Degenerations of K3 surfaces	The model metric	Approximate metric	Models
			000000

Gravitational collapsing of K3 surfaces I

Jeff Viaclovsky

University of California, Irvine

April 11, 2018

Degenerations	of	K3	surfaces	
00000000				

The model metric

Approximate metric

Yau's Theorem

Theorem (Yau 1976)

A compact Kähler manifold admits a Ricci-flat Kähler metric $\iff c_1(X) = 0.$

Abstract existence theorem. What do metrics looks like?

Natural families:

- complex structure J
- Kähler class [ω].

Degenerations of K3 surfaces	The model metric	Approximate metric	Models
○●○○○○○○○		000000	000000000
K3 surfaces			

$$X = \{ f_4(z_0, z_1, z_2, z_3) = 0 \} \subset \mathbb{P}^3.$$

Algebraic K3s: 19-dimensional family.

Since K_X is trivial,

$$H^1(X,\Theta) \equiv H^1(X,\Omega^1)$$

so there is actually a $b^{1,1} = 20$ -dimensional family of Js.

Each J has a 20-dimensional Kähler cone.

Moduli of Yau's metrics = 40 + 20 = 60-dimensional? Overcounted:

Degenerations	of	K3	surfaces	
0000000000				

The model metric

Approximate metric

Hyperkähler struture

 $\mathsf{K\ddot{a}hler} \Longrightarrow \mathsf{Hol} \subset U(2).$

 $K_X \text{ trivial} \Longrightarrow \exists \Omega = \omega_J + i\omega_K \text{ parallel } (2,0)\text{-form} \Longrightarrow \text{Hol} \subset Sp(1) = SU(2).$

Each of Yau's metrics is Kähler w.r.t,

$$aI + bJ + cK, \ a^2 + b^2 + c^2 = 1,$$

an S^2 s worth of complex structures.

Metric moduli = 58-dimensional.

Degenerations of K3 surfaces	The model metric	Approximate metric 000000	Models 00000000
General theory			

 $Ric(g_j) = 0 \Longrightarrow$ Gromov-Hausdorff limit.

- Singularity formation \implies curvature blows up.
- Bubbling phenomena: rescaled limits are complete Ricci-flat spaces.
- Volume non-collapsing: $Vol(B_{p_j}(1)) > v_0 > 0 \Longrightarrow$ orbifold limit.
- Volume collapsing $Vol(B_{p_j}(1)) \to 0 \Longrightarrow$ lower-dimensional limit.

Theorem (Cheeger-Tian)

Sequence collapses with uniformly bounded curvature away from finitely many points.

Degenerations of K3 surfaces	The model metric	Approximate metric 000000	Models 000000000
Examples			

- Kummer surface: 4-dim limit = T⁴/ℤ₂, with flat metric. At 16 singular points, Eguchi-Hanson metric on O_{P¹}(-2) bubbles off. Bubbles are ALE.
- Foscolo: 3-dim limit $= T^3/\mathbb{Z}_2$, with flat metric. At 8 singular points, ALF D_2 metrics bubble off.
- Gross-Wilson: 2-dim limit = S^2 . Away from 24 singular points, sequence collapses with uniformly bounded curvature, with T^2 -fibers being uniformly scaled down. At 24 singular points, Taub-NUT ALF metrics bubble off.

Degenerations of K3 surfaces 000000000	The model metric	Approximate metric	Models 000000000
Chen-Chen			

Chen-Chen: 1-dim limit = [0, 1]. Singular points at 0 and 1.

Interior: collapse with unformly bounded curvature, uniform shrinking of flat T^3 .

Bubbles are ALH spaces:

$$g = dr^2 + g_{T^3} + O(e^{-\delta r}).$$

as $r \to \infty$, which arise from rational elliptic surfaces:

$$RES = Bl_{p_1,\dots,p_9} \mathbb{P}^2 \xrightarrow{\pi} \mathbb{P}^1,$$

and $X = RES \setminus T^2$, where T^2 is a smooth fiber (Tian-Yau).

Chen-Chen produce these examples by gluing together 2 ALH factors with a long cylindrical region in between, using earlier ideas of Kovalev-Singer, Floer.

Degenerations of K3 surfaces	The model metric	Approximate metric 000000	Models 000000000
Tian-Yau metrics			

Let DP_b be a degree $1 \le b \le 9$ del Pezzo surface. Let $T^2 \subset DP_b$ be a smooth anticanonical divisor.

Theorem (Tian-Yau)

 $X_b = DP_b \setminus T^2$ admits a complete Ricci-flat Kähler metric, which is asymptotic to a Calabi ansatz metric on a punctured disc bundle in N_{T^2} .

