
Counting sheaves on Calabi-Yau 4-folds
CY4 quiver representations (joint with Jeongseok Oh)

Happy Birthday Alastair!
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HilbdC4

A length d subscheme Z ⊂ C4 is described by

▶ a d-dimensional vector space Γ(OZ ) ∼= Cd ,

▶ with 4 commuting operators X ,Y ,Z ,W : Cd
ý and

▶ a framing 1: C→ Cd whose image generates Cd under the
action of C[X ,Y ,Z ,W ]

up to the action of GL(d ,C).

Last condition is a King stability condition for this GIT data.



Quiver description

x := (X ,Y ,Z ,W ) ∈ (C4)∗ ⊗ End(Cd)

1

d

X

Y Z

W

with relations s = 0 ∈ E , where

s := x ∧ x =
(
[X ,Y ], [X ,Z ] , . . .

)
∈ Λ2(C4)∗ ⊗ End(Cd) =: E



Pairing and superpotential

Notice E = Λ2(C4)∗ ⊗ End(Cd) has an obvious symmetric
nondegenerate pairing

q : E ⊗ E
∧⊗tr−−−−→ Λ4(C4)∗ ∼= C

with respect to which s = x ∧ x is isotropic: q(s, s) = 0.
(For any x! Not just those which satisfy the relations s = x ∧ x = 0.)

Can encode in 6 extra degree −1 edges X ∧ Y , X ∧ Z , . . . labelled
by a basis of Λ2(C4)∗ and superpotential (sum of degree −1 cycles)∑

i<j

(
Xi ∧ Xj

)
◦ [Xk ,Xℓ],

with k , ℓ chosen so that ijkℓ is an even permutation of 1234.

(Setting the derivative w.r.t. the degree −1 edge Xi ∧ Xj equal to zero

recovers the relation [Xk ,Xℓ] = 0.)



CY4 quivers

More generally there is a notion of CY4 quiver (Lam, building on
work of Ginzburg, van den Bergh, physicists....):

▶ A finite quiver Q (vertices, degree 0 edges),

▶ An extra set E of degree −1 edges between the same vertices,
▶ A symmetric pairing q : E × E → C satisfying

▶ q(e, e′) = 0 unless e ◦ e′ forms a cycle,
▶ nondegeneracy det

(
q(ei , ej)

)
ei ,ej∈E

̸= 0,

▶ A superpotential s (a C-linear combination of degree −1
cycles) such that

▶ q(s, s) ∈ [CQ,CQ] ( =⇒ trace zero in any representation)

When we impose the relations {∂e s}e∈E we find the category of
representations is CY4.



Counting representations

Picking dimension vectors we find the representations satisfying
the relations are cut out of the smooth space of all (King stable)
representations by an

isotropic section s of an orthogonal bundle (E , q), q(s, s) = 0.

Too many equations in too few unknowns. Eg 6 equations
[X ,Y ] = 0 = . . . in 4 unknowns X ,Y ,Z ,W (modulo gauge).



Real equations

(Following Acharya-O’Loughlin-Spence, Baulieu-Kanno-Singer,

Borisov-Joyce, Cao-Leung, DT, etc) Nekrasov and Nekrasov-
Piazzalunga instead “halved” the equations to s+ = 0, where

E = ER ⊕ iER, s = (s+, s−)

(0 = q(s, s) = |s+|2 − |s−|2 =⇒ |s|2 = 2|s+|2, so s+ = 0⇐⇒ s = 0)

by splitting Λ2(C4)∗ ∼= Λ+(C4)∗ ⊕ Λ−(C4)∗ into real subspaces;
the ±1 eigenspaces of ∗ : Λ2,0 → Λ2,4 ∼= Λ2,0.

So they consider the real equations

[X ,Y ]+ = 0 = [X ,Z ]+ = . . . ,

conjecture a localisation formula and deduce a good counting
theory, nice answers (better than MacMahon!).



Holomorphic equations

We will work within algebraic geometry with maximal isotropic
subbundles Λ ⊂ E instead of maximal positive definite subbundles
ER ⊂ E .

