)-GHA,
- \(f_i \)-fiber is infra-nilmanifold,
- \(\text{diam}(f_i\text{-fiber}) \to 0. \)
Partially Ricci Local Bounded Covering Geometry

\[\text{For } \mu > 0, \text{ let } V_{-\mu}(R) = \{ x \in \mathbb{R}, x \rightarrow \tilde{\text{vol}}(B_{\eta}(x)) \geq \delta(\eta) > 0, x \in M_i \}. \]

\[\text{If } V_{-\mu} \neq \emptyset, \Rightarrow \exists \text{ open } U_i(\mu) \subset M_i \text{ s.t. } U_i(\mu) \text{ GH } \rightarrow V_{-\mu}(R). \]

\[\text{• (Gross-Wilson) Collapsing Calabi-Yau metrics, } (K_3, g_t) \text{ GH } \rightarrow (S^2, d_\infty), \text{ and } S = S^2 - R \text{ consists of isolated cone points.} \]

\[\text{Given small } \eta > 0, \Rightarrow V_{-\mu}(R) = S^2 - B_{\eta}(S). \]
Partially Ricci Local Bounded Covering Geometry

• (Collapsing with partially Ricci bounded covering geometry)

\[M_i \xrightarrow{GH} X, \]
Partially Ricci Local Bounded Covering Geometry

- (Collapsing with partially Ricci bounded covering geometry)

\[M_i \xrightarrow{GH} X, \quad |\text{Ric}_{M_i}| \leq n - 1. \]
Partially Ricci Local Bounded Covering Geometry

• (Collapsing with partially Ricci bounded covering geometry)

\[M_i \xrightarrow{GH} X, \quad |\text{Ric}_{M_i}| \leq n - 1. \]

For \(\mu > 0 \), let

\[V_{-\mu}(\mathcal{R}) = \{ x \in \mathcal{R}, \ x_i \to x, \ \tilde{\text{vol}}(B_\eta(x_i)) \geq \delta(\eta) > 0, \ x_i \in M_i \}. \]
Partially Ricci Local Bounded Covering Geometry

- (Collapsing with partially Ricci bounded covering geometry)

\[M_i \xrightarrow{GH} X, \quad |\text{Ric}_{M_i}| \leq n - 1. \]

For \(\mu > 0 \), let

\[V_{-\mu}(R) = \{ x \in R, \ x_i \to x, \ \tilde{\text{vol}}(B_\eta(x_i)) \geq \delta(\eta) > 0, \ x_i \in M_i \}. \]

If \(V_{-\mu} \neq \emptyset \),
Partially Ricci Local Bounded Covering Geometry

- (Collapsing with partially Ricci bounded covering geometry)

\[M_i \xrightarrow{GH} X, \quad |\text{Ric}_{M_i}| \leq n - 1. \]

For \(\mu > 0 \), let

\[V_{-\mu}(\mathcal{R}) = \{ x \in \mathcal{R}, \ x_i \to x, \ \tilde{\text{vol}}(B_\eta(x_i)) \geq \delta(\eta) > 0, \ x_i \in M_i \}. \]

If \(V_{-\mu} \neq \emptyset \), \(\Rightarrow \) \(\exists \) open \(U_i(\mu) \subset M_i \) s.t.

\[U_i(\mu) \xrightarrow{GH} V_{-\mu}(\mathcal{R}). \]
Partially Ricci Local Bounded Covering Geometry

• (Collapsing with partially Ricci bounded covering geometry)

\[\mathcal{M}_i \xrightarrow{GH} X, \quad |\text{Ric}_{\mathcal{M}_i}| \leq n - 1. \]

For \(\mu > 0 \), let

\[\mathcal{V}_{-\mu}(\mathcal{R}) = \{ x \in \mathcal{R}, \ x_i \to x, \ \tilde{\text{vol}}(B_{\eta}(x_i)) \geq \delta(\eta) > 0, \ x_i \in \mathcal{M}_i \}. \]

If \(\mathcal{V}_{-\mu} \neq \emptyset \), \(\Rightarrow \exists \) open \(U_i(\mu) \subset \mathcal{M}_i \) s.t.

\[U_i(\mu) \xrightarrow{GH} \mathcal{V}_{-\mu}(\mathcal{R}). \]

• (Gross-Wilson) Collapsing Calabi-Yau metrics,
Partially Ricci Local Bounded Covering Geometry

- (Collapsing with partially Ricci bounded covering geometry)

\[M_i \xrightarrow{GH} X, \quad |\text{Ric}_{M_i}| \leq n - 1. \]

For \(\mu > 0 \), let

\[V_{-\mu}(\mathcal{R}) = \{ x \in \mathcal{R}, \ x_i \rightarrow x, \ \tilde{\text{vol}}(B_\eta(x_i)) \geq \delta(\eta) > 0, \ x_i \in M_i \}. \]

If \(V_{-\mu} \neq \emptyset \), then there exists an open \(U_i(\mu) \subset M_i \) such that

\[U_i(\mu) \xrightarrow{GH} V_{-\mu}(\mathcal{R}). \]

- (Gross-Wilson) Collapsing Calabi-Yau metrics,

\[(K3, g_t) \xrightarrow{GH} (S^2, d_\infty), \]

and \(\mathcal{S} = S^2 - \mathcal{R} \) consists of isolated cone points.
Partially Ricci Local Bounded Covering Geometry

• (Collapsing with partially Ricci bounded covering geometry)

\[M_i \xrightarrow{GH} X, \quad |\text{Ric}_{M_i}| \leq n - 1. \]

For \(\mu > 0 \), let

\[\mathcal{V}_{-\mu}(\mathcal{R}) = \{ x \in \mathcal{R}, \ x_i \to x, \ \widetilde{\text{vol}}(B_{\eta}(x_i)) \geq \delta(\eta) > 0, \ x_i \in M_i \}. \]

If \(\mathcal{V}_{-\mu} \neq \emptyset \), \(\Rightarrow \exists \) open \(U_i(\mu) \subset M_i \) s.t.

\[U_i(\mu) \xrightarrow{GH} \mathcal{V}_{-\mu}(\mathcal{R}). \]

• (Gross-Wilson) Collapsing Calabi-Yau metrics,

\[(K3, g_t) \xrightarrow{GH} (S^2, d_\infty), \]

and \(\mathcal{S} = S^2 - \mathcal{R} \) consists of isolated cone points. Given small \(\eta > 0 \), \(\Rightarrow \)

\[\mathcal{V}_{-\mu}(\mathcal{R}) = S^2 - B_\eta(\mathcal{S}). \]
Main Results

Thm C.

Einstein $E_{\text{GH}} \rightarrow X$, $V - \mu(\mathbb{R}) \neq \emptyset$.

$V - \mu(\mathbb{R})$ is a Riemannian manifold, and \exists a fiber bundle map, $f_i: U_i(\mu) \rightarrow V - \mu(\mathbb{R})$, f_i is ϵ_i-GHA, f_i-fiber is infra-nilmanifold, $\text{diam}(f_i$-fiber) $\rightarrow 0$.

Duke University Workshop on The Structure of Collapsed Special Holonomy Space, April 11, 2018
Main Results

Thm C. (Partial fibration)

\[\text{Einstein } M \xrightarrow{GH} X, \quad \text{and } V^- \mu(\mathbb{R}) \neq \emptyset. \]

\[\Rightarrow V^- \mu(\mathbb{R}) \text{ is a Riemannian manifold, and } \exists \text{ a fiber bundle map, } f_i: U_i(\mu) \rightarrow V^- \mu(\mathbb{R}), \]

\[f_i \text{ is } \epsilon_i^{-}\text{GHA}, f_i^{-}\text{fiber is infra-nilmanifold}, \quad \text{diam}(f_i^{-}\text{fiber}) \rightarrow 0. \]
Main Results

Thm C. (Partial fibration)

\[\text{Einstein } M_i \xrightarrow{GH} X, \quad V_{-\mu}(\mathcal{R}) \neq \emptyset. \]
Main Results

Thm C. (Partial fibration)

\[
\text{Einstein } M_i \stackrel{GH}{\longrightarrow} X, \quad V_{-\mu}(\mathcal{R}) \neq \emptyset.
\]

\[\Rightarrow V_{-\mu}(\mathcal{R}) \text{ is a Riemannian manifold,}\]
Main Results

Thm C. (Partial fibration)

Einstein $M_i \overset{GH}{\to} X$, $V_{-\mu}(\mathcal{R}) \neq \emptyset$.

$\Rightarrow V_{-\mu}(\mathcal{R})$ is a Riemannian manifold, and \exists a fiber bundle map, $f_i : U_i(\mu) \to V_{-\mu}(\mathcal{R})$,
Main Results

Thm C. (Partial fibration)

\[\text{Einstein } M_i \xrightarrow{GH} X, \quad V_{-\mu}(\mathcal{R}) \neq \emptyset. \]

\[\Rightarrow V_{-\mu}(\mathcal{R}) \text{ is a Riemannian manifold, and } \exists \text{ a fiber bundle map, } \]

\[f_i : U_i(\mu) \rightarrow V_{-\mu}(\mathcal{R}), \]

\[f_i \text{ is } \epsilon_i\text{-GHA}, \]
Main Results

Thm C. *(Partial fibration)*

Einstein \(M_i \xrightarrow{GH} X, \quad V_{-\mu}(\mathcal{R}) \neq \emptyset. \)

\[\Rightarrow \quad V_{-\mu}(\mathcal{R}) \text{ is a Riemannian manifold, and } \exists \text{ a fiber bundle map,} \]

\[f_i : U_i(\mu) \rightarrow V_{-\mu}(\mathcal{R}), \]

\(f_i \) is \(\epsilon_i \)-GHA, \(f_i \)-fiber is infra-nilmanifold,
Main Results

Thm C. (Partial fibration)

\[
\text{Einstein } M_i \xrightarrow{GH} X, \quad V_{-\mu}(R) \neq \emptyset.
\]

\[\Rightarrow V_{-\mu}(R) \text{ is a Riemannian manifold, and } \exists \text{ a fiber bundle map,}\]

\[f_i : U_i(\mu) \rightarrow V_{-\mu}(R),\]

\[f_i \text{ is } \epsilon_i\text{-GHA, } f_i\text{-fiber is infra-nilmanifold, } \text{diam}(f_i\text{-fiber}) \rightarrow 0.\]
A Criterion for Nilmanifolds

Lem. 1
A compact manifold \(M \) is diffeomorphic to a nilmanifold \(\iff \)

1. \(M \) admits an iterated bundles over tori, i.e.,
 \[
 M_1 \to M \to T_k^1, \\
 M_2 \to M_1 \to T_k^2, \\
 \ldots \\
 M_s \to M_{s-1} \to \ldots \to \text{pt},
 \]

2. \(\pi_1(M_i)/\pi_1(M) \) s.t. the holonomy representation via conjugation, \(\phi_i: \pi_1(M) \to \text{Aut}(\pi_1(M_{i-1})/\pi_1(M_i)) \), is trivial, \(1 \leq i \leq s \).
A Criterion for Nilmanifolds

• (Nakayama, 14, Belegragdek) A manifold \(M \) is diffeom. to nilpotent iff \(M \) admits an iterated principle circle bundles,

\[S^1 \to M \to M_1, \]
A Criterion for Nilmanifolds

- (Nakayama, 14, Belegragdek) A manifold M is diffeom. to nilpotent iff M admits an iterated principle circle bundles,

$$S^1 \to M \to M_1, \quad S^1 \to M_1 \to M_2,$$

Lem. 1

A cpct. M is diffeo. to a nilmanifold \iff

1. M admits an iterated bundles over tori, i.e.,

$$M_1 \to M \to T_k_1, \quad M_2 \to M_1 \to T_k_2,$$

2. $\pi_1(M_i)/\pi_1(M)$ s.t. the holonomy representation via conjugation,

$$\phi_i: \pi_1(M) \to \text{Aut}(\pi_1(M_{i-1})/\pi_1(M_i)),$$

is trivial, $1 \leq i \leq s$.
A Criterion for Nilmanifolds

● (Nakayama, 14, Belegragdek) A manifold M is diffeom. to nilpotent iff M admits an iterated principle circle bundles, $S^1 \to M \to M_1, \quad S^1 \to M_1 \to M_2, \quad \cdots$,

Lem. 1 A cpct. M is diffeo. to a nilmanifold \iff

1. M admits an iterated bundles over tori i.e., $M_1 \to M \to T_{k_1}$, $M_2 \to M_1 \to T_{k_2}$, \cdots, $\{pt\} \to M \to T_{k_s}$.