Solution of the form
$$\omega_g = \frac{i}{2\pi} \Big\{ \partial \overline{\partial} (-\log \|S\|^2)^{\frac{3}{2}} + \partial \overline{\partial} \phi \Big\}.$$

We would like to "glue" two of these spaces together, but the asymptotic geometry is not cylindrical: need to find appropriate neck region.

Degenerations of K3 surfaces	The model metric	Approximate metric 000000	Models 00000000

Theorem (Hein-Sun-Viaclovsky-Zhang)

VIAIL

resuit

Given any positive integer $1 \le m \le 18$, there is a family of hyperkähler metrics g_{ϵ} on a K3 surface which collapse to an interval [0, 1],

 $(K3, g_{\epsilon}) \xrightarrow{GH} ([0, 1], dt^2), \ \epsilon \to 0,$

such that the following topological and regularity properties hold.

• There exist distinct points $t_i \in (0, 1)$, $i = 1 \dots m$, such that at fixed distance away from the t_i , the sequence collapses with uniformly bounded curvature, with regular fibers diffeomorphic to 3-dimensional Heisenberg nilmanifolds or 3-dimensional tori.

Degenerations of K3 surfaces 00000000●	The model metric	Approximate metric	Models 00000000
Main result cont'd			

Theorem (HSVZ cont'd)

- There exist points $x_{\epsilon,i} \to t_i$, such that $|Rm_{g_{\epsilon}}|(x_{\epsilon_i}) \to \infty$ as $\epsilon \to 0$, and rescalings of the metrics near $x_{\epsilon,i}$ converge to Taub-NUT metrics.
- If t = 0 or t = 1, there exist points $x_{\epsilon,i} \to t$, such that $|Rm_{g_{\epsilon}}|(x_{\epsilon_i}) \to \infty$ as $\epsilon \to 0$, and rescalings of the metrics near $x_{\epsilon,i}$ converge to Tian-Yau metrics.

By varying the choice of neck region, we can arrange that the number of singular points in the interior can be any integer in $[1, b_- + b_+]$. Also, the degrees of the nilmanifolds in the regular collapsing regions can vary from $-b_+$ to b_- and all such degrees can occur.

Degenerations of K3 surfaces	The model metric	Approximate metric	Models
00000000	•0000000		

Heisenberg nilmanifolds

We will assume that the lattice of the torus is $\Lambda = \epsilon \mathbb{Z} \langle 1, \tau \rangle$ in $\mathbb{R}^2_{x,y} = \mathbb{C}$ such that $T^2 = \mathbb{C}/\Lambda$. Let $\tau_1 = Re(\tau)$ and $\tau_2 = Im(\tau)$, and $A = \epsilon^2 \tau_2$.

Recall the Heisenberg group \mathcal{H}^3 is

$$\begin{pmatrix} 1 & x & t \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix},$$

for $(x, y, z) \in \mathbb{R}^3$. For $b \in \mathbb{Z}_+$, the Heisenberg nilmanifold $Nil_b^3(\epsilon, \tau)$ is the quotient of \mathcal{H}^3 by the action generated by

$$\begin{pmatrix} 1 & \epsilon & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & \epsilon\tau_1 & 0 \\ 0 & 1 & \epsilon\tau_2 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & \frac{A}{b} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

where these elements act on the left.

Degenerations of K3 surfaces	The model metric	Approximate metric	Models
	o●ooooooo	000000	000000000
Heisenberg nilmanifo	olds		

Note that these transformations are

$$\begin{aligned} & (x, y, t) \mapsto (x + \epsilon, y, t + \epsilon y) \\ & (x, y, t) \mapsto (x + \epsilon \tau_1, y + \epsilon \tau_2, t + \epsilon \tau_1 y) \\ & (x, y, t) \mapsto (x, y, t + \frac{A}{b}). \end{aligned}$$

Left-invariant 1-forms:

$$dx, dy, \theta_b \equiv \frac{2\pi b}{A}(dt - xdy)$$

Degenerations of K3 surfaces	The model metric	Approximate metric	Models
	oo●oooooo	000000	000000000
Heisenberg nilmanifo	olds		

 Nil_b^3 is an S^1 -bundle over T^2 of degree b:

In our main theorem, in the regular collapsing regions, the T^2 s and the S^1 s shrink at different rates:

$$\label{eq:lim} \begin{split} \operatorname{diam}(Nil^3) \sim \epsilon \\ \operatorname{diam}(S^1) \sim \epsilon^2 \end{split}$$