E.g split C4 ∼= C3 ⊕ C := ⟨X ,Y ,Z ⟩ ⊕ ⟨W ⟩ and so

Λ2(C4)∗ ∼= Λ2(C3)∗ ⊕ (C3)∗

∼= ⟨X ∧ Y ,X ∧ Z ,Y ∧ Z ⟩ ⊕ ⟨X ∧W ,Y ∧W ,Z ∧W ⟩.

This half of the equations now have bigger zero locus (dependent
on the choice of Λ ⊂ E).

The rest of the talk shows how to fix this.

Kool-Rennemo re-express Nekrasov-Piazzalunga’s work within our
framework, then use our torus localisation formula (below) to prove
Nekrasov-Piazzalunga’s formula.
[Cf. work of Bojko in compact CY4 case.]



Quiver trees

Jeongseok Oh, Namibia, 10 Jan 2023.



Orthogonal bundles

Work over a fixed complex quasi-projective scheme Y .

▶ E → Y holomorphic rank r vector bundle
=⇒ Zariski locally trivial.

▶ q : E ⊗ E → OY non-degenerate quadratic form.

▶ Gram-Schmidt process (uses square roots!) =⇒ étale locally
trivial. E corresponds to an étale locally trivial principal
O(r ,C) bundle.



Special orthogonal bundles

q gives an isomorphism E ∼= E ∗ =⇒ detE ∼= detE ∗

=⇒ (detE )⊗2 ∼= OY . (∗)

Definition An orientation on E is a trivialisation

o : OY
∼−−→ detE

such that (−1)r(r−1)/2o⊗2 is the inverse of (∗).
(Sign due to convention (e1 ∧ · · · ∧ er )

∗ = fr ∧ · · · ∧ f1.)

A Z/2 choice, when one exists.

Oriented orthogonal bundles (E , q, o) correspond to étale locally
trivial principal SO(r ,C) bundles.



Maximal real positive definite subbundles

▶ Orthogonal bundles admit maximal real positive definite
subbundles ER ⊂ E (unique up to homotopy) on which q|ER is a
real positive definite quadratic form (i.e. inner product, metric).
(E.g. Rr

x1,...,xr ⊂ Cr
z1,...,zr maximal positive definite real for

q =
∑

z2j =
∑

(x2j − y2
j ) + 2i

∑
xjyj .)

▶ Conversely a real bundle ER with a real inner product qR gives
a complex bundle E := ER ⊗ C = ER ⊕ iER with quadratic
form q = qR ⊗ C.

▶ Homotopy equivalence O(r ,R) ∼
↪−→ O(r ,C).

▶ Homotopy equivalence SO(r ,R) ∼
↪−→ SO(r ,C) =⇒

orientations o on E (in the above sense) ←→ orientations oR
on ER (in the usual sense).

▶ If e1, . . . , er are local orthonormal sections of ER then they
also form a local C-basis of E , and o = e1 ∧ · · · ∧ er is a local
orientation of E corresponding to the local orientation
oR = e1 ∧R · · · ∧R er of ER.



Square root Euler class

From now on we fix r = 2n and work with SO(2n,C) bundles
(E , q, o) over Y .

▶ The Euler class e(ER) ∈ H2n(Y ,Z) is a characteristic class of
(E , q, o).

▶ Satisfies (−1)ne(ER)
2 = e (E ) = c2n(E ) ∈ H4n(Y ,Z) so we

call it a square root Euler class
√
e(E ) ∈ H2n(Y ,Z) of E .

▶ Field and Totaro showed it does not lift to An(Y ,Z).
▶ Edidin-Graham showed ±

√
e (E ) does lift to An

(
Y ,Z

[
1
2

])
.

In place of maximal positive definite real subbundles they used
maximal isotropic holomorphic subbundles.



Maximal isotropic subbundles

We call a holomorphic subbundle Λ ⊂ E isotropic if q|Λ ≡ 0.
We call it maximal isotropic if in addition it has rank n.

E.g. in (C2, z21 + z22 ),
(
1
0

)
and

(
0
1

)
span a real positive definite subspace,

while the vectors
(
1
i

)
and

(
1
−i

)
are isotropic.