2. $\pi_1(M_i) \to \pi_1(M)$ s.t the holonomy representation via conjugation, $\phi_i : \pi_1(M) \to \text{Aut}(\pi_1(M_{i-1})/\pi_1(M_i))$, is trivial, $1 \leq i \leq s$.

A Criterion for Nilmanifolds

- (Nakayama, 14, Belegragdek) A manifold M is diffeom. to nilpotent iff M admits an iterated principle circle bundles,

$$S^1 \to M \to M_1, \quad S^1 \to M_1 \to M_2, \quad \cdots, \quad S^1 \to M_n \to \text{pt.}$$
A Criterion for Nilmanifolds

• (Nakayama, 14, Belegragdek) A manifold M is diffeom. to nilpotent iff M admits an iterated principle circle bundles,

$$S^1 \to M \to M_1, \quad S^1 \to M_1 \to M_2, \quad \cdots, \quad S^1 \to M_n \to \text{pt.}$$

Lem. 1 A cpct. M is diffeo. to a nilmanifold
A Criterion for Nilmanifolds

• (Nakayama, 14, Belegragdek) A manifold \(M \) is diffeom. to nilpotent iff \(M \) admits an iterated principle circle bundles,

\[S^1 \rightarrow M \rightarrow M_1, \quad S^1 \rightarrow M_1 \rightarrow M_2, \quad \cdots, \quad S^1 \rightarrow M_n \rightarrow \text{pt}. \]

Lem. 1 A cpct. \(M \) is diffeo. to a nilmanifold \(\Leftrightarrow \)
A Criterion for Nilmanifolds

- (Nakayama, 14, Belegragdek) A manifold M is diffeom. to nilpotent iff M admits an iterated principle circle bundles,

$$S^1 \to M \to M_1, \quad S^1 \to M_1 \to M_2, \quad \cdots, \quad S^1 \to M_n \to \text{pt}.$$

Lem. 1 A cpct. M is diffeo. to a nilmanifold \iff

(1) M admits an iterated bundles over tori i.e.,
A Criterion for Nilmanifolds

- (Nakayama, 14, Belegragdek) A manifold M is diffeom. to nilpotent iff M admits an iterated principle circle bundles,

$$S^1 \to M \to M_1, \quad S^1 \to M_1 \to M_2, \quad \cdots, \quad S^1 \to M_n \to \text{pt}.$$

Lem. 1 A cpct. M is diffeo. to a nilmanifold \iff

(1) M admits an iterated bundles over tori i.e.,

$$M_1 \to M \to T^{k_1}, M_2 \to M_1 \to T^{k_2}, \cdots, \{\text{pt}\} \to M_s \to T^{k_s}.$$
A Criterion for Nilmanifolds

Nakayama, 14, Belegraddek A manifold M is diffeom. to nilpotent iff M admits an iterated principle circle bundles,

$$S^1 \to M \to M_1, \quad S^1 \to M_1 \to M_2, \quad \cdots, \quad S^1 \to M_n \to \text{pt.}$$

Lem. 1 A cpct. M is diffeo. to a nilmanifold \iff

1. M admits an iterated bundles over tori i.e.,

$$M_1 \to M \to T^{k_1}, M_2 \to M_1 \to T^{k_2}, \cdots, \{\text{pt}\} \to M_s \to T^{k_s}.$$

2. $\pi_1(M_i) \triangleleft \pi_1(M)$
A Criterion for Nilmanifolds

- (Nakayama, 14, Belegragdek) A manifold M is diffeom. to nilpotent iff M admits an iterated principle circle bundles,

\[S^1 \to M \to M_1, \quad S^1 \to M_1 \to M_2, \ldots, \quad S^1 \to M_n \to \text{pt}. \]

Lem. 1 A cpct. M is diffeo. to a nilmanifold \iff

(1) M admits an iterated bundles over tori i.e.,

\[M_1 \to M \to T^{k_1}, \quad M_2 \to M_1 \to T^{k_2}, \ldots, \quad \{\text{pt}\} \to M_s \to T^{k_s}. \]

(2) $\pi_1(M_i) \triangleleft \pi_1(M)$ s.t the holonomy representation via conjugation, $\phi_i : \pi_1(M) \to \text{Aut}(\pi_1(M_{i-1})/\pi_1(M_i))$, is trivial, $1 \leq i \leq s$.
Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.

- (Regular point) \(x \in X \) is called regular \(\iff \) tangent cone at \(x \) is unique and isometric to \(\mathbb{R}^k \).

- (Cheeger-Colding, 96) Let \(M_i \rightharpoonup X \) s.t. \(\operatorname{Ric} M_i \geq - (n - 1) \).

 \[\Rightarrow \]

 1. \(\mathbb{R} \) is dense in \(X \) and has a full Radon measure determined by the renormalized volume.

 2. If \(\operatorname{vol} M_i \geq v > 0 \),

 \[\Rightarrow \]

 \(\operatorname{Haus}^n (\mathbb{R}) = \operatorname{Haus}^n (X) \).

 3. If \(\operatorname{vol} M_i \geq v > 0 \) & \(\operatorname{Ric} M_i \leq n - 1 \),

 \[\Rightarrow \]

 \(\mathbb{R} \) is \(C^{1,\alpha} \)-manifold.

 4. (Colding-Naber, 12) \(\operatorname{Isom} (X) \) is a Lie group.
Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.
Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.
- (Regular point) $x \in X$ is called regular \iff

$$\text{Duke University Workshop on The Structure of Collapsed Special Holonomy Space, April 11, 2018}$$
Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.
- (Regular point) \(x \in X \) is called regular \(\iff \) tangent cone at \(x \) is unique and isometric to \(\mathbb{R}^k \).

Let \(M_i \rightharpoonup X \) s.t. \(\text{Ric}_{M_i} \geq -(n-1) \).

\[\Rightarrow \]

1. \(\mathbb{R} \) is dense in \(X \) and has a full Radon measure determined by the renormalized volume.

2. If \(\text{vol}(M_i) \geq v > 0 \),

\[\Rightarrow \]

\(\text{Haus}_n(\mathbb{R}) = \text{Haus}_n(X) \).

3. If \(\text{vol}(M_i) \geq v > 0 \) & \(\text{Ric}_{M_i} \leq n-1 \),

\[\Rightarrow \]

\(\mathbb{R} \) is \(\mathcal{C}^1,\alpha \)-manifold.

4. \(\text{Isom}(X) \) is a Lie group.
Tools — The Cheeger-Colding Theory

● A theory on degeneration of Ricci limit spaces.

● (Regular point) \(x \in X \) is called regular \(\iff \) tangent cone at \(x \) is unique and isometric to \(\mathbb{R}^k \).

● (Cheeger-Colding, 96)

(\[
M_i \xrightarrow{GH} X \text{ s.t. } \text{Ric} \geq -(n-1) \implies \]
\[
\text{(1) } \mathbb{R} \text{ is dense in } X \text{ and has a full Radon measure determined by the renormalized volume.}
\]
\[
\text{(2) If } \text{vol}(M_i) \geq v > 0 \implies \text{Haus}_n(\mathbb{R}) = \text{Haus}_n(X).
\]
\[
\text{(3) If } \text{vol}(M_i) \geq v > 0 \text{ & } \text{Ric} \leq n-1 \implies \mathbb{R} \text{ is } C^{1,\alpha} \text{-manifold.}
\]
\[
\text{(4) (Colding-Naber, 12) Isom}(X) \text{ is a Lie group.}
\]
Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.
- (Regular point) $x \in X$ is called regular \iff tangent cone at x is unique and isometric to \mathbb{R}^k.
- (Cheeger-Colding, 96)
 Let $M_i \rightarrow^\text{GH} X$ s.t. $\text{Ric}_{M_i} \geq - (n - 1)$.
Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.

- (Regular point) $x \in X$ is called regular \iff tangent cone at x is unique and isometric to \mathbb{R}^k.

- (Cheeger-Colding, 96)

 Let $M_i \xrightarrow{GH} X$ s.t. $\text{Ric}_{M_i} \geq -(n - 1)$.

 \begin{enumerate}
 \item \mathcal{R} is dense in X and has a full Radon measure determined by the renormalized volume.
 \item $\text{Haus}^n(\mathcal{R}) = \text{Haus}^n(X)$.
 \item If $\text{vol}(M_i) \geq v > 0$, then $\text{Haus}^n(\mathcal{R}) = \text{Haus}^n(X)$.
 \item (Colding-Naber, 12) $\text{Isom}(X)$ is a Lie group.
 \end{enumerate}
Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.
- (Regular point) \(x \in X \) is called regular \(\iff \) tangent cone at \(x \) is unique and isometric to \(\mathbb{R}^k \).

- (Cheeger-Colding, 96)

Let \(M_i \xrightarrow{GH} X \) s.t. \(\text{Ric}_{M_i} \geq -(n-1) \). \(\Rightarrow \)

1. \(\mathcal{R} \) is dense in \(X \) and has a full Radon measure determined by the renormalized volume.
2. If \(\text{vol}(M_i) \geq v > 0 \),
Tools — The Cheeger-Colding Theory

• A theory on degeneration of Ricci limit spaces.

• (Regular point) $x \in X$ is called regular \iff tangent cone at x is unique and isometric to \mathbb{R}^k.