Degenerations of K3 surfaces	The model metric	Approximate metric	Models
	00000000		

Heisenberg nilmanifolds of negative degree

For $b \in \mathbb{Z}_+$, we define the Heisenberg nilmanifold Nil_{-b}^3 to be the quotient of \mathcal{H}^3 by the action generated by

$$\begin{aligned} & (x, y, t) \mapsto (x + \epsilon, y, t - \epsilon y) \\ & (x, y, t) \mapsto (x + \epsilon \tau_1, y + \epsilon \tau_2, t - \epsilon \tau_1 y) \\ & (x, y, t) \mapsto (x, y, t - \frac{A}{b}). \end{aligned}$$

Note that the generated action is conjugate to the previous action by the mapping $(x, y, t) \mapsto (-x, -y, -t)$.

Left-invariant 1-forms:

$$dx, dy, \theta_{-b} \equiv \frac{2\pi b}{A} (dt + x dy).$$

(Negative degrees are necessary because our gluing procedure needs an orientation-reversing attaching map on one side of the neck.)

Degenerations	K3	surfaces

The model metric

Approximate metric

Models 000000000

The model metric

Gibbons-Hawking ansatz over $U = T_{x,y}^2 \times \mathbb{R}_{z>0}$, with

$$V = \frac{2\pi b}{A}z$$

for a positive integer b>0. Total space N has one complete end as $z\to\infty$ and one incomplete end as $z\to0.$

Choosing the connection form to be $\theta_b=2\pi(b/A)(dt-xdy),$ we can write

$$g_{model} = \frac{2\pi bz}{A} (dx^2 + dy^2 + dz^2) + \frac{A}{2\pi bz} \theta_b^2,$$

with

- $d\theta = \frac{2\pi b}{A} dvol_{T^2}$,
- The level sets $\{z = constant\}$ are identified with $Nil_b^3(\epsilon, \tau)$, with a left-invariant metric (depending on z).

Degenerations of K3 surfaces	The model metric	Approximate metric	Models
	00000●000	000000	00000000
Hyperkähler triples			

The forms

$$\begin{split} \omega_1 &= dz \wedge \theta + V dx \wedge dy \\ \omega_2 &= dx \wedge \theta + V dy \wedge dz \\ \omega_3 &= dy \wedge \theta + V dz \wedge dx. \end{split}$$

are a hyperkähler triple,

$$\omega_i \wedge \omega_j = 2\delta_{ij} dvol_g.$$

We will need to construct an approximate hyperkähler triple on the "glued" manifold.

Degenerations of K3 surfaces

The model metric 0000000000

Approximate metric

Models 000000000

Acharya-Gibbons-Hawking-Hull

Degenerations of K3 surfaces	The model metric	Approximate metric	Models
	0000000€0	000000	00000000
ALH, metrics			

Making the substitution $z = (3/2)s^{2/3}$, and then scaling appropriately, the metric takes the form

$$ds^{2} + s^{2/3}g_{T^{2}} + s^{-2/3} \left(\frac{A}{3b\pi}\theta_{b}\right)^{2}.$$

- Volume growth is $O(s^{4/3})$.
- $Rm \in L^2$
- $|Rm| = O(s^{-2})$ as $s \to \infty$, but not any better. Thus these asymptotics do not fall under the classification of Chen-Chen.

If b = 0 and V = constant, this is ALH geometry. For $b \neq 0$, we will therefore refer to this type of geometry as ALH_b geometry.

Degenerations of K3 surfaces	The model metric	Approximate metric	Models
	00000000●	000000	00000000
ALH_b ends			

The red circles represent the S^1 fibers, the blue curves represent the T^2 s.

Note that, in terms of distance to a basepoint,

$$\label{eq:lim} \begin{split} \mathrm{diam}(Nil_b^3(s)) &\sim s^{1/3} \\ \mathrm{diam}(S_s^1) &\sim s^{-1/3}. \end{split}$$

Degenerations of K3 surfaces	The model metric	Approximate metric •00000	Models 00000000
Tian-Vau metrics	are ALH_{1}		

Theorem (HSVZ)

A Tian-Yau metric on $X_b = DP_b \setminus T^2$ is ALH_b , with

$$g = g_{model,b} + O(e^{-\delta s^{2/3}})$$

as
$$s \to \infty$$
, for some $\delta > 0$.

The proof relies on finding good asymptotics for the complex structure, and then using techniques in Hein's thesis and Tian-Yau.

Gauge transformation to make the leading term of the connection our standard choice.

Moreover, there is a hyperkähler triple which is asymptotic to our model hyperkähler triple.