{y1 = 0 = y2} = R2
x1,x2 ⊂ C2 is a maximal positive definite real subspace;

C-lines z1 + iz2 = 0 and z1 − iz2 = 0 are (the only) maximal isotropics.

We get an exact sequence

0 −→ Λ −→ E
q−−→ Λ∗ −→ 0

and so (−1)ncn(Λ)2 = c2n(E ), that is (−1)ne (Λ)2 = e (E ).
(And notice the composition Λ ↪→ E →→ ER is an isomorphism.)

(Writing E = ER ⊕ iER corresponds to writing q = z21 + z22 + . . . . Locally

writing E = Λ⊕ Λ∗ corresponds to writing q = z1zn+1 + z2zn+2 + . . . .)



Edidin-Graham class, I

So if E admits a maximal isotropic subbundle Λ ⊂ E ,
Edidin-Graham lift

√
e (E ) = e (ER) ∈ H2n(Y ,Z) to

±cn(Λ) ∈ An(Y ,Z).

They show this is independent of Λ up to sign.
(E.g. replacing Λ by Λ∗ in E = Λ⊕ Λ∗ changes cn(Λ) by (−1)n.)

Define (−1)|Λ| as the image of ino under

detE ∼= det(Λ)⊗ det(Λ∗) ∼= OY

(orient Λ by its complex structure, ER by oR, then Λ ↪→ E →→ ER

preserves orientation iff (−1)|Λ| = +1) and define

√
e (E ) := (−1)|Λ|cn(Λ) ∈ An(Y ,Z).



Edidin-Graham class, II

In general Λ ⊂ E does not exist so we pass to a tautological bundle
ρ : Ỹ → Y on which it does (cf. splitting principle). E.g. can set

Ỹ := OGr+(E ) =
{
(y ,Λy ) : y ∈ Y , Λy ⊂ Ey

positive maximal isotropic
}

with tautological positive maximal isotropic Λρ ⊂ ρ∗E .

Edidin-Graham prove that cn(Λρ) descends to Y if we invert 2:
there’s a distinguished class with degree 2n−1 over Y ,

h ∈ An(n−1)
(
Ỹ ,Z

)
with ρ∗h = 2n−1

so we may define

√
e (E ) :=

1

2n−1
ρ∗
(
h ∪ cn(Λρ)

)
∈ An

(
Y ,Z

[
1
2

])
.



Edidin-Graham class, III

This
√
e (E ) has all the properties we’d like of it; for instance√

e (E )2 = (−1)ne (E ), and it is the unique class with the property

ρ∗
√
e (E ) = cn(Λρ).

More generally, if E (rather than ρ∗E ) admits a maximal isotropic
Λ ⊂ E then

cn(Λ) = (−1)|Λ|
√
e (E ).

There’s a Whitney sum formula
√
e (E1 ⊕ E2) =

√
e (E1)

√
e (E2)

and √
e (E ) = e (ER) in H2n

(
Y ,Z

[
1
2

])
.



Localised Edidin-Graham class

Given an SO(2n,C) bundle (E , q, o) over Y and an isotropic
section s ∈ Γ(E ), q(s, s) = 0, we construct a localised operator

A∗
(
Y ,Z

[
1
2

])
√
e (E)∩( · ) ))

√
e (E ,s) // A∗−n

(
Z ,Z

[
1
2

])
��

A∗−n

(
Y ,Z

[
1
2

])
,

where Z := Z (s). Using Z
[
1
2

]
coefficients (passing to the cover

ρ : Ỹ → Y then later pushing down by 1
2n−1 ρ∗

(
h ∩ ( · )

)
) we can

assume we have a positive maximal isotropic Λ ⊂ E ,

0 −→ Λ −→ E
p−−→ Λ∗ −→ 0.

Since
√
e (E ) = e (Λ) = (−1)ne (Λ∗) we first project s∗ := p(s) and

intersect Γs∗ ⊂ Λ∗ with 0Λ∗ .



Degeneration

First linearise Γs∗ ⊂ Λ∗ about Z ∗ := Z (s∗) by deforming it to the
normal cone

Λ∗ ⊃ Γts∗
t→∞ // CZ∗/Y ⊂ Λ∗|Z∗ .