• (Cheeger-Colding, 96)
 Let $M_i \xrightarrow{GH} X$ s.t. $\text{Ric}_{M_i} \geq -(n-1)$. \Rightarrow

 (1) \mathcal{R} is dense in X and has a full Radon measure determined by the renormalized volume.
 (2) If $\text{vol}(M_i) \geq v > 0$, $\Rightarrow \text{Haus}^n(\mathcal{R}) = \text{Haus}^n(X)$.

Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.
- (Regular point) \(x \in X \) is called regular \(\iff \) tangent cone at \(x \) is unique and isometric to \(\mathbb{R}^k \).

- (Cheeger-Colding, 96)

Let \(M_i \xrightarrow{GH} X \) s.t. \(\text{Ric}_{M_i} \geq -(n-1) \).

\[
\begin{align*}
1) \text{\(\mathcal{R} \) is dense in \(X \) and has a full Radon measure determined by the renormalized volume.} \\
2) \text{If vol}(M_i) \geq v > 0, \Rightarrow \text{Haus}^n(\mathcal{R}) = \text{Haus}^n(X). \\
3) \text{If vol}(M_i) \geq v > 0 \& \text{Ric}_{M_i} \leq n-1,
\end{align*}
\]
Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.

- (Regular point) \(x \in X \) is called regular \(\iff \) tangent cone at \(x \) is unique and isometric to \(\mathbb{R}^k \).

- (Cheeger-Colding, 96)

Let \(M_i \xrightarrow{GH} X \) s.t. \(\text{Ric}_{M_i} \geq -(n - 1) \). \(\Rightarrow \)

1. \(\mathcal{R} \) is dense in \(X \) and has a full Radon measure determined by the renormalized volume.

2. If \(\text{vol}(M_i) \geq v > 0 \), \(\Rightarrow \) \(\text{Haus}^n(\mathcal{R}) = \text{Haus}^n(X) \).

3. If \(\text{vol}(M_i) \geq v > 0 \) \& \(\text{Ric}_{M_i} \leq n - 1 \), \(\Rightarrow \) \(\mathcal{R} \) is \(C^{1,\alpha} \)-manifold.
Tools — The Cheeger-Colding Theory

- A theory on degeneration of Ricci limit spaces.
- (Regular point) $x \in X$ is called regular \iff tangent cone at x is unique and isometric to \mathbb{R}^k.
- (Cheeger-Colding, 96)
 Let $M_i \xrightarrow{GH} X$ s.t. $\text{Ric}_{M_i} \geq -(n - 1)$. \Rightarrow

 (1) \mathcal{R} is dense in X and has a full Radon measure determined by the renormalized volume.
 (2) If $\text{vol}(M_i) \geq \nu > 0$, \Rightarrow $\text{Haus}^n(\mathcal{R}) = \text{Haus}^n(X)$.
 (3) If $\text{vol}(M_i) \geq \nu > 0$ & $\text{Ric}_{M_i} \leq n - 1$, \Rightarrow \mathcal{R} is $C^{1,\alpha}$-manifold.
 (4) (Colding-Naber, 12) $\text{Isom}(X)$ is a Lie group.
Center of mass: \(M_{\text{cpct. Riem.}} \), \(P(M) := \text{space of prob. measures on } M \).

\(\forall \mu \in P(M) \), the minimum point of the function, \(x \to \int_M \frac{1}{2} d(x, y)^2 \mu \), is called the center of mass of \(\mu \).

Let \(\rho = \text{Convrad}(M) \).

\(\Rightarrow \forall \) countable subset \(A \subset B \), \(\rho(x) \) has a unique center of mass.

Lemma (Palais, 61; Grove-Karcher, 73)

\(M_{\text{Riem.}}, G_{\text{cpct. Lie group}}, \) two \(G \)-actions on \(M \); one by isometries.

\(\Rightarrow \) two \(G \)-actions are \(C_0 \)-close relative to bounds on \(\text{sec}(M), \text{injrad}(M) \), \(\Rightarrow \) two \(G \)-actions are conjugate.
Tools — Center of Mass

• Center of mass:

\[P(M) := \text{space of prob. measures on } M. \]

\[\forall \mu \in P(M), \text{the minimum point of the function}, \]

\[x \rightarrow \int_M 1 \frac{1}{2} d(\mu), \]

is called the center of mass of \(\mu \).

\[\rho = \text{Convrad}(M) \]

\[\Rightarrow \forall \text{countable subset } A \subset B \rho(x) \]

has a unique center of mass.

\[\text{Lem. (Palais, 61; Grove-Karcher, 73)} \]

\[M_{\text{Riem.}}, G_{\text{cpct. Lie group}}, \text{two } G\text{-actions on } M; \text{one by } \]

\[\text{isometries.} \]

\[\Rightarrow \text{two } G\text{-actions are } C^0\text{-close relative to bounds on } \]

\[\sec(M), \text{injrad}(M), \]

\[\Rightarrow \text{two } G\text{-actions are conjugate.} \]
Center of mass: \(M\) cpct. Riem., \(P(M) := \) space of prob. measures on \(M\).
Tools — Center of Mass

- Center of mass: \(M \) cpct. Riem., \(P(M) := \) space of prob. measures on \(M \). \(\forall \mu \in P(M) \), the minimum point of the function,

\[
x \to \int_M \frac{1}{2} d(x, y)^2 \mu,
\]

is called the center of mass of \(\mu \).
Center of mass: \mathcal{M} cpct. Riem., $P(\mathcal{M}) :=$ space of prob. measures on \mathcal{M}. $\forall \mu \in P(\mathcal{M})$, the minimum point of the function,

$$x \rightarrow \int_{\mathcal{M}} \frac{1}{2} d(x, y)^2 \mu,$$

is called the center of mass of μ.

Let $\rho = \text{Convrad}(\mathcal{M})$.
Center of mass: \(M \) cpct. Riem., \(P(M) := \) space of prob. measures on \(M \). \(\forall \mu \in P(M) \), the minimum point of the function,

\[
x \to \int_M \frac{1}{2} d(x, y)^2 \mu,
\]

is called the center of mass of \(\mu \).

Let \(\rho = \text{Convrad}(M) \). \(\Rightarrow \forall \) countable subset \(A \subset B_\rho(x) \) has a unique center of mass.
Tools — Center of Mass

- Center of mass: M cpct. Riem., $P(M) :=$ space of prob. measures on M. $\forall \mu \in P(M)$, the minimum point of the function,

$$x \rightarrow \int_M \frac{1}{2} d(x, y)^2 \mu,$$

is called the center of mass of μ.

- Let $\rho = \text{Convrad}(M)$. $\Rightarrow \forall$ countable subset $A \subset B_{\rho}(x)$ has a unique center of mass.

Lem. (Palais, 61; Grove-Karcher, 73)
Tools — Center of Mass

- Center of mass: M cpct. Riem., $P(M) :=$ space of prob. measures on M. $\forall \mu \in P(M)$, the minimum point of the function,

$$x \to \int_M \frac{1}{2} d(x, y)^2 \mu,$$

is called the center of mass of μ.

- Let $\rho = \text{Convrad}(M)$. $\Rightarrow \forall$ countable subset $A \subset B_\rho(x)$ has a unique center of mass.

Lem. (Palais, 61; Grove-Karcher, 73)

M Riem., G cpct. Lie group,
Tools — Center of Mass

• Center of mass: \mathcal{M} cpct. Riem., $\mathcal{P}(\mathcal{M}) := \text{space of prob. measures on } \mathcal{M}$. $\forall \mu \in \mathcal{P}(\mathcal{M})$, the minimum point of the function,

$$x \rightarrow \int_{\mathcal{M}} \frac{1}{2}d(x, y)^2 \mu,$$

is called the center of mass of μ.

• Let $\rho = \text{Convrad}(\mathcal{M})$. $\Rightarrow \forall$ countable subset $A \subset B_{\rho}(x)$ has a unique center of mass.

Lem. (Palais, 61; Grove-Karcher, 73)

\mathcal{M} Riem., \mathcal{G} cpct. Lie group, two \mathcal{G}-actions on \mathcal{M}; one by isometries.
Tools — Center of Mass

- Center of mass: M cpct. Riem., $P(M) :=$ space of prob. measures on M. $\forall \mu \in P(M)$, the minimum point of the function,

$$x \rightarrow \int_M \frac{1}{2} d(x, y)^2 \mu,$$

is called the center of mass of μ.

- Let $\rho = \text{Convrad}(M)$. $\Rightarrow \forall$ countable subset $A \subset B_\rho(x)$ has a unique center of mass.

Lem. (Palais, 61; Grove-Karcher, 73)

M Riem., G cpct. Lie group, two G-actions on M; one by isometries. If two G-action are C^0-close relative to bounds on sec_M, $\text{injrad}(M)$,
Tools — Center of Mass

• Center of mass: \(M \) cpt. Riem., \(P(M) := \) space of prob. measures on \(M \). \(\forall \mu \in P(M) \), the minimum point of the function,

\[
x \rightarrow \int_M \frac{1}{2} d(x, y)^2 \mu,
\]

is called the center of mass of \(\mu \).

• Let \(\rho = \text{Convrad}(M) \). \(\Rightarrow \forall \) countable subset \(A \subset B_\rho(x) \) has a unique center of mass.

Lem. (Palais, 61; Grove-Karcher,73)

\(M \) Riem., \(G \)cpt. Lie group, two \(G \)-actions on \(M \); one by isometries. If two \(G \)-action are \(C^0 \)-close relative to bounds on \(\text{sec}_M \), \(\text{injrad}(M) \), \(\Rightarrow \) two \(G \)-actions are conjugate.
Tools — Equivariant GH-Convergence

Lem. Given \((X_i, p_i)\) GH-\(\rightarrow\) \((X, p)\), \(G_i\) closed subgp. of Isom \((X_i)\), \(\Rightarrow\) \((X_i, p_i, \Gamma_i)\) GH-\(\rightarrow\) \((X, p, G)\), closed subgp. \(G \subset\) Isom \((X)\).

Lem. If \((X_i, p_i, \Gamma_i)\) GH-\(\rightarrow\) \((X, p, G)\), \(\Rightarrow\) \((X_i/\Gamma_i, \bar{p}_i)\) GH-\(\rightarrow\) \((X/G, \bar{p})\).

Lem. Given \((\tilde{X}_i, \tilde{p}_i, \Gamma_i)\) GH-\(\rightarrow\) \((\tilde{X}, \tilde{p}, G)\) \(\mid \downarrow \pi_i \downarrow \mid \downarrow \pi\) \((X_i, p_i)\) GH-\(\rightarrow\) \(X = (X, p)\), \((X_i\text{ is cpct.})\) \(\Rightarrow\exists \epsilon > 0\) s.t. \(\Gamma_i(\epsilon)/\Gamma_i \sim = G/G_0\).
Tools — Equivariant GH-Convergence

- Equivariant GH convergence (Fukaya-Yamaguchi, 91).

Lem.
Given \((X_i, p_i)\) GH \(\to\) \((X, p)\), closed subgp. of Isom \((X_i)\), \(\implies\) \((X_i, p_i, \Gamma_i)\) GH \(\to\) \((X, p, G)\), closed subgp. \(G \subset\) Isom \((X)\).