Degenerations of K3 surfaces	The model metric	Approximate metric 0●0000	Models 00000000
The neck potential			

Choose
$$p_1, \ldots, p_{b_++b_-} \in T^2 \times \mathbb{R}$$
. There exists $V: T^2 \times \mathbb{R} \setminus \mathcal{P} \to \mathbb{R}$ such that

• $\Delta V = 0$

•
$$V \sim \frac{1}{2r}$$
 near each monopole point.

•
$$\frac{1}{2\pi} * dV \in H^2(T^2 \times \mathbb{R} \setminus \mathcal{P}, \mathbb{Z}).$$

• $V = O(e^{-\delta|z|}) + \begin{cases} \frac{2\pi}{A}b_-z + c_- & z \ll 0\\ -\frac{2\pi}{A}b_+z + c_+ & z \gg 0 \end{cases}$

Proof: in the universal cover, at large distances, V looks like electric potential of a collection of uniformly charged plates. Free to add kz to fix leading terms.

Degenerations of K3 surfaces	The model metric	Approximate metric	Mode
		000000	

The neck metric

Since $\frac{1}{2\pi}*dV\in H^2(T^2\times\mathbb{R}\setminus\mathcal{P},\mathbb{Z}).$ there is a corresponding $S^1\text{-}\mathsf{bundle}$

and a connection form $\boldsymbol{\theta}$ so that

$$\Omega = d\theta = *dV.$$

The neck metric:

$$g_{\mathcal{N}} = V(g_{T^2} + dz^2) + V^{-1}\theta^2.$$

Degenerations of K3 surfaces	The model metric	Approximate metric	Models 00000000
Problem			

Problem: Gibbons-Hawking requires a *positive* harmonic function, but the above electric potential is negative.

Solution: add a large constant:

$$V_{\beta} = V + \beta,$$

where $\beta \gg 0$.

This gives us an *incomplete* metric on the region $\mathcal{N}(T_-, T_+)$, where $-T_- < z < T_+$, where $T_{\pm} \sim \beta$.

Analogous to Ooguri-Vafa metric, our case is a doubly-periodic analogue of this.

Degenerations of K3 su 000000000	urfaces	The model metric	Approximate metric 0000€0	Models 000000000
<u> </u>				

Degenerations of K3 surfaces	The model metric	Approximate metric	Models
		000000	

Curvature of the approximate metric

For $x \in \mathcal{N}(-T_{-}+1,T_{+}-1) \subset \mathcal{M}$, there exists constants C,C' so that

$$|Rm|(x) \le \begin{cases} \beta & r(x) < C'\beta^{-1} \\ \frac{C}{\beta r(x)^2} & r(x) \ge C'\beta^{-1} \end{cases},$$

where r(x) denotes the Euclidean distance to the monopole points. For $x \in X_{b_{\pm}}(T_{\pm}) \subset \mathcal{M}$, there is a constant C so that

$$|Rm|(x) \le \begin{cases} C & d(x) < \zeta_{\pm} \\ \frac{C}{d(x)^2} & d(x) \ge \zeta_{\pm}, \end{cases}$$

where d(x) is metric distance to a base point. For $x \in DZ_{\pm} \subset \mathcal{M}$, there is a constant C so that

$$|Rm|(x) \le C\beta^{-3}.$$

Proof: use the formula $|Rm|^2 = \frac{1}{2}V^{-1}\Delta^2(V^{-1}).$

Degenerations of K3 surfaces	The model metric	Approximate metric	Models •00000000

Models for degenerations of complex structure

- Let $b_+ = b_- = 9$. $X_+ = X_- = \mathbb{P}^2 \setminus \{s_3 = 0\}$
- $X = \text{degree 2 K3 surface: } \pi: X \to \mathbb{P}^2, 2:1 \text{ branched over a sextic } s_6.$
- Degeneration: $s_6 \rightarrow s_3^2$

Degenerations of K3 surfaces	The model metric	Approximate metric	Models o●ooooooo
Parameter counting			

- Choice of monpole points: $18 \cdot 3 1 = 53$ parameters. We subtract 1 because we can fix the z-coordinate of one of the monopole points to be at 0.
- S¹ rotation when attaching: 1 parameter. (since the neck has a triholomorphic circle action, there is really only 1 rotational parameter.)
- The main gluing parameter β (which determines T_{-} and T_{+}): 1 parameter.
- The area of the torus: 1 parameter, which corresponds to an overall scaling of the metric.
- Total of 56 gluing parameters.