(Cone means C∗-invariant; in lci case CZ∗/Y is NZ∗/Y .)

So can replace Γs∗ ∩ 0Λ∗ (in Y ) by CZ∗/Y ∩ 0Λ∗|Z∗ (in Z ∗).



Localisation to Z ∗

So we can localise e (Λ∗) to Z ∗ by

0 !
Λ∗|Z∗CZ∗/Y ∈ AdimY−n(Z

∗), (∗)

where the Gysin map 0! is the inverse of the Thom isomorphism

AdimY−n(Z
∗)

π∗
// AdimY

(
Λ∗|Z∗

)
.

0 !
Λ∗|Z∗

oo

(Push forward of (∗) via Z∗ ↪→ Y gives e(Λ∗) = (−1)n
√
e (E ).)

But we would like to localise further to Z = Z (s) ⊂ Z ∗ by using
the “other half ” of the section s. That is, by

s|Z∗ ∈ Γ
(
Λ|Z∗

)
⊂ Γ

(
E |Z∗

)
.



Cosection localisation

s|Z∗ ∈ Γ
(
Λ|Z∗

)
defines a cosection

s̃ : Λ∗∣∣
Z∗ −→ OZ∗

and the s isotropic condition gives CZ∗/Y ⊂ ker s̃.

So where s̃ is nonzero there’s a trivial normal direction to CZ∗/Y in
Λ∗|Z∗ ; intersection can be made zero here.

By the cosection localisation of Kiem-Li can localise 0!Λ∗|Z∗ [CZ∗/Y ]

to Z (s̃ ) = Z and define

√
e (E , s) ∩ [Y ] := (−1)n 0!, locΛ∗|Z∗ , s̃ ∈ AdimY−n(Z ).

Its push forward via Z ↪→ Y gives
√
e (E ).



Square root Gysin operator

Similarly for any isotropic cone C ⊂ (E , q, o) can define√
0!E : A∗

(
C ,Z

[
1
2

])
−→ A∗−n

(
Y ,Z

[
1
2

])
such that, if C factors through a maximal isotropic Λ ⊂ E ,√

0!E = (−1)|Λ| 0!Λ.

Let π : C → Y . Then π∗E has a tautological section τE which is
isotropic and has zero locus Y ⊂ C (the 0-section of C) so we

define
√

0!E to be the operator
√
e (π∗E , τE ).

Has good properties: Whitney sum formula, compatibility with√
e (E , s) under Γts ⇝ CZ(s)/Y , etc.



Moduli of sheaves on Calabi-Yau 4-folds

Fix a smooth projective fourfold (X ,OX (1)) with KX
∼= OX , and a

Chern character c ∈ H∗(X ,Q) such that Gieseker semistable
sheaves of class c are all stable.

The moduli space M = M(X , c) of stable sheaves of Chern
character c is projective. Deformation theory at a point F ∈ M:

▶ Automorphisms HomX (F ,F ) = C · idF =⇒ can ignore

▶ Deformations Ext1X (F ,F )

▶ Obstructions Ext2X (F ,F )
∼= Ext2X (F ,F )

∗ by Serre duality

▶ Higher obstructions Ext3X (F ,F )
∼= Ext1X (F ,F )

∗

( =⇒ no Li-Tian/Behrend-Fantechi virtual cycle)

▶ Higher higher obstructions Ext4X (F ,F ) = C =⇒ can ignore

So the obstruction theory Rπ∗R Hom(F ,F) is 3-term: a self-dual

complex of bundles E0
a−−→ E1

a∗−−→ E ∗
0 over M, with E1

∼= E ∗
1 an

orthogonal bundle.



Model

Morally, M can be described as the zero locus of an isotropic
section of an orthogonal bundle over a smooth ambient space

(E , q)

��
q(s, s) = 0,

M = s−1(0) ⊂ A,
s

XX

such that E0
a−−→ E1

a∗−−→ E ∗
0 is TA|M

ds−−→ E |M
ds∗−−−→ ΩA|M .

Globally true with A, E infinite dimensional via gauge theory.