Lem.
If \((X_i, p_i, \Gamma_i)\) GH \(\to\) \((X, p, G)\), \(\implies\) \((X_i/\Gamma_i, \bar{p}_i)\) GH \(\to\) \((X/G, \bar{p})\).

Lem.
Given \((\tilde{X}_i, \tilde{p}_i, \Gamma_i)\) GH \(\to\) \((\tilde{X}, \tilde{p}, G)\) \(\downarrow\) \((X_i, p_i)\) GH \(\to\) \((X, p)\) \(=\) \((\tilde{X}, \tilde{p})\), \((X_i\text{ is cpc})\), \(\exists\) \(\epsilon > 0\) s.t. \(\Gamma_i(\epsilon)/\Gamma_i = G/G_0\).
Tools — Equivariant GH-Convergence

• Equivariant GH convergence (Fukaya-Yamaguchi, 91).

Lem. Given $(X_i, p_i) \xrightarrow{GH} (X, p)$, G_i closed subgp. of Isom(X_i),
Tools — Equivariant GH-Convergence

- Equivariant GH convergence (Fukaya-Yamaguchi, 91).

Lem. Given \((X_i, p_i) \overset{GH}{\longrightarrow} (X, p), G_i \text{ closed subgp. of } \text{Isom}(X_i),\)
\Rightarrow (X_i, p_i, \Gamma_i) \overset{GH}{\longrightarrow} (X, p, G), \text{ closed subgp. } G \subset \text{Isom}(X).
Tools — Equivariant GH-Convergence

• Equivariant GH convergence (Fukaya-Yamaguchi, 91).

Lem. Given \((X_i, p_i) \overset{GH}{\rightarrow} (X, p), G_i \text{ closed subgp. of Isom}(X_i),\)
 \(\Rightarrow (X_i, p_i, \Gamma_i) \overset{GH}{\rightarrow} (X, p, G), \text{ closed subgp. } G \subset \text{Isom}(X).\)

Lem.
If \((X_i, p_i, \Gamma_i) \overset{GH}{\rightarrow} (X, p, G),\)
Tools — Equivariant GH-Convergence

- Equivariant GH convergence (Fukaya-Yamaguchi, 91).

Lem. Given \((X_i, p_i) \xrightarrow{GH} (X, p)\), \(G_i\) closed subgp. of \(\text{Isom}(X_i)\),
\[\Rightarrow (X_i, p_i, \Gamma_i) \xrightarrow{GH} (X, p, G)\), closed subgp. \(G \subset \text{Isom}(X)\).

Lem.
If \((X_i, p_i, \Gamma_i) \xrightarrow{GH} (X, p, G)\),
\[\Rightarrow (X_i/\Gamma_i, \bar{p}_i) \xrightarrow{GH} (X/G, \bar{p})\].

Tools — Equivariant GH-Convergence

- Equivariant GH convergence (Fukaya-Yamaguchi, 91).

Lem. Given \((X_i, p_i) \overset{GH}{\rightarrow} (X, p)\), \(G_i\) closed subgp. of \(\text{Isom}(X_i)\), \(\Rightarrow (X_i, p_i, \Gamma_i) \overset{GH}{\rightarrow} (X, p, G)\), closed subgp. \(G \subset \text{Isom}(X)\).

Lem.
If \((X_i, p_i, \Gamma_i) \overset{GH}{\rightarrow} (X, p, G)\), \(\Rightarrow (X_i/\Gamma_i, \bar{p}_i) \overset{GH}{\rightarrow} (X/G, \bar{p})\).

Lem. Given

\[
\begin{align*}
(\tilde{X}_i, \tilde{p}_i, \Gamma_i) & \overset{GH}{\rightarrow} (\tilde{X}, \tilde{p}, G) \\
\downarrow \pi_i & \quad \quad \downarrow \pi \\
(X_i, p_i) & \overset{GH}{\rightarrow} X = (X, p),
\end{align*}
\]
- Equivariant GH convergence (Fukaya-Yamaguchi, 91).

Lem. Given \((X_i, p_i) \xrightarrow{GH} (X, p)\), \(G_i\) closed subgp. of \(\text{Isom}(X_i)\),
\[\Rightarrow (X_i, p_i, \Gamma_i) \xrightarrow{GH} (X, p, G),\] closed subgp. \(G \subset \text{Isom}(X)\).

Lem.
If \((X_i, p_i, \Gamma_i) \xrightarrow{GH} (X, p, G)\),
\[\Rightarrow (X_i/\Gamma_i, \bar{p}_i) \xrightarrow{GH} (X/G, \bar{p}).\]

Lem.
Given
\[
\begin{align*}
(\tilde{X}_i, \tilde{p}_i, \Gamma_i) & \xrightarrow{GH} (\tilde{X}, \tilde{p}, G) \\
\downarrow \pi_i & \quad \downarrow \pi \\
(X_i, p_i) & \xrightarrow{GH} X = (X, p),
\end{align*}
\]
(X is cpct.)
Tools — Equivariant GH-Convergence

- Equivariant GH convergence (Fukaya-Yamaguchi, 91).

Lem. Given $(X_i, p_i) \xrightarrow{GH} (X, p)$, G_i closed subgp. of $\text{Isom}(X_i)$, $\Rightarrow (X_i, p_i, \Gamma_i) \xrightarrow{GH} (X, p, G)$, closed subgp. $G \subset \text{Isom}(X)$.

Lem.

If $(X_i, p_i, \Gamma_i) \xrightarrow{GH} (X, p, G)$, $\Rightarrow (X_i/\Gamma_i, \bar{p}_i) \xrightarrow{GH} (X/G, \bar{p})$.

Lem. Given

$$
(\tilde{X}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{GH} (\tilde{X}, \tilde{p}, G) \\
\downarrow \pi_i \quad \quad \quad \downarrow \pi \\
(X_i, p_i) \xrightarrow{GH} X = (X, p),
$$

$\Rightarrow \exists \epsilon > 0$ s.t. $\Gamma_i(\epsilon) \triangleleft \Gamma_i$.

Duke University Workshop on The Structure of Collapsed Special Holonomy Space, April 11, 2018
Tools — Equivariant GH-Convergence

- Equivariant GH convergence (Fukaya-Yamaguchi, 91).

Lem. Given \((X_i, p_i) \xrightarrow{GH} (X, p), G_i\) closed subgp. of \(\text{Isom}(X_i)\),

\[(X_i, p_i, \Gamma_i) \xrightarrow{GH} (X, p, G), \text{closed subgp. } G \subset \text{Isom}(X). \]

Lem. If \((X_i, p_i, \Gamma_i) \xrightarrow{GH} (X, p, G), \Rightarrow (X_i/\Gamma_i, \bar{p}_i) \xrightarrow{GH} (X/G, \bar{p}).\)

Lem. Given

\[
\begin{align*}
(\tilde{X}_i, \tilde{p}_i, \Gamma_i) & \xrightarrow{GH} (\tilde{X}, \tilde{p}, G) \\
\downarrow \pi_i & \quad \downarrow \pi \\
(X_i, p_i) & \xrightarrow{GH} X = (X, p),
\end{align*}
\]

\[\Rightarrow \exists \epsilon > 0 \text{ s.t. } \Gamma_i(\epsilon) \triangleleft \Gamma_i, \Gamma_i/\Gamma_i(\epsilon) \cong G/G_0. \]
Construction of N-Structures via $\tilde{r}_h^\alpha(B_\rho(x)) \geq \delta(\rho)$
Construction of N-Structures via $\tilde{r}_h^\alpha(B_\rho(x)) \geq \delta(\rho)$

Thm. (Local rewinding Harmonic radius bounded below)

$\exists \epsilon(n, \rho) > 0$ s.t. if a compact n-manifold M satisfies

$\tilde{r}_h^\alpha(B_\rho(x)) \geq \delta(\rho) > 0, \quad \text{diam}(M) < \epsilon(n, \nu),$

$\Rightarrow M$ is diffeo. to an infra-nilmanifold.
Sketch of Proof of Thm
Sketch of Proof of Thm

\[(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{GH} (\tilde{X}, \tilde{p}, G)\]

\[\downarrow \pi_i \quad \downarrow \pi\]

\[M_i \xrightarrow{GH} \text{pt.}\]

Because \(\text{vol}(B_1(\tilde{p}_i)) \geq v\), \(\Rightarrow \dim H(\tilde{X}) = n\), and \(G\) acts transitively on \(\tilde{X}\). \(\Rightarrow \) all points in \(\tilde{X}\) are regular.

\[(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C_\alpha} (\tilde{X}, \tilde{p}, G)\]

\[\downarrow \pi_i \quad \downarrow \pi\]

\[r_i - 1 \xrightarrow{C_\alpha} (R^n, \tilde{p}', G')\]

\[M_i \xrightarrow{GH} \text{pt.}\]
Sketch of Proof of Thm

\[(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{GH} (\tilde{X}, \tilde{p}, G)\]

\[\downarrow \pi_i \quad \downarrow \pi\]

\[M_i \xrightarrow{GH} \text{pt.}\]

Because \(\text{vol}(B_1(\tilde{p}_i)) \geq v\),
Sketch of Proof of Thm

$$(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{GH} (\tilde{X}, \tilde{p}, G)$$

$$M_i \xrightarrow{GH} \text{ pt.}$$

Because $\text{vol}(B_1(\tilde{p}_i)) \geq v$, $\Rightarrow \dim_H(\tilde{X}) = n$, and G acts transitively on \tilde{X}.
Sketch of Proof of Thm

\[(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{GH} (\tilde{X}, \tilde{p}, G)\]

\[
\begin{array}{c}
M_i \xrightarrow{GH} \text{pt.} \\
\pi_i \downarrow \quad \downarrow \pi
\end{array}
\]

Because \(\text{vol}(B_1(\tilde{p}_i)) \geq v\), \(\Rightarrow \) \(\dim_H(\tilde{X}) = n\), and \(G\) acts transitively on \(\tilde{X}\). \(\Rightarrow \) all points in \(\tilde{X}\) are regular.
Sketch of Proof of Thm

\[(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{GH} (\tilde{X}, \tilde{p}, G)\]

\[\downarrow \pi_i \quad \quad \quad \downarrow \pi\]

\[M_i \xrightarrow{GH} \text{pt.}\]

Because \(\text{vol}(B_1(\tilde{p}_i)) \geq v\), \(\Rightarrow \dim_H(\tilde{X}) = n\), and \(G\) acts transitively on \(\tilde{X}\). \(\Rightarrow\) all points in \(\tilde{X}\) are regular. \(\Rightarrow\)

\[(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\tilde{X}, \tilde{p}, G)\]

\[\downarrow \pi_i \quad \quad \quad \downarrow \pi\]

\[M_i \xrightarrow{GH} \text{pt.}\]
Sketch of Proof of Thm

\[(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{GH} (\tilde{X}, \tilde{p}, G) \]

\[
\begin{array}{c}
\downarrow \pi_i \\
M_i
\end{array}
\begin{array}{c}
\downarrow \pi \\
\text{pt.}
\end{array}
\]