Degenerations of K3 surfaces	The model metric	Approximate metric	Models oo●oooooo
Parameter counting	Υ		

The complex structure on $\mathbb{P}^2\setminus T^2$ is determined from the choice of cubic, which gives 2 parameters. Note that

$$\chi(X \setminus T^2) = \chi(X) = 3,$$

so $b_2(X \setminus T^2) = 2$. We have $b_2 = b^{2,0} + b^{0,2} = 2$, so $b_{L^2}^{1,1} = 0$, and there are no Kähler deformations of the Tian-Yau metrics (besides scaling, which was already counted above). Adding everything up

$$56 + 2 = 58.$$

Degenerations of K3 surfaces	The model metric	Approximate metric 000000	Models 000●00000

Models for degenerations of complex structure

• Let
$$b_+ = b_- = 8$$
, with $DP_8 = S^2 \times S^2$.
 $Q_+ = \{q_+ = 0\} \subset \mathbb{P}^3$
 $Q_- = \{q_- = 0\} \subset \mathbb{P}^3$
 $Q_+ \cap Q_- = T^2$.
 $X_+ = Q_+ \setminus T^2, X_- = Q_- \setminus T^2$.

 Degeneration: smooth quartic q₄ → q₂ · q'₂. Neck is a desingularization of the union of 2 nonsingular quadrics.

Degenerations of K3 surfaces	The model metric	Approximate metric	Models oooo●oooo
D			

Parameter counting

First, there are 3(8+8) - 1 + 1 + 1 + 1 = 50 gluing parameters. Let X_+ and X_- both arise from quadrics in \mathbb{P}^3 , which are degree 8. The first quadric, we can assume is the standard diagonal quadric. We can then diagonalize the second quadric. This gives 6 parameters for deformation of complex structure. We have

$$\chi(X \setminus T^2) = \chi(X) = 4,$$

so $b_2(X \setminus T^2) = 3$. Then $b_2 = b^{2,0} + b^{1,1} + b^{0,2} = 2 + b^{1,1}$, so $b_{L^2}^{1,1} = 1$. So each Tian-Yau piece has a 1-dimensional space of Kähler deformations. Adding everything up

$$50 + 6 + 2 = 58.$$

Degenerations of K3 surfaces	The model metric	Approximate metric 000000	Models 0000000000

Models for degenerations of complex structure

• Let
$$b_{+} = 3$$
, $b_{-} = 9$, with
 $DP_{3} = Bl_{p_{1},...,p_{6}}\mathbb{P}^{2} = \{q_{3} = 0\} \subset \mathbb{P}^{3}$,
 $DP_{9} = \mathbb{P}^{2} = \{l_{1} = 0\} \subset \mathbb{P}^{3}$
 $DP_{3} \cap DP_{9} = T^{2}$,
 $X_{+} = DP_{3} \setminus T^{2}$, $X_{-} = \mathbb{P}^{2} \setminus T^{2}$.

 Degeneration: smooth quartic q₄ → q₃ · l₁. Neck is a desingularization of the union of a plane and a nonsingular cubic.

	0000000		
Degenerations of K3 surfaces	The model metric	Approximate metric	Models

Parameter counting

First, there are 3(9+3) - 1 + 1 + 1 + 1 = 38 gluing parameters. In this case, X_+ arises from a cubic and X_- arises from a plane in \mathbb{P}^3 , which are degree 3 and 9, respectively. The cubic is \mathbb{P}^2 blown-up at 6 points. We can fix 4 points, so we have 8 dimensions of variation of complex structure. Once this is fixed, the choice of the plane is arbitrary, which gives 6 more parameters. Next,

$$\chi(X_+ \setminus T^2) = \chi(X_+) = 9,$$

so $b_2(X \setminus T^2) = 8$. We have $b_2 = b^{2,0} + b^{1,1} + b^{0,2} = 2 + b^{1,1}$, so $b_{L^2}^{1,1} = 6$. So this has a 6-dimensional space of Kähler deformations. From above, $\mathbb{P}^2 \setminus T^2$ has no Kähler deformations (besides scaling). Adding up,

$$38 + 8 + 6 + 6 = 58.$$

Degenerations of K3 surfaces	The model metric	Approximate metric	Models ○○○○○○○●○
Talk II by Ruobing Z	Thang		

- Analysis of harmonic functions on ALH_b spaces, and Liouville Theorems.
- Analysis of rescaled geometry of approximate metrics.
- Definition of weighted Hölder spaces and weighted Schauder estimate.
- Main blow-up analysis to prove uniform injectivity of linearized operator of hyperkähler triple gluing.

Degenerations of K3 surfaces	The model metric	Approximate metric 000000	Models ooooooooo
End of Part I			

Thank you for your attention.