Locally true with everything algebraic [BG, BBJ, BBBJ, PTVV],
taking A to be open in Ext1(F ,F ) and E to be trivial bundle with
fibre Ext2(F ,F ).

Can also orient (E , q) by work of [CGJ].



Virtual cycle

Can’t patch local models, but using the obstruction theory we can
patch linearised version limt→∞ Γts ⊂ E to give an isotropic cone

C ⊂ E |M = E1.

Then we can define [M]vir :=
√
0!E1

[C ].

[LT/BF] virtual cycle 0!E [C ] wrong here ←→ stupid truncation

TA|M
ds−−→ E |M of the self-dual deformation-obstruction complex

TA|M
ds−−→ E |M

ds∗−−−→ T ∗
A|M . Instead we “halve” it with TA|M → Λ.

Borisov-Joyce instead intersect [C ] with ER ⊂ E (ish)

(taking the half T ∗
A|M

ds+−−−→ ER of the obstruction complex)
We show the result is the same. In particular [BJ]’s class is zero
when it is odd-dimensional.



K -theoretic Euler class

K -theory is an oriented (generalised) cohomology theory: it has a
theory of Chern classes.

The K -theoretic Euler class of a bundle E → Y is

e(E ) = 0∗E [O0E ] ∈ K 0(Y ),

where 0E ⊂ E is the zero-section and 0∗E is the (derived) pullback
in K -theory. Resolving the structure sheaf of 0E ⊂ E by its Koszul
resolution Λ•π∗E ∗ on π : E → Y shows this is

e(E ) = Λ•E ∗ ∈ K 0(Y ).

When E admits a transverse section s this is just [OZ(s)].



Square-root K -theoretic Euler class

For an SO(2n,C) bundle (E , q, o) with a maximal isotropic Λ ⊂ E
we define

√
e(E ) := (−1)|Λ| Λ•(Λ∗)⊗

√
det Λ ∈ K 0

(
Y ,Z

[
1
2

])
.

√
L := 1+ 1

2 (L− 1)+

(
1
2

)(
−1
2

)
2! (L− 1)2+ · · · uniquely defined over Z

[
1
2

]
.

More generally work on the cover ρ : Ỹ → Y with Λρ ⊂ ρ∗E :

√
e(E ) := ρ∗

[
Λ•(Λ∗

ρ)⊗
√

det Λρ

]
∈ K 0

(
Y ,Z

[
1
2

])
.

Building on work of Anderson we show these are compatible.
They satisfy

√
e(E )2 = (−1)ne(E ).



Virtual structure sheaf

Using Kiem-Li’s recent K -theoretic cosection localisation we define
a class e(E , s) localised to the zeros of an isotropic section, and a
square-root K -theoretic Gysin map√

0∗E : K0

(
C ,Z

[
1
2

])
−→ K0

(
Y ,Z

[
1
2

])
for C ⊂ E an isotropic cone.

In this way we can define a K -theoretic virtual cycle on moduli
spaces M of stable sheaves on Calabi-Yau 4-folds.

Let T → E → T ∗ be a self-dual representative of its deformation-
obstruction complex T vir

M := Rπ∗RHom(F ,F)[1], and set

Ôvir
M :=

√
0∗E [OC ] ·

√
detT ∗ ∈ K0(M).

Well-defined, independent of choices.



Virtual Riemann-Roch and torus localisation

The two classes are related by a virtual Riemann-Roch formula

χ
(
Ôvir
M

)
=

∫
[M]vir

√
td
(
T vir
M

)
.

The advantage of algebraic classes is that they are more
computable, for instance by torus localisation.

Suppose T := C∗ acts on a quasi-projective Calabi-Yau 4-fold X
preserving the holomorphic 4-form. Let ι : MT ↪→ M denote the
fixed locus of the induced T action on M. Then

[M]vir = ι∗

[
MT

]vir
√
eT(N

vir)
∈ AT

1
2
vd
(M,Q)

[
t−1

]
,

Ôvir
M = ι∗

Ôvir
MT

√
eT(N

vir)
∈ KT

0 (M)⊗Z[t,t−1] Q(t).