Because \(\text{vol}(B_1(\tilde{p}_i)) \geq v\), \(\Rightarrow\) \(\dim_H(\tilde{X}) = n\), and \(G\) acts transitively on \(\tilde{X}\). \(\Rightarrow\) all points in \(\tilde{X}\) are regular. \(\Rightarrow\)

\[(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\tilde{X}, \tilde{p}, G) \quad (r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G') \]

\[
\begin{array}{c}
\downarrow \pi_i \\
M_i
\end{array}
\begin{array}{c}
\downarrow \pi \\
\text{pt.}
\end{array}
\begin{array}{c}
\downarrow \pi_i \\
r_i^{-1} M_i
\end{array}
\begin{array}{c}
\downarrow \pi \\
X
\end{array}
\]

\(r_i \to 0\) as \(i \to \infty\).
Sketch of Proof of Thm

$$(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{GH} (\tilde{X}, \tilde{p}, G)$$

$$\downarrow \pi_i \quad \downarrow \pi$$

Because $\text{vol}(B_1(\tilde{p}_i)) \geq v$, $\Rightarrow \dim_H(\tilde{X}) = n$, and G acts transitively on \tilde{X}. \Rightarrow all points in \tilde{X} are regular. \Rightarrow

$$(\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\tilde{X}, \tilde{p}, G) \quad (r_i^{-1}\tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G')$$

$$\downarrow \pi_i \quad \downarrow \pi \quad \Rightarrow \quad \downarrow \pi_i \quad \downarrow \pi$$

$M_i \xrightarrow{GH} \text{pt.} \quad r_i^{-1}M_i \xrightarrow{GH} X,$

where $r_i = \text{diam}(M_i) \to 0$ as $i \to \infty$.
Sketch of Proof of Thm

\[
(r_i^{-1} \hat{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G)
\]

\[
r_i^{-1} \hat{M}_i \xrightarrow{GH} T^k.
\]
Sketch of Proof of Thm

\[(r_i^{-1} \hat{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G)\]

\[\Rightarrow \quad \downarrow \pi_i \quad \quad \downarrow \pi \]

\[r_i^{-1} \hat{M}_i \xrightarrow{GH} T^k.\]

Lem. 2 Let \(M_i \xrightarrow{GH} Y\) (manifold) s.t.
Sketch of Proof of Thm

\[(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G) \]

\[\Rightarrow \quad \downarrow \pi_i \quad \downarrow \pi \]

\[r_i^{-1} \hat{M}_i \xrightarrow{GH} T^k. \]

Lem. 2 Let \(M_i \xrightarrow{GH} Y \) (manifold) s.t.

\[\tilde{r}_h^\alpha(B_\rho(x_i)) \geq \delta > 0, \quad \forall x_i \in M_i. \]
Sketch of Proof of Thm

\[(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G)\]

\[\Rightarrow \quad \downarrow \pi_i \quad \downarrow \pi \quad \rightarrow \quad \tilde{r}_i^{-1} \hat{M}_i \xrightarrow{GH} T^k.\]

Lem. 2 Let \(M_i \xrightarrow{GH} Y\) (manifold) s.t.

\[\tilde{r}_h^\alpha (B_\rho (x_i)) \geq \delta > 0, \quad \forall x_i \in M_i.\]

\[\Rightarrow \quad \exists \text{ a fiber bundle, } M_i, 1 \rightarrow M_i \xrightarrow{f_i} Y, \text{ s.t.}\]
Sketch of Proof of Thm

\[(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G)\]

\[\Rightarrow \quad \tilde{r}^\alpha_{\gamma} \left(B_{\rho}(x_i) \right) \geq \delta > 0, \quad \forall x_i \in M_i.\]

Lem. 2 Let \(M_i \xrightarrow{GH} Y \) (manifold) s.t.

\[\Rightarrow \exists \text{ a fiber bundle, } M_{i,1} \to M_i \xrightarrow{f_i} Y, \text{ s.t. }\]

\[\tilde{r}^\alpha_{\gamma}(M_{i,1}) \geq \delta'(\rho, \delta),\]
Sketch of Proof of Thm

\[
(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G)
\]

\[
\Rightarrow \quad \downarrow \pi_i \quad \downarrow \pi
\]

\[
r_i^{-1} \hat{M}_i \xrightarrow{GH} T^k.
\]

Lem. 2 Let \(M_i \xrightarrow{GH} Y \) (manifold) s.t.

\[
\tilde{r}_h^\alpha(B_\rho(x_i)) \geq \delta > 0, \quad \forall x_i \in M_i.
\]

\[
\Rightarrow \exists \text{ a fiber bundle, } M_{i,1} \rightarrow M_i \xrightarrow{f_i} Y, \text{ s.t.}
\]

\[
\tilde{r}_h^\alpha(M_{i,1}) \geq \delta'(\rho, \delta), \quad \text{diam}(M_{i,1}) \rightarrow 0.
\]
Sketch of Proof of Thm

\[(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G) \]

\[\Rightarrow \quad \downarrow \pi_i \downarrow \pi \]

\[r_i^{-1} \hat{M}_i \xrightarrow{GH} T^k. \]

Lem. 2 Let \(M_i \xrightarrow{GH} Y \) (manifold) s.t.

\[\tilde{r}_h^\alpha(B_\rho(x_i)) \geq \delta > 0, \quad \forall x_i \in M_i. \]

\[\Rightarrow \exists \text{ a fiber bundle, } M_{i,1} \to M_i \xrightarrow{f_i} Y, \text{ s.t.} \]

\[\tilde{r}_h^\alpha(M_{i,1}) \geq \delta'(\rho, \delta), \quad \text{diam}(M_{i,1}) \to 0. \]

Proof. (i) Assume \(\delta = \text{convrad}(T^k) < \rho. \)
Sketch of Proof of Thm

\[(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G)\]

\[\Rightarrow \quad \downarrow \pi_i \quad \quad \downarrow \pi\]

\[r_i^{-1} \hat{M}_i \xrightarrow{GH} T^k.\]

Lem. 2 Let \(M_i \xrightarrow{GH} Y \) (manifold) s.t.

\[\tilde{r}_h^\alpha(B_\rho(x_i)) \geq \delta > 0, \quad \forall x_i \in M_i.\]

\[\Rightarrow \exists \text{ a fiber bundle}, \ M_{i,1} \rightarrow M_i \xrightarrow{f_i} Y, \ s.t.\]

\[\tilde{r}_h^\alpha(M_{i,1}) \geq \delta'(\rho, \delta), \quad \text{diam}(M_{i,1}) \rightarrow 0.\]

Proof. (i) Assume \(\delta = \text{con} \\text{vrad}(T^k) < \rho \). Averaging diffeo.

\[\tilde{f}_i : B_1(\tilde{p}_i) \rightarrow B_1(\tilde{p}) \ \text{over} \ \Gamma_i(x) \cap B_1(\tilde{p}_i),\]
Sketch of Proof of Thm

\[(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G)\]

\[\Rightarrow \quad \downarrow \pi_i \quad \downarrow \pi \quad r_i^{-1} \hat{M}_i \xrightarrow{GH} T^k.\]

Lem. 2 Let \(M_i \xrightarrow{GH} Y \) (manifold) s.t.

\[\tilde{r}_h^\alpha(B_\rho(x_i)) \geq \delta > 0, \quad \forall x_i \in M_i.\]

\[\Rightarrow \exists \text{ a fiber bundle, } M_{i,1} \rightarrow M_i \xrightarrow{f_i} Y, \text{ s.t.} \]

\[\tilde{r}_h^\alpha(M_{i,1}) \geq \delta'(\rho, \delta), \quad \text{diam}(M_{i,1}) \rightarrow 0.\]

Proof. (i) Assume \(\delta = \text{convrad}(T^k) < \rho. \) Averaging diffeo.

\(\tilde{f}_i : B_1(\tilde{p}_i) \rightarrow B_1(\tilde{p})\) over \(\Gamma_i(x) \cap B_1(\tilde{p}_i), \Rightarrow f_i : B_{\frac{\rho}{2}}(x_i) \rightarrow T^k.\)
Sketch of Proof of Thm

\[
(r_i^{-1}\hat{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G)
\]

⇒ \[
\begin{array}{c}
\downarrow \pi_i \\
\end{array}
\]

\[
r_i^{-1}\hat{M}_i \xrightarrow{GH} T^k.
\]

Lem. 2 Let \(M_i \xrightarrow{GH} Y\) (manifold) s.t.

\[\tilde{r}_h^\alpha(B_\rho(x_i)) \geq \delta > 0, \quad \forall x_i \in M_i.\]

⇒ \exists a fiber bundle, \(M_i,1 \to M_i \xrightarrow{f_i} Y\), s.t.

\[\tilde{r}_h^\alpha(M_i,1) \geq \delta'(\rho, \delta), \quad \text{diam}(M_i,1) \to 0.\]

Proof. (i) Assume \(\delta = \text{convrad}(T^k) < \rho\). Averaging diffeo.

\(\tilde{f}_i : B_1(\tilde{p}_i) \to B_1(\tilde{p})\) over \(\Gamma_i(x) \cap B_1(\tilde{p}_i), \Rightarrow f_i : B_{\rho/2}(x_i) \to T^k.\)

(ii) Cover \(T^k\) with finite \(B_{\rho/2}(z_i),\)
Sketch of Proof of Thm

\[(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G)\]

\[
\Rightarrow \\
\downarrow \pi_i \\
\tilde{r}_i^{-1} \hat{M}_i \xrightarrow{GH} T^k.
\]

Lem. 2 Let \(M_i \xrightarrow{GH} Y \) (manifold) s.t.

\[\tilde{r}_h^\alpha(B_\rho(x_i)) \geq \delta > 0, \quad \forall x_i \in M_i.\]

\[
\Rightarrow \exists \text{ a fiber bundle, } M_{i,1} \rightarrow M_i \xrightarrow{f_i} Y, \text{ s.t.} \\
\tilde{r}_h^\alpha(M_{i,1}) \geq \delta'(\rho, \delta), \quad \text{diam}(M_{i,1}) \rightarrow 0.
\]

Proof. (i) Assume \(\delta = \text{convrad}(T^k) < \rho \). Averaging diffeo.

\[\tilde{f}_i : B_1(\tilde{p}_i) \rightarrow B_1(\tilde{p}) \text{ over } \Gamma_i(x) \cap B_1(\tilde{p}_i), \Rightarrow f_i : B_{\frac{\rho}{2}}(x_i) \rightarrow T^k.\]

(ii) Cover \(T^k \) with finite \(B_{\frac{\rho}{2}}(z_i) \), by (i) \(\Rightarrow B_{\frac{\rho}{2}}(x_{ij}) \xrightarrow{f_{ij}} B_{\frac{\rho}{2}}(z_i)\).
Sketch of Proof of Thm

\[
(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G) \\
\Rightarrow \quad \downarrow \pi_i \quad \downarrow \pi \\
(r_i^{-1} \hat{M}_i) \xrightarrow{GH} T^k.
\]

Lem. 2 Let \(M_i \xrightarrow{GH} Y \) (manifold) s.t.

\[
\tilde{r}_h^\alpha (B_\rho(x_i)) \geq \delta > 0, \quad \forall x_i \in M_i.
\]

\(\Rightarrow \) \(\exists \) a fiber bundle, \(M_{i,1} \rightarrow M_i \xrightarrow{f_i} Y \), s.t.

\[
\tilde{r}_h^\alpha (M_{i,1}) \geq \delta'(\rho, \delta), \quad \text{diam}(M_{i,1}) \rightarrow 0.
\]

Proof. (i) Assume \(\delta = \text{conrad}(T^k) < \rho \). Averaging diffeo.

\(\tilde{f}_i : B_1(\tilde{p}_i) \rightarrow B_1(\tilde{p}) \) over \(\Gamma_i(x) \cap B_1(\tilde{p}_i) \), \(\Rightarrow \) \(f_i : B_{\rho/2}(x_i) \rightarrow T^k \).

(ii) Cover \(T^k \) with finite \(B_{\rho/2}(z_i) \), by (i) \(\Rightarrow \) \(B_{\rho/2}(x_{ij}) \xrightarrow{f_{ij}} B_{\rho/2}(z_i) \).

Gluing together \(\{f_{ij}\} \), via center of mass,
Sketch of Proof of Thm

\[(r_i^{-1} \tilde{M}_i, \tilde{p}_i, \Gamma_i) \xrightarrow{C^\alpha} (\mathbb{R}^n, \tilde{p}', G) \]

\[\Rightarrow \quad \xrightarrow{\pi_i} \quad \xrightarrow{\pi} \quad r_i^{-1} \hat{M}_i \xrightarrow{GH} T^k. \]

Lem. 2 Let \(M_i \xrightarrow{GH} Y \) (manifold) s.t.

\[\tilde{r}_h^\alpha(B_\rho(x_i)) \geq \delta > 0, \quad \forall x_i \in M_i. \]

\[\Rightarrow \exists \text{ a fiber bundle, } M_{i,1} \rightarrow M_i \xrightarrow{f_i} Y, \text{ s.t.} \]

\[\tilde{r}_h^\alpha(M_{i,1}) \geq \delta'(\rho, \delta), \quad \text{diam}(M_{i,1}) \rightarrow 0. \]

Proof. (i) Assume \(\delta = \text{con} \text{rad}(T^k) < \rho \). Averaging diffeo.

\[\tilde{f}_i : B_1(\tilde{p}_i) \rightarrow B_1(\tilde{p}) \text{ over } \Gamma_i(x) \cap B_1(\tilde{p}_i), \Rightarrow f_i : B_{\frac{\rho}{2}}(x_i) \rightarrow T^k. \]

(ii) Cover \(T^k \) with finite \(B_{\frac{\rho}{2}}(z_i) \), by (i) \(\Rightarrow B_{\frac{\rho}{2}}(x_{ij}) \xrightarrow{f_{ij}} B_{\frac{\rho}{2}}(z_i). \)

Gluing together \{f_{ij}\}, via center of mass, \(\Rightarrow f_i : \hat{M}_i \rightarrow T^k. \) \(\square \)
Sketch of Proof of Thm

- Almost a tower of fibrations over tori (by Lem. 2).
Sketch of Proof of Thm

● Almost a tower of fibrations over tori (by Lem. 2).

\[\mathcal{M}_1 \to \hat{\mathcal{M}} \to T^{k_1}, \]
Sketch of Proof of Thm

- Almost a tower of fibrations over tori (by Lem. 2).

\[M_1 \to \hat{M} \to T^{k_1}, \quad M_2 \to \hat{M}_1 \to T^{k_2}, \]
Sketch of Proof of Thm

- Almost a tower of fibrations over tori (by Lem. 2).

\[M_1 \to \hat{M} \to T^{k_1}, \ M_2 \to \hat{M}_1 \to T^{k_2}, \ldots, \]
Sketch of Proof of Thm

- Almost a tower of fibrations over tori (by Lem. 2).

\[M_1 \to \hat{M} \to T^{k_1}, \quad M_2 \to \hat{M}_1 \to T^{k_2}, \quad \cdots, \quad \{pt\} \to \hat{M}_s \to T^{k_s}. \]
Sketch of Proof of Thm

- Almost a tower of fibrations over tori (by Lem. 2).

\[M_1 \to \hat{M} \to T^{k_1}, \; M_2 \to \hat{M}_1 \to T^{k_2}, \; \cdots, \; \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]

Lem. 3 \(M \) admits the bundles over tori,
Sketch of Proof of Thm

- Almost a tower of fibrations over tori (by Lem. 2).

\[M_1 \rightarrow \hat{M} \rightarrow T^{k_1}, \ M_2 \rightarrow \hat{M}_1 \rightarrow T^{k_2}, \ \cdots, \ \{\text{pt}\} \rightarrow \hat{M}_s \rightarrow T^{k_s}. \]

Lem. 3 \(M \) admits the bundles over tori, \(\Rightarrow \hat{M} \equiv \mathbb{R}^n. \)
Sketch of Proof of Thm

- Almost a tower of fibrations over tori (by Lem. 2).

\[M_1 \to \hat{M} \to T^{k_1}, \ M_2 \to \hat{M}_1 \to T^{k_2}, \ldots, \ \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]

Lem. 3 \(M \) admits the bundles over tori, \(\Rightarrow \hat{M} \ \text{diffeo} \sim \mathbb{R}^n. \)

Proof. Induction on \(s \), starting \(s = 2: \ T^{k_1} \to M \to T^{k_2}. \)

\[
\begin{array}{ccc}
T^{k_1} & \longrightarrow & \pi^* \hat{M} \longrightarrow \mathbb{R}^k \\
\downarrow \text{id} & \downarrow \pi_i & \downarrow \pi \\
T^{k_1} & \longrightarrow & \hat{M} \longrightarrow \text{GH} \longrightarrow T^k.
\end{array}
\]
Sketch of Proof of Thm

- Almost a tower of fibrations over tori (by Lem. 2).

\[M_1 \to \hat{M} \to T^{k_1}, \ M_2 \to \hat{M}_1 \to T^{k_2}, \ldots, \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]

Lem. 3 \(M \) admits the bundles over tori, \(\Rightarrow \hat{M} \cong \mathbb{R}^n. \)

Proof. Induction on \(s \), starting \(s = 2: T^{k_1} \to M \to T^{k_2}. \)

\[
\begin{array}{ccc}
T^{k_1} & \longrightarrow & \pi^* \hat{M} \\
\downarrow \text{id} & & \downarrow \pi_i \\
T^{k_1} & \longrightarrow & \hat{M}
\end{array}
\]

\[\Rightarrow \
\begin{array}{ccc}
\pi^* \hat{M} & \cong & \mathbb{R}^k \times T^{k_1}, \\
\end{array}
\]

Duke University Workshop on The Structure of Collapsed Special Holonomy Space, April 11, 2018
Sketch of Proof of Thm

- Almost a tower of fibrations over tori (by Lem. 2).

\[\mathcal{M}_1 \to \hat{\mathcal{M}} \to T^{k_1}, \mathcal{M}_2 \to \hat{\mathcal{M}}_1 \to T^{k_2}, \ldots, \{\text{pt}\} \to \hat{\mathcal{M}}_s \to T^{k_s}. \]

Lem. 3 \(\mathcal{M} \) admits the bundles over tori, \(\Rightarrow \hat{\mathcal{M}} \diffeo \simeq \mathbb{R}^n. \)

Proof. Induction on \(s \), starting \(s = 2: T^{k_1} \to \mathcal{M} \to T^{k_2}. \)

\[
\begin{array}{ccc}
T^{k_1} & \longrightarrow & \pi^* \hat{\mathcal{M}} \longrightarrow \mathbb{R}^k \\
\downarrow \text{id} & & \downarrow \pi_i & & \downarrow \pi \\
T^{k_1} & \longrightarrow & \hat{\mathcal{M}} & \overset{\text{GH}}{\longrightarrow} & T^k.
\end{array}
\]

\[
\Rightarrow \pi^* \hat{\mathcal{M}} \simeq \mathbb{R}^k \times T^{k_1},
\]

By induction, \(\Rightarrow \hat{\mathcal{M}}_1 \diffeo \simeq \mathbb{R}^m. \)
Sketch of Proof of Thm

Almost a tower of fibrations over tori (by Lem. 2).

\[M_1 \to \hat{M} \to T^{k_1}, \; M_2 \to \hat{M}_1 \to T^{k_2}, \; \cdots, \; \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]

Lem. 3 \(M \) admits the bundles over tori, \(\Rightarrow \hat{M} \; \text{diffeo} \sim \; \mathbb{R}^n. \)

Proof. Induction on \(s \), starting \(s = 2: \; T^{k_1} \to M \to T^{k_2}. \)

\[
\begin{array}{ccc}
T^{k_1} & \longrightarrow & \pi^* \hat{M} \\
\downarrow \text{id} & & \downarrow \pi_i \\
T^{k_1} & \longrightarrow & \hat{M} \\
 & & \xrightarrow{GH} \\
 & & T^k.
\end{array}
\]

\[\Rightarrow \pi^* \hat{M} \simeq \mathbb{R}^k \times T^{k_1}, \]

By induction, \(\Rightarrow \hat{M}_1 \; \text{diffeo} \sim \mathbb{R}^m. \) Similar to the above, \(\Rightarrow \hat{M} \; \text{diffeo} \sim \mathbb{R}^n. \)
Sketch of Proof of Thm

• Almost a tower of fibrations over tori:

\[M_1 \to \hat{M} \to T^{k_1}, M_2 \to \hat{M}_1 \to T^{k_2}, \ldots, \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]
Sketch of Proof of Thm

- Almost a tower of fibrations over tori:
 \[M_1 \to \hat{M} \to T^{k_1}, \ M_2 \to \hat{M}_1 \to T^{k_2}, \ldots, \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]

Lem. 4 \(\hat{M}_i \) can be chosen s.t. \(\pi_1(\hat{M}_i) \triangleleft \pi_1(\hat{M}), \ 1 \leq i \leq s. \)
Sketch of Proof of Thm

- Almost a tower of fibrations over tori:
 \[M_1 \to \hat{M} \to T^{k_1}, \ M_2 \to \hat{M}_1 \to T^{k_2}, \ldots, \ \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]

Lem. 4 \(\hat{M}_i \) can be chosen s.t. \(\pi_1(\hat{M}_i) \triangleleft \pi_1(\hat{M}), \ 1 \leq i \leq s. \)

Proof. (i) \(\pi_1(M) \) has a set of generators of length \(\leq 3 \text{diam}(M), \)
Sketch of Proof of Thm

- Almost a tower of fibrations over tori:

\[\mathcal{M}_1 \rightarrow \hat{\mathcal{M}} \rightarrow T^{k_1}, \mathcal{M}_2 \rightarrow \hat{\mathcal{M}}_1 \rightarrow T^{k_2}, \ldots, \{\text{pt}\} \rightarrow \hat{\mathcal{M}}_s \rightarrow T^{k_s}. \]

Lemma 4 \(\hat{\mathcal{M}}_i \) can be chosen s.t. \(\pi_1(\hat{\mathcal{M}}_i) \triangleleft \pi_1(\hat{\mathcal{M}}), 1 \leq i \leq s. \)

Proof. (i) \(\pi_1(\mathcal{M}) \) has a set of generators of length \(\leq 3\text{diam}(\mathcal{M}) \),
(ii) \(\pi_1(\mathcal{M}) \) can be generated by short generators of \(\# \leq l(n) \).
Sketch of Proof of Thm

- Almost a tower of fibrations over tori:
 \[M_1 \to \hat{M} \to T^{k_1}, \ M_2 \to \hat{M}_1 \to T^{k_2}, \ldots, \ \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]

Lem. 4 \(\hat{M}_i \) can be chosen s.t. \(\pi_1(\hat{M}_i) \triangleleft \pi_1(\hat{M}), \ 1 \leq i \leq s. \)

Proof. (i) \(\pi_1(M) \) has a set of generators of length \(\leq 3\text{diam}(M), \)
(ii) \(\pi_1(M) \) can be generated by short generators of \(\# \leq l(n). \)
(i) and (ii) \(\Rightarrow \exists \Lambda_1 \triangleleft \pi_1(\hat{M}_1), \)
Sketch of Proof of Thm

• Almost a tower of fibrations over tori:
 \(\mathcal{M}_1 \to \hat{\mathcal{M}} \to \mathcal{T}^{k_1}, \mathcal{M}_2 \to \hat{\mathcal{M}}_1 \to \mathcal{T}^{k_2}, \ldots, \{\text{pt}\} \to \hat{\mathcal{M}}_s \to \mathcal{T}^{k_s} \).

Lem. 4 \(\hat{\mathcal{M}}_i \) can be chosen s.t. \(\pi_1(\hat{\mathcal{M}}_i) \triangleleft \pi_1(\hat{\mathcal{M}}), 1 \leq i \leq s \).

Proof. (i) \(\pi_1(\mathcal{M}) \) has a set of generators of length \(\leq 3\text{diam}(\mathcal{M}) \),
(ii) \(\pi_1(\mathcal{M}) \) can be generated by short generators of \(\# \leq l(n) \).
(i) and (ii) \(\Rightarrow \exists \Lambda_1 \triangleleft \pi_1(\hat{\mathcal{M}}_1), [\pi_1(\hat{\mathcal{M}}_1) : \Lambda_1] \leq C(n, d) \),
Sketch of Proof of Thm

- Almost a tower of fibrations over tori:
 \[M_1 \to \hat{M} \to T^{k_1}, \ M_2 \to \hat{M}_1 \to T^{k_2}, \cdots, \ \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]

Lem. 4 \(\hat{M}_i \) can be chosen s.t. \(\pi_1(\hat{M}_i) \triangleleft \pi_1(\hat{M}), \ 1 \leq i \leq s. \)

Proof. (i) \(\pi_1(M) \) has a set of generators of length \(\leq 3 \text{diam}(M), \)
(ii) \(\pi_1(M) \) can be generated by short generators of \(\# \leq l(n). \)
(i) and (ii) \(\Rightarrow \) \(\exists \Lambda_1 \triangleleft \pi_1(\hat{M}_1), \ [\pi_1(\hat{M}_1) : \Lambda_1] \leq C(n, d), \)

\[
\begin{array}{ccc}
M'_2 & \longrightarrow & \tilde{M}_1/\Lambda_1 \\
\downarrow & & \downarrow \pi \\
M_2 & \longrightarrow & \hat{M}_1 \\
\end{array}
\]

\[
\begin{array}{ccc}
M'_2 & \longrightarrow & \tilde{M}_1/\Lambda_1 \\
\downarrow & & \downarrow \pi \\
M_2 & \longrightarrow & \hat{M}_1 \\
\end{array} \longrightarrow \quad f \quad \longrightarrow \quad T^{k_2}
\]

Duke University Workshop on The Structure of Collapsed Special Holonomy Space, April 11, 2018
Sketch of Proof of Thm

- Almost a tower of fibrations over tori:
 \[M_1 \to \hat{M} \to T^{k_1}, M_2 \to \hat{M}_1 \to T^{k_2}, \ldots, \{\text{pt}\} \to \hat{M}_s \to T^{k_s}. \]

Lem. 4 \(\hat{M}_i \) can be chosen s.t. \(\pi_1(\hat{M}_i) \triangleleft \pi_1(\hat{M}), 1 \leq i \leq s \).

Proof. (i) \(\pi_1(M) \) has a set of generators of length \(\leq 3\text{diam}(M) \),
(ii) \(\pi_1(M) \) can be generated by short generators of \# \(\leq l(n) \).
(i) and (ii) \(\Rightarrow \exists \Lambda_1 \triangleleft \pi_1(\hat{M}_1), [\pi_1(\hat{M}_1) : \Lambda_1] \leq C(n, d), \)

\[
\begin{align*}
 M_2' & \longrightarrow \tilde{M}_1/\Lambda_1 \quad \xrightarrow{f} \quad T^{k_2} \\
 \downarrow & \quad \downarrow \pi \quad \downarrow \\
 M_2 & \longrightarrow \hat{M}_1 \quad \xrightarrow{f} \quad T^{k_2}. \\
\end{align*}
\]

\(\Rightarrow M_1 \to \hat{M} \to T^{k_1} \) and \(M_2' \to \tilde{M}_1/\Lambda_1 \to T^{k_2} \) satisfies
\[
\pi_1(M_1) \triangleleft \pi_1(\hat{M}),
\]
Sketch of Proof of Thm

- Almost a tower of fibrations over tori:
 \[M_1 \rightarrow \hat{M} \rightarrow T^{k_1}, \quad M_2 \rightarrow \hat{M}_1 \rightarrow T^{k_2}, \ldots, \{\text{pt}\} \rightarrow \hat{M}_s \rightarrow T^{k_s}. \]

Lem. 4 \(\hat{M}_i \) can be chosen s.t. \(\pi_1(\hat{M}_i) \triangleleft \pi_1(\hat{M}), \ 1 \leq i \leq s. \)

Proof. (i) \(\pi_1(M) \) has a set of generators of length \(\leq 3 \text{diam}(M) \),
(ii) \(\pi_1(M) \) can be generated by short generators of \(\# \leq l(n) \).
(i) and (ii) \(\Rightarrow \exists \Lambda_1 \triangleleft \pi_1(\hat{M}_1), [\pi_1(\hat{M}_1) : \Lambda_1] \leq C(n, d), \)
\[
\begin{array}{ccc}
M'_2 & \longrightarrow & \tilde{M}_1/\Lambda_1 \\
\downarrow & & \downarrow \pi \\
M_2 & \longrightarrow & \hat{M}_1
\end{array}
\xrightarrow{f} \quad T^{k_2}
\]
\[
\begin{array}{ccc}
M'_2 & \longrightarrow & \tilde{M}_1/\Lambda_1 \\
\downarrow & & \downarrow \pi \\
M_2 & \longrightarrow & \hat{M}_1
\end{array}
\xrightarrow{f} \quad T^{k_2}.
\]
\(\Rightarrow M_1 \rightarrow \hat{M} \rightarrow T^{k_1} \) and \(M'_2 \rightarrow \tilde{M}_1/\Lambda_1 \rightarrow T^{k_2} \) satisfies
\[
\pi_1(M_1) \triangleleft \pi_1(\hat{M}), \quad \pi_1(\tilde{M}/\Lambda_1) \triangleleft \pi_1(\hat{M}).
\]
Sketch of Proof of Thm

Let $K_i = \ker(\phi_i)/\pi_1(M)$. By Lem. 4, $|\pi_1(\hat{M})/K_i| = a_i$. Let $K = \bigcap_{i=1}^{s} K_i/\pi_1(M)$. Then $[\pi_1(\hat{M}) : K] \leq a_1 \cdots a_s < \infty$.

Let $\hat{M} = \tilde{M}/K$. This gives a tower of bundles over tori: $M_1 \to \hat{M} \to T_{k_1}$, $M_2 \to M_1 \to T_{k_2}$, \cdots, $M_s \to M_{s-1} \to T_{k_s}$, s.t. $\phi_i : \pi_1(M) \to \Aut(\pi_1(M_i)/\pi_1(M_i+1))$ is trivial.
Sketch of Proof of Thm

\[\phi_i : \pi_1(\hat{M}) \to \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})), \]
Sketch of Proof of Thm

\[\phi_i : \pi_1(\hat{M}) \to \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})) \], by conjugation.
Sketch of Proof of Thm

$\Rightarrow \phi_i : \pi_1(\hat{M}) \rightarrow \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1}))$, by conjugation.

Lem. 5 $\text{Im}(\phi_i)$ is finite.
Sketch of Proof of Thm

\[\phi_i : \pi_1(\hat{M}) \rightarrow \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})), \] by conjugation.

Lem. 5 \(\text{Im}(\phi_i) \) is finite.

Completion of proof of Thm:

Let \(K_i = \ker(\phi_i) \lhd \pi_1(M) \).
Sketch of Proof of Thm

\[\Rightarrow \phi_i : \pi_1(\hat{M}) \to \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})) \], by conjugation.

Lem. 5 $\text{Im}(\phi_i)$ is finite.

Completion of proof of Thm:

Let $K_i = \ker(\phi_i) \triangleleft \pi_1(M)$. By **Lem. 4** \[|\pi_1(\hat{M})/K_i| = a_i. \]
Sketch of Proof of Thm

⇒ \(\phi_i : \pi_1(\hat{M}) \to \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})) \), by conjugation.

Lem. 5 \(\text{Im}(\phi_i) \) is finite.

Completion of proof of Thm:

Let \(K_i = \ker(\phi_i) \triangleleft \pi_1(M) \). By **Lem. 4** ⇒ \(|\pi_1(\hat{M})/K_i| = a_i \).

Let \(K = \bigcap_{i=1}^{s} K_i \triangleleft \pi_1(M) \).
Sketch of Proof of Thm

⇒ \(\phi_i : \pi_1(\hat{M}) \to \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})) \), by conjugation.

Lem. 5 \(\text{Im}(\phi_i) \) is finite.

Completion of proof of Thm:

Let \(K_i = \ker(\phi_i) \triangleleft \pi_1(M) \). By **Lem. 4** ⇒ \(|\pi_1(\hat{M})/K_i| = a_i \).

Let \(K = \bigcap_{i=1}^{s} K_i \triangleleft \pi_1(M) \). ⇒ \([\pi_1(\hat{M}) : K] \leq a_1 \cdots a_s < \infty\).
Sketch of Proof of Thm

⇒ \(\phi_i : \pi_1(\hat{M}) \to \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})) \), by conjugation.

Lem. 5 \(\text{Im}(\phi_i) \) is finite.

Completion of proof of Thm:

Let \(K_i = \ker(\phi_i) \triangleleft \pi_1(M) \). By **Lem. 4** ⇒ \(|\pi_1(\hat{M})/K_i| = a_i \).

Let \(K = \bigcap_{i=1}^s K_i \triangleleft \pi_1(M) \). ⇒ \([\pi_1(\hat{M}) : K] \leq a_1 \cdots a_s < \infty \).

Let \(\hat{M} = \tilde{M}/K \).
Sketch of Proof of Thm

\[\phi_i : \pi_1(\hat{M}) \to \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})) \], by conjugation.

Lem. 5 \(\text{Im}(\phi_i) \) is finite.

Completion of proof of Thm:

Let \(K_i = \ker(\phi_i) \triangleleft \pi_1(M) \). By **Lem. 4** \(\Rightarrow |\pi_1(\hat{M})/K_i| = a_i \).

Let \(K = \bigcap_{i=1}^{s} K_i \triangleleft \pi_1(M) \). \(\Rightarrow [\pi_1(\hat{M}) : K] \leq a_1 \cdots a_s < \infty \).

Let \(\hat{M} = \tilde{M}/K \). \(\Rightarrow \) a tower of bundles over tori:
Sketch of Proof of Thm

\[\Rightarrow \phi_i : \pi_1(\hat{M}) \to \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})) , \text{ by conjugation.} \]

Lem. 5 \(\text{Im}(\phi_i) \) is finite.

Completion of proof of Thm:

Let \(K_i = \ker(\phi_i) \triangleleft \pi_1(M) \). By **Lem. 4** \[\Rightarrow |\pi_1(\hat{M})/K_i| = a_i. \]

Let \(K = \bigcap_{i=1}^s K_i \triangleleft \pi_1(M) \). \[\Rightarrow [\pi_1(\hat{M}) : K] \leq a_1 \cdots a_s < \infty. \]

Let \(\hat{M} = \tilde{M}/K \). \[\Rightarrow \text{a tower of bundles over tori:} \]

\[M_1 \to \hat{M} \to T^{k_1}, M_2 \to M_1 \to T^{k_2}, \ldots, M_s \to M_{s-1} \to T^{k_s}, \]
Sketch of Proof of Thm

\[\phi_i : \pi_1(\hat{M}) \rightarrow \text{Aut}(\pi_1(\hat{M}_i)/\pi_1(M_{i+1})) \text{, by conjugation.} \]

Lem. 5 \(\text{Im}(\phi_i) \) is finite.

Completion of proof of Thm:

Let \(K_i = \ker(\phi_i) \triangleleft \pi_1(M) \). By **Lem. 4** \(|\pi_1(\hat{M})/K_i| = a_i \).

Let \(K = \bigcap_{i=1}^{s} K_i \triangleleft \pi_1(M) \). \[\Rightarrow [\pi_1(\hat{M}) : K] \leq a_1 \cdots a_s < \infty. \]

Let \(\hat{M} = \tilde{M}/K \). \[\Rightarrow \text{a tower of bundles over tori:} \]

\[M_1 \rightarrow \hat{M} \rightarrow T^{k_1}, M_2 \rightarrow M_1 \rightarrow T^{k_2}, \cdots, M_s \rightarrow M_{s-1} \rightarrow T^{k_s}, \]

s.t.

\[\phi_i : \pi_1(M) \rightarrow \text{Aut}(\pi_1(M_i)/\pi_1(M_{i+1})) \text{ is trivial.} \]
Sketch of Proof of Thm A

Proof of Lem. 5.
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling;
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; \(\implies \) a Gromov’s short basis of \(\pi_1(M, p) \) can be chosen:

\[\gamma_{1,1}, \cdots, \gamma_{1,k_1}, \]
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; \(\Rightarrow\) a Gromov’s short basis of \(\pi_1(M, p)\) can be chosen:

\[\gamma_{1,1}, \ldots, \gamma_{1,k_1}, \gamma_{2,1}, \ldots, \gamma_{2,k_2},\]
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; \(\Rightarrow \) a Gromov’s short basis of \(\pi_1(M, p) \) can be chosen:

\[\gamma_{1,1}, \cdots, \gamma_{1,k_1}, \gamma_{2,1}, \cdots, \gamma_{2,k_2}, \cdots, \]
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; \(\Rightarrow\) a Gromov’s short basis of \(\pi_1(M, p)\) can be chosen:

\[
\gamma_{1,1}, \ldots, \gamma_{1,k_1}, \gamma_{2,1}, \ldots, \gamma_{2,k_2}, \ldots, \gamma_{s,1}, \ldots, \gamma_{s,k_s},
\]
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; \(\Rightarrow \) a Gromov’s short basis of \(\pi_1(M, p) \) can be chosen:

\[
\gamma_{1,1}, \ldots, \gamma_{1,k_1}, \gamma_{2,1}, \ldots, \gamma_{2,k_2}, \ldots, \gamma_{s,1}, \ldots, \gamma_{s,k_s},
\]

\[
|\gamma_{i,t}|/|\gamma_{j,s}| \gg 1, \quad i < j.
\]
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; ⇒ a Gromov’s short basis of $\pi_1(M, p)$ can be chosen:

1. $\gamma_{1,1}, \ldots, \gamma_{1,k_1}, \gamma_{2,1}, \ldots, \gamma_{2,k_2}, \ldots, \gamma_{s,1}, \ldots, \gamma_{s,k_s}$,
2. $|\gamma_{i,t}| / |\gamma_{j,s}| \gg 1, \quad i < j$.
3. $\phi_i : \pi_1(M, p) \to \text{Aut}[\pi_1(M_i)/\pi_1(M_{i+1})]$.

|π_1(M_j, p) ∩ B_ε^2(n)(p)| ≤ vol(B_−1(ε^2(n))) vol(B_−1(δ_j)),
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; \(\Rightarrow \) a Gromov’s short basis of \(\pi_1(M, p) \) can be chosen:

1. \(\gamma_{1,1}, \ldots, \gamma_{1,k_1}, \gamma_{2,1}, \ldots, \gamma_{2,k_2}, \ldots, \gamma_{s,1}, \ldots, \gamma_{s,k_s} \),
2. \(|\gamma_{i,t}|/|\gamma_{j,s}| \gg 1, \quad i < j \).
3. \(\phi_i : \pi_1(M, p) \to \text{Aut}[\pi_1(M_i)/\pi_1(M_{i+1})] \),
4. \(\phi_i(h)(\alpha \cdot \pi_1(M_{i+1})) = (h \cdot \alpha \cdot h^{-1}) \cdot \pi_1(M_{i+1}) \).
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; \(\Rightarrow \) a Gromov’s short basis of \(\pi_1(M, p) \) can be chosen:

- \(\gamma_{1,1}, \cdots, \gamma_{1,k_1}, \gamma_{2,1}, \cdots, \gamma_{2,k_2}, \cdots, \gamma_{s,1}, \cdots, \gamma_{s,k_s}, \)
- \(|\gamma_{i,t}|/|\gamma_{j,s}| >> 1, \quad i < j. \)
- \(\phi_i : \pi_1(M, p) \to \text{Aut}[\pi_1(M_i)/\pi_1(M_{i+1})], \)
- \(\phi_i(h)(\alpha \cdot \pi_1(M_{i+1})) = (h \cdot \alpha \cdot h^{-1}) \cdot \pi_1(M_{i+1}). \)
- \(e^{-c(n)} \leq \frac{d(\bar{p}, h \cdot \alpha_i \cdot h^{-1}(\bar{p}))}{d(\bar{p}, \alpha_i(\bar{p}))} \leq e^{c(n)}. \)
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; ⇒ a Gromov’s short basis of $\pi_1(M, p)$ can be chosen:

- $\gamma_{1,1}, \ldots, \gamma_{1,k_1}, \gamma_{2,1}, \ldots, \gamma_{2,k_2}, \ldots, \gamma_{s,1}, \ldots, \gamma_{s,k_s}$,
- $|\gamma_{i,t}| / |\gamma_{j,s}| \gg 1$, $i < j$.
- $\phi_i : \pi_1(M, p) \to \text{Aut}[\pi_1(M_i)/\pi_1(M_{i+1})]$, $\phi_i(h)(\alpha \cdot \pi_1(M_{i+1})) = (h \cdot \alpha \cdot h^{-1}) \cdot \pi_1(M_{i+1})$.
- $e^{-c(n)} \leq \frac{d(\tilde{p}, h \cdot \alpha_i \cdot h^{-1}(\tilde{p}))}{d(\tilde{p}, \alpha_i(\tilde{p}))} \leq e^{c(n)}$.
- $|\pi_1(M_j, p) \cap B_{e^{2c(n)}}(\tilde{p})| \leq \frac{\text{vol}(B_{-1}(e^{2c(n)})}{\text{vol}(B_{-1}(\delta_j))}$,
- $\rho(h) : (\tilde{\gamma}_1, \ldots, \tilde{\gamma}_{k_j}) \to (\rho(h)(\tilde{\gamma}_1), \ldots, \rho(h)(\tilde{\gamma}_{k_j}))$

has at most the following number of possibilities:
Sketch of Proof of Thm A

Proof of Lem. 5. The iterated bundles over tori are obtained via successive rescaling; \(\Rightarrow \) a Gromov’s short basis of \(\pi_1(M, p) \) can be chosen:

\[
\begin{align*}
&\gamma_{1,1}, \cdots, \gamma_{1,k_1}, \gamma_{2,1}, \cdots, \gamma_{2,k_2}, \cdots, \gamma_{s,1}, \cdots, \gamma_{s,k_s}, \\
&|\gamma_{i,t}| / |\gamma_{j,s}| > > 1, \quad i < j. \\
&\phi_i : \pi_1(M, p) \to \text{Aut}[\pi_1(M_i)/\pi_1(M_{i+1})], \\
&\phi_i(h)(\alpha \cdot \pi_1(M_{i+1})) = (h \cdot \alpha \cdot h^{-1}) \cdot \pi_1(M_{i+1}), \\
&e^{-c(n)} \leq \frac{d(\bar{p}, h \cdot \alpha_i \cdot h^{-1}(\bar{p}))}{d(\bar{p}, \alpha_i(\bar{p}))} \leq e^{c(n)}. \\
\end{align*}
\]

\[|\pi_1(M_j, p) \cap B_{e^{2c(n)}}(\bar{p})| \leq \frac{\text{vol}(B_{-1}(e^{2c(n)}))}{\text{vol}(B_{-1}(\delta_j))},\]

\[\rho(h) : (\bar{\gamma}_{1}, \cdots, \bar{\gamma}_{k_j}) \to (\rho(h)(\bar{\gamma}_{1}), \cdots, \rho(h)(\bar{\gamma}_{k_j}))\]

has at most the following number of possibilities:

\[c_j = \left(\frac{\text{vol}(B_{-1}(e^{2c(n)}))}{\text{vol}(B_{-1}(\delta_j))}\right)^{k_j}.\]
Thanks For Attention